第一节 分类加法计数原理与分步乘法计数原理

合集下载

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

1.1分类加法计数原理与分步乘法计数原理课件人教新课标

√A.9 B.2
C.20
D.6
(2)从A村去B村的道路有3条,从B村去C 村的道路有2条,从A村经B村去C村,不同的 路线有 ( )条.
A.3 B.4
C.5
√D.6
3.解答题
(1)由数字l,2,3,4,5可以组成多少个允 许重复数字的三位数.
解:
由于此三位数的数字允许重复,分三步: 百、十、个位数各有5种取法, 所以可以组成
如果完成一件事有n种不同方案,在每一 类中都有若干种不同方法,那么如何计数呢?
2、分步乘法计数原理
用前6个大写英文字母和1~9九个阿拉伯 数字,以A1,A2,…,B1,B2,…的方式 给教室里的座位编号,总共能变出多少个不 同的号码?
解答
由题意画图如下:
字母 A
数字
1 2 3 4 5 6 7 8 9
A.48个
分析:
B.36个
C.24个
D.18个
先分类,再分步,据题意,当个位数是2时, 万位数是3,4,5,其他随便,共有 3×3×2×1=18种;当个位数是4时,万位数是2, 3,5,其他随便,共有3×3×2×1=18种
所以共有36种.
课堂练习
1.填空
(1)从甲地到乙地有2种走法,从乙地到丙地有4 种走法,从甲地不经过乙地到丙地有3种走法,则 从甲地到丙地的不同的走法共有 __1_1___种.
高考链接
1(202X年福建卷7)某班级要从4名男生、2名 女生中选派4人参加某次社区服务,如果要求至少 有1名女生,那么不同的选派方案种数___A__ .
A. 14 B. 24
C. 28
D. 48
先分类,再分 步!
2. (202X年四川文科第9题)用数字1,2,3, 4,5可以组成没有重复数字,并且比20000大的 五位偶数共有______.B

分类加法计数原理与分步乘法计数原理教案新部编本

分类加法计数原理与分步乘法计数原理教案新部编本

教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校1.1分类加法计数原理与分步乘法计数原理(第一课时)内容分析:本节课要学的内容分类加法计数原理与分步乘法计数原理主要包括:分类加法计数原理的定义、分步乘法计数原理的定义以及两个原理的简单应用,其核心是两个计数原理,理解它关键就是要体会两个计数原理的基本思想及其应用方法.学生已经学过加法、乘法,本节课的内容要与之建立相关联系.由于它们不仅是推导排列数、组合数计算公式的依据,而且其基本思想方法贯穿本章内容的始终,所以在本章有重要的地位,是本学科的重要内容.教学的重点是两个计数原理,解决重点的关键是结合实例阐述两个计数原理的基本内容,分析原理的条件和结论,特别是要注意使用对比的方法,引导学生认识它们的异同.问题诊断分析:在本节课的教学中,学生可能遇到的问题是如何选择对应的原理解决具体问题,产生这一问题的原因是学生无法把具体的问题特征与两个计数的基本思想联系起来.要解决这一问题,在本节教学时先采取通过典型的、学生熟悉的实例,经过抽象概括而得出两个计数原理,然后按照从单一至综合的方式,安排比较典型的例题,引导学生逐步体会两个计数原理的基本思想及其应用方法.学情分析:本节课的授课对象是民族地区完全中学普通高中的学生.这些学生学习基础相对比较薄弱,思维不够灵活,分析问题的能力也不强。

为此在教学时需循序渐进,逐步培养学生对分类加法计数原理和分步乘法计数原理的辨析能力,规范学生对这种问题的分析过程和解答过程,引领学生学会解决此类问题的一般性方法,从而有效地促使学生强化对两个原理的理解深度.三维目标:知识与技能:①理解分类加法计数原理与分步乘法计数原理,并掌握他们的区别与联系;②会利用两个原理分析和解决一些简单的应用问题;过程与方法:通过对两个原理概念的学习培养学生的理解能力、归纳概括能力和类比分析能力;②通过对两个原理的应用,提高学生对数学知识的应用能力;情感态度与价值观:①了解学习本章的意义,激发学生的学习兴趣;②引导学生形成“自主学习”与“合作学习”等良好的学习方式.目标解析:①理解分类加法计数原理就是指将一个复杂问题分解为若干“类别”,然后分类解决,各个击破;②理解分步乘法计数原理就是指将一个复杂问题分解为若干“步骤”,先对每一个步骤进行细致分析,再整合为一个完整的过程;③会应用两个计数原理解决简单的实际问题就是指根据具体问题的特征选择对应的计数原理。

