精馏塔课程设计

合集下载

多组分精馏塔课程设计

多组分精馏塔课程设计

多组分精馏塔课程设计一、课程目标知识目标:1. 学生能理解多组分精馏塔的基本原理,掌握其工艺流程和关键参数计算方法。

2. 学生能够描述多组分精馏塔在化工生产中的应用,并解释其重要性与实际意义。

3. 学生掌握至少两种多组分精馏塔的设计方法,并能够运用相关公式进行简单计算。

技能目标:1. 学生能够运用所学知识,针对特定混合物设计出合理的多组分精馏塔工艺。

2. 学生通过实例分析和问题解决,培养实验操作能力,提高观察、分析和解决实际问题的能力。

3. 学生能够利用计算机软件或手工绘图方式,准确表达多组分精馏塔的结构和工艺流程。

情感态度价值观目标:1. 学生通过本课程的学习,培养对化学工程学科的兴趣,激发探索精神和创新意识。

2. 学生在团队协作中,学会沟通与交流,培养合作精神和集体荣誉感。

3. 学生认识到化学工艺在国民经济发展中的重要作用,增强环保意识和责任感。

课程性质:本课程为化学工程与工艺专业核心课程,以实践性和应用性为主要特点。

学生特点:学生具备基础化学知识和一定的化工原理基础,具有较强的逻辑思维能力和动手能力。

教学要求:结合课程特点和学生实际情况,注重理论与实践相结合,充分调动学生的主观能动性,提高学生的实际操作能力和创新能力。

在教学过程中,关注学生的个体差异,因材施教,确保课程目标的实现。

通过课程学习,使学生在知识、技能和情感态度价值观方面取得具体的学习成果。

二、教学内容1. 多组分精馏塔原理:讲解多组分精馏塔的工作原理,包括相平衡、理论塔板、回流比等基本概念,对应教材第三章第一节。

2. 多组分精馏塔工艺流程:分析多组分精馏塔的典型工艺流程,如petrofrac、McCabe-Thiele方法等,结合实例进行讲解,对应教材第三章第二节。

3. 多组分精馏塔关键参数计算:详细介绍关键参数的计算方法,如理论塔板数、塔径、塔内液汽流率等,并通过习题进行巩固,对应教材第三章第三节。

4. 多组分精馏塔设计方法:讲解两种以上的多组分精馏塔设计方法,如简捷法、模拟法等,并指导学生运用相关软件进行模拟计算,对应教材第三章第四节。

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔

化工原理课程设计任务书精馏塔本篇文档主要介绍化工原理课程设计任务书中关于精馏塔的要求和内容。

一、设计任务设计一座丙酮-甲醇精馏塔,要求:1. 产品:A级丙酮、B级丙酮、水、甲醇2. 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%3. 操作压力:常压4. 输出流量:1000kg/h,A级丙酮90%,B级丙酮10%5. 设计基准:精馏32个板层二、设计步骤1. 精馏塔的结构设计(1) 塔的类型:管式塔(2) 塔的高度:设定32个板层,按传质条件设计最小高度(3) 填料类型:采用网格填料(4) 塔的直径:根据输入流量、精馏塔高度和填料设计(5) 塔的材质:不锈钢(6) 填料厚度:1.5cm2. 精馏塔的操作参数及控制(1) 操作压力:常压(2) 丙酮的重心温度:58℃(3) 甲醇的重心温度:52℃(4) 塔顶压力:1atm(5) 塔底压力:1atm(6) 板间压力降:0.015atm(7) 蒸汽进口管直径:50mm(8) 汽液分离器直径:100mm(9) 泵的扬程:15m3. 精馏塔的热力学计算(1) 设定板层数:32(2) 输入流量:1000kg/h,A级丙酮50%,B级丙酮50%(3) 设定塔顶压力:1atm(4) 设定塔底压力:1atm(5) 设定塔板温度,参考数值文献或软件计算(6) 根据塔板温度确定物质的蒸汽压(7) 根据物质的蒸汽压计算物质的分馏、回流比等参数4. 精馏塔的动力学模拟(1) 建立模型:使用MATLAB或其他模拟软件建立动力学模型(2) 确定控制方案:根据设定的输出要求,确定控制方案(3) 模拟仿真:进行塔的动态仿真,查找可能的故障及出现的问题(4) 评价:对模拟结果进行评价,并应对出现的问题进行处理三、设计成果1. 绘制精馏塔的结构图:包含填料、板层、进口出口等2. 绘制精馏塔的液相、气相平衡图3. 计算精馏塔流程图:包括输入和输出物质流量、温度、压力等参数4. 编写精馏塔的操作说明:包括操作控制、参数设定、操作步骤等5. 输出精馏塔的动态模拟成果:包括MATLAB或其他模拟软件的代码和仿真结果以上是化工原理课程设计的精馏塔任务书的要求和内容,本文档中介绍了设计步骤和要求,设计成果等部分,可以为读者提供一定帮助,同时也展示了精馏塔设计工作的一般流程和方法。