排列组合第一讲分类加法与分步乘法计数基本知识

排列组合第一讲分类加法与分步乘法计数基本知识

两个计数原理【知识网络】【典型例题】题型一、分类加法计数原理例1、从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为()A.6B.5C.3D.2例2、在所有两位数中,个位数字大于十位数字的两位数共有多少个?【变式练习】1.若a,b∈N*,且a+b≤5,则在直角坐标平面内的点(a,b)共有________个.2.在所有的两位数中,个位数字小于十位数字的两位数共有多少个?例3、有不同的语文书9本,不同的数学书7本,不同的英语书5本,从中选出不属于同一学科的书2本,则不同的选法有()A.21种B.315种C.143种D.153种例4、某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有( ).A.4种B.10种C.18种D.20种方法总结分类时,首先要确定一个恰当的分类标准,然后进行分类;其次分类时要注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法是不同的方法,只有满足这些条件,才可以用分类加法计数原理【变式练习】1.某校开设10门课程供学生选修,其中A,B,C三门由于上课时间相同,至多选一门学校规定,每位同学选修三门,则每位同学不同的选修方案种数是()A.120 B.98 C.63 D.562.某电脑用户计划使用不超过500元购买单价分别为60元、70元的电脑软件和电脑元件,根据需要,软件至少买3个,元件至少买2个,则不同的选购方法有()A.5B.6C.7D.83.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个.4.由0,1,2,3这四个数字组成的四位数中,有重复数字的四位数共有( ).A.238个B.232个C.174个D.168个例5、在某种信息传输过程中,用4个数字的一个排列(数字也许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( )A.10 B.11 C.12 D.15【变式练习】1.为了应对欧债危机,沃尔沃汽车公司决定从10名办公室工作人员中裁去4人,要求甲、乙二人不能全部裁去,则不同的裁员方案的种数为________.2.在一块并排的10垄田地中,选择二垄分别种植A、B两种作物,每种种植一垄,为有利于作物生长,要求A、B两种作物的间隔不少于6垄,不同的选法共有多少种。

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

6.1 分类加法计数原理与分步乘法计数原理第1课时PPT课件(人教版)

探究一
探究二
探究三
素养形成
当堂检测
解:(1)分四类:第1类,从一班学生中选1人,有7种选法;第2类,从二班 学生中选1人,有8种选法;第3类,从三班学生中选1人,有9种选法;第4 类,从四班学生中选1人,有10种选法. 由分类加法计数原理知共有不同的选法N=7+8+9+10=34(种). (2)分四步:第1、2、3、4步分别从一、二、三、四班学生中选一 人任组长.
加法计数原理知共有不同的选法
N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.使用两个原理的原则 使用两个原理解题时,一定要从“分类”“分步”的角度入手.“分类”是 对于较复杂应用问题的元素分成互相排挤的几类,逐类解决,用分 类加法计数原理;“分步”就是把问题分化为几个互相关联的步骤,然 后逐步解决,这时可用分步乘法计数原理. 2.应用两个计数原理计数的四个步骤 (1)明确完成的这件事是什么. (2)思考如何完成这件事. (3)判断它属于分类还是分步,是先分类后分步,还是先分步后分类. (4)选择计数原理进行计算.
探究二探Leabharlann 三素养形成当堂检测
变式训练2要从教学楼的一层走到三层,已知从一层到二层有4个扶 梯可走,从二层到三层有2个扶梯可走,则从一层到三层有多少种不 同的走法? 解:第1步,从一层到二层有4种不同的走法; 第2步,从二层到三层有2种不同的走法. 根据分步乘法计数原理知,从教学楼的一层到三层的不同走法有
探究一
探究二
探究三
素养形成
当堂检测
反思感悟 1.分类加法计数原理的推广 分类加法计数原理:完成一件事有n类不同的方案,在第1类方案中 有m1种不同的方法,在第2类方案中有m2种不同的方法,……,在第n 类方案中有mn种不同的方法,那么完成这件事共有 N=m1+m2+m3+…+mn种不同的方法. 2.能用分类加法计数原理解决的问题具有如下特点 (1)完成一件事有若干种方案,这些方案可以分成n类; (2)用每一类中的每一种方法都可以单独完成这件事; (3)把各类的方法数相加,就可以得到完成这件事的所有方法数.

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

高考数学一轮复习 第一节 分类加法计数原理与分步乘法计数原理课件 理 新人教A版

高考数学一轮复习 第一节 分类加法计数原理与分步乘法计数原理课件 理 新人教A版

有两人拿对自己的外衣的情况有
()
A.30 种
B .31 种
C.35 种
D.40 种
解析:分类:第一类,两人拿对:2×C52=20 种;第二类,
三人拿对:C35=10 种;第三类,四人拿对与五人拿对一样,
所以有 1 种.故共有 20+10+1=31 种.
答案:B
第十一页,共28页。
3.(2013·三门峡模拟)有 4 位教师在同一年级的 4 个班中各教一
型小方格 12 个,所以共有“L”型图案 4×12=48(个). 答案:C
第二十六页,共28页。
4.(2013·济南模拟)集合 P={x,1},Q={y,1,2},其中 x,y∈
{1,2,3,…,9},且 P⊆Q.把满足上述条件的一对有序整数对
(x,y)作为一个点的坐标,则这样的点的个数是 ( )
[解析] 先涂三棱锥 P­ABC 的三个侧面,然后涂三棱柱的三个 侧面,共有 C13×C12×C11×C12=3×2×1×2=12 种不同的涂法.
[答案] 12
第十四页,共28页。
[类题通法] 利用分步乘法计数原理解决问题时应注意
(1)要按事件发生的过程合理分步,即分步是有先后顺序的. (2)各步中的方法互相依存,缺一不可,只有各步骤都完成 才算完成这件事. (3)对完成每一步的不同方法数要根据条件准确确定.
为偶数的不同取法的种数有
()
A.30
B.20
C.10
D.6
解析:从 0,1,2,3,4,5 六个数字中,任取两数和为偶数可分为
两类,①取出的两数都是偶数,共有 3 种方法;②取出的
两数都是奇数,共有 3 种方法,故由分类加法计数原理得
共有 N=3+3=6 种. 答案:D

第1讲 分类加法计数原理与分步乘法计数原理

第1讲 分类加法计数原理与分步乘法计数原理

从 21 至 30 中选 1 个号,从 31 至 36 中选 1 个号组成一注,若这个人把满
足这种特殊要求的号买全,要花( )
A.3360 元
B.6720 元
C.4320 元
D.8640 元
解析 从 01 至 10 中选 3 个连续的号共有 8 种选法;从 11 至 20 中选 2
个连续的号共有 9 种选法;从 21 至 30 中选 1 个号有 10 种选法;从 31 至
解析 答案
使用分类加法计数原理时应注意的三方面 (1)各类方法之间相互独立,每种方法都能完成这件事,且方法总数是 各类方法数相加得到的. (2)分类时,首先要在问题的条件之下确定一个分类标准,然后在确定 的分类标准下进行分类. (3)完成这件事的任何一种方法必属于某一类,且分别属于不同类的方 法都是不同的.
步,从 F→G,有 3 条可以选择的最短路径.由分步乘法计数原理可知有 6×3
=18 条可以选择的最短路径.故选 B.
解析 答案
(2)某体育彩票规定:从 01 至 36 共 36 个号中选出 7 个号为一注,每注
2 元.某人想从 01 至 10 中选 3 个连续的号,从 11 至 20 中选 2 个连续的号,
合中各选一个元素分别作为点的横坐标、纵坐标,则这样的坐标在直角坐
标系中可表示第一、第二象限内不同的点的个数是( )
A.12
B.8
C.6
D.4
解析 第一象限内不同点共有 2×2=4 个,第二象限内不同点共有 1×2
=2 个,故共有 4+2=6 个.故选 C.
解析 答案
6.某人有 3 个电子邮箱,他要发 5 封不同的电子邮件,则不同的发送 方法有________________________种.

分类加法计数原理与分步乘法计数原理教学设计

分类加法计数原理与分步乘法计数原理教学设计

类比分类问 从实例和具体经验出发,
概 追问:你能不能把这种解决问题的规律用数学语 题的共同特征, 通过比较、归纳、概括等
括 言来表述呢?
学生归纳叙述分 思维过程获得分步乘法计

分步乘法计数原理
步 乘 法 计 数 原 数原理的内容,培养学生
示 完成一件事需要两个步骤,做第 1 步有 m 种不同 理。
分析问题、模仿和语言表
(二)分类加法计数原理的形成
教学过程设计
生 问题 1: 活 (1)小明要从北京到重庆,一天中,飞机有 4 感 班,火车有 3 班,一天中乘坐这些交通工具从北 知 京到重庆共有多少种不同的走法?
初 识 原 理 生:7 种。
(追问:你是怎么想的) 师:这个问题中,小明要完成一件什么事? 生:从北京到重庆。 师:怎么完成的呢? 生:坐飞机或坐火车 师:你的意思是按交通工具不同分成了两类不同 的解决方案?你是怎么计算的呢? 生:因为每一个班次的飞机或火车都能到达重 庆,所以 4+3=7.(以图表形式板书)
生物学 数学
管理学
化学 会计学 建筑学
医学 法学

物理学
比 如果小明要从这三所大学里选一个专业,他一共 迁 有多少种不同的选法呢? 移
完成一件事有三类不同方案,第 1 类方案里有 m1
同 种不同的方法,第 2 类方案里有 m2 种不同的方
学生独立探
化 原 理
法,第 3 类方案里有 m3 种不同的方法,那么完成
1
1
1
A 2 B 2C 2 D 2
3
3
3
3
②4 3=12(请做的同学自己分析解释)
师:乘法运算是特定条件下加法运算的简化,由
于加数相同,所以乘法优化了加法,使得计数更
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档