化工原理课程设计精馏塔

化工原理课程设计精馏塔

化工原理课程设计精馏塔
在化工原理课程设计中,精馏塔是一个非常重要的主题。

精馏塔是化工生产中
用来进行精馏分离的装置,其原理和设计对于化工工程师来说至关重要。

本文将对精馏塔的原理、结构和设计进行详细介绍,希望能对化工原理课程设计有所帮助。

首先,我们来介绍一下精馏塔的原理。

精馏塔利用不同组分的沸点差异来进行
分离,通过在塔内加热并在塔顶冷凝,使得液体沸腾蒸发,然后在塔顶冷凝成液体,从而实现组分的分离。

在精馏塔内,通常会设置填料或塔板,增加塔内表面积,促进传质和传热,提高分离效率。

其次,我们将介绍精馏塔的结构。

精馏塔通常由塔底、塔体和塔顶三部分组成。

塔底主要用来加热液体,使其蒸发;塔体内设置填料或塔板,用来增加接触面积;塔顶则用来冷凝蒸发的液体,使其凝结成液体。

此外,精馏塔还包括进料口、顶部产品出口和底部残液出口等部件。

最后,我们将讨论精馏塔的设计。

精馏塔的设计需要考虑诸多因素,如进料组分、产品要求、操作压力和温度等。

在设计精馏塔时,需要进行热力学计算和传质计算,确定塔板或填料的高度和类型,保证塔内的传热和传质效果。

此外,还需要考虑塔底加热方式、塔顶冷凝方式以及塔内液体分布等问题,确保精馏塔能够稳定、高效地进行分离操作。

总之,精馏塔作为化工生产中常用的分离设备,其原理、结构和设计都是化工
工程师需要掌握的重要知识。

通过本文的介绍,相信读者对精馏塔有了更深入的了解,希望能够对化工原理课程设计有所帮助。

丙酮水精馏塔课程设计

丙酮水精馏塔课程设计

丙酮水精馏塔课程设计一、课程目标知识目标:1. 让学生掌握丙酮与水的精馏原理,理解精馏塔的基本结构和操作流程;2. 学会运用化学平衡和相平衡知识,分析丙酮-水体系的精馏过程;3. 掌握精馏塔的物料与能量平衡计算方法,能进行简单精馏塔的设计与优化。

技能目标:1. 培养学生运用所学知识解决实际化学工程问题的能力,能独立进行精馏塔的实验操作;2. 提高学生的实验数据分析与处理能力,能够利用实验数据优化精馏操作;3. 培养学生的团队协作和沟通能力,能在小组讨论中提出建设性意见。

情感态度价值观目标:1. 培养学生对化学工程学科的兴趣,激发他们探索科学问题的热情;2. 培养学生严谨的科学态度,注重实验数据的真实性和客观性;3. 增强学生的环保意识,让他们认识到化学工艺在环保方面的重要性。

课程性质:本课程为高中化学选修课程,以化学工程实践为基础,结合理论知识,培养学生的实践操作能力和科学素养。

学生特点:高中学生具备一定的化学基础知识和实验操作技能,但化学工程知识相对薄弱,需要通过实践操作和理论学习相结合的方式进行教学。

教学要求:教师应注重理论与实践相结合,充分调动学生的主观能动性,引导学生主动参与实验和讨论,提高学生的实践能力和科学素养。

同时,注重培养学生的团队协作能力和环保意识。

通过本课程的学习,使学生能够将所学知识应用于实际化学工程问题,为未来的学习和工作打下坚实基础。

二、教学内容本节教学内容主要包括以下三个方面:1. 精馏原理与精馏塔结构- 理解丙酮与水的精馏原理,掌握精馏过程中物质的相变和分离机制;- 学习精馏塔的基本结构,包括塔板、填料、加热器、冷凝器等部件的作用和设计要求;- 结合教材相关章节,分析实际精馏塔操作流程。

2. 化学平衡与相平衡- 掌握丙酮-水体系的气液平衡和液液平衡关系;- 学习化学平衡常数、相平衡图等概念,分析影响精馏效果的因素;- 引导学生运用所学知识,进行精馏塔的物料与能量平衡计算。

化工原理 课程设计 精馏塔

化工原理 课程设计 精馏塔

化工原理课程设计精馏塔
化工原理课程设计:精馏塔
一、设计题目
设计一个年产10万吨的乙醇-水溶液精馏塔。

该精馏塔将采用连续多级蒸馏的方式,将乙醇与水进行分离。

乙醇的浓度要求为95%(质量分数),水含量要求低于5%。

二、设计要求
1. 设计参数:
操作压力:常压
进料流量:10万吨/年
进料组成:乙醇40%,水60%(质量分数)
产品要求:乙醇95%,水5%
2. 设计内容:
完成精馏塔的整体设计,包括塔高、塔径、填料类型、进料位置、塔板数、回流比等参数的计算和选择。

同时,还需完成塔内件(如进料口、液体分布器、再沸器等)的设计。

3. 绘图要求:
需要绘制精馏塔的工艺流程图和结构示意图,并标注主要设备参数。

4. 报告要求:
完成设计报告,包括设计计算过程、结果分析、经济性分析等内容。

三、设计步骤
1. 确定设计方案:根据题目要求,选择合适的精馏塔类型(如筛板塔、浮阀塔等),并确定进料位置、塔板数和回流比等参数。

2. 计算塔高和塔径:根据精馏原理和物料性质,计算所需塔高和塔径,以满足分离要求。

3. 选择填料类型:根据物料的特性和分离要求,选择合适的填料类型,以提高传质效率。

4. 设计塔内件:根据塔板数和填料类型,设计合适的进料口、液体分布器、再沸器等塔内件。

5. 进行工艺计算:根据进料组成、产品要求和操作条件,计算每块塔板的温度和组成,以及回流比等参数。

6. 进行经济性分析:根据设计方案和工艺计算结果,分析项目的投资成本和运行成本,评估项目的经济可行性。

化工原理课程设计精馏塔设计9724

化工原理课程设计精馏塔设计9724

塔顶塔底的温度,进而求取全塔的平均温度,从而可以根据全
塔平均温度求取全塔平均相对挥发度。
式中: R ---回流
R m in —最小回流比
—全塔平均相对挥发度
3.理 论 板 数 和 实 际 板 数 的 确 定
(1)逐板法计算理论板数,交替使用操作线方程和相平衡关系。
精馏段操作线方程: yn1
L LD
3. 附属设备设计和选用 (1)加料泵选型,加料管规格选型
加料泵以每天工作3小时计(每班打1小时)。 大致估计一下加料管路上的管件和阀门。 (2)高位槽、贮槽容量和位置 高位槽以一次加满再加一定裕量来确定其容积。 贮槽容积按加满一次可生产10天计算确定。 (3)换热器选型 对原料预热器,塔底再沸器,塔顶产品冷却器等进行选型。 (4)塔顶冷凝器设计选型 根据换热量,回流管内流速,冷凝器高度,对塔顶冷凝器进 行选型设计。
0.735
lW hn
hOW
5 2
hOW
hn
5 2
LS —塔内液体流量, m3 S hn —齿深, m;可取为 0.015m
(3).堰高 hW
堰高与板上液层高度及堰上液层高度的关系:
hW hL hOW
2024/7/16
5、降液管的设计
(1)、降液管的宽度Wd 与截面积 Af
可根据堰长与塔径比值 lW ,查图求取。 D
塔径
流体 流 量 m3/h
Mm
U 形流型 单流型 双流型 阶梯流型
600
5 以下
5~25
900
7 以下
7~50
1000 1200
7 以下 9 以下
45 以下 9~70
1400
9 以下
70 以下

化工原理课程设计--苯-甲苯连续精馏塔的设计

化工原理课程设计--苯-甲苯连续精馏塔的设计
精馏塔塔体结构设计
根据物料性质、分离要求和操作条件,选择合适的塔径、塔高和塔板数,并进行强度校核 和稳定性分析。
塔内件和辅助设备选择与设计
根据物料性质、操作条件和分离要求,选择合适的塔板类型、填料类型、液体分布器等, 并进行详细设计。同时,根据热负荷和操作条件,选择合适的冷凝器、再沸器、回流罐等 辅助设备,并进行详细设计。
精馏原理
利用混合物中各组分挥发度的差异, 通过加热使轻组分汽化、冷凝使重组 分液化的过程,实现混合物中各组分 的分离。
精馏过程涉及热量传递和质量传递, 通过回流比、塔板数等操作参数的控 制,实现不同组分的有效分离。
连续精馏塔设计原理
连续精馏塔是实现精馏过程的设备,由塔体、塔板、进料口、冷凝器、再沸器等组 成。
优化操作参数
通过优化操作参数,如降低回流比、 提高塔顶温度等,降低精馏塔的能耗 和排放。
采用热集成技术
采用热集成技术,如热泵精馏、内部 热集成精馏等,实现能量的有效利用 和降低能耗。
加强设备维护和管理
加强设备维护和管理,确保设备处于 良好状态,降低因设备故障导致的能 耗增加和排放超标风险。
06
安全防护与环保要求
工艺流程顺畅、操作方便。
设备优化
02
针对设备选型和参数设计中存在的问题,进行优化改进,提高
设备的分离效率、降低能耗和减少投资。
控制系统设计
03
根据工艺流程和操作要求,设计合适的控制系统,实现设备的
自动化操作和远程监控。
05
操作条件与优化策略
操作条件设定
塔顶温度
根据苯-甲苯体系的物性,设定合适的 塔顶温度,以确保塔顶产品达到预定的
纯度要求。
回流比
根据塔顶产品和塔底产品的纯度要求 ,以及塔的经济性考虑,设定合适的

化工原理课程设计--丙酮水连续精馏塔的设计

化工原理课程设计--丙酮水连续精馏塔的设计

07 安全环保措施与节能优化 建议
安全防护措施考虑
防火防爆措施
采用防爆电器、设置可燃气体检 测报警装置、确保塔内压力稳定 等,以防止火灾和爆炸事故的发 生。
操作安全
制定严格的操作规程,对操作人 员进行专业培训,确保他们熟悉 设备的操作和维护,减少人为操 作失误。
设备安全
选用高质量的材料和可靠的制造 工艺,确保设备的稳定性和安全 性;对关键设备进行定期检查和 维护,及时发现并处理潜在的安 全隐患。
根据冷却水温度、冷却水量、蒸汽量等条件,计算冷凝器传热面积 、冷却水流速等参数。
再沸器
根据加热蒸汽量、加热温度等条件,计算再沸器传热面积、加热蒸 汽流速等参数。
辅助系统(如冷凝器、再沸器等)设计
冷凝器设计
选择合适的冷凝器类型(如列管式、板式等),确定冷却 水进出口温度、冷却水量等参数,进行传热计算和结构设 计。
产品收集
塔顶蒸出的丙酮经过冷凝器冷凝 后收集,塔底排出的水经过处理
后排放或回收利用。
操作条件选择
操作压力
根据丙酮和水的性质及工艺要求 ,选择合适的操作压力。一般来
说,常压精馏可以满足要求。
操作温度
根据丙酮和水的沸点及传质传热要 求,选择合适的操作温度。通常, 操作温度略高于丙酮的沸点。
回流比
回流比对精馏塔的分离效果和能耗 有重要影响。在保证分离效果的前 提下,应尽量降低回流比以减少能 耗。
THANKS FOR WATCHING
感谢您的观看
对设计结果进行仿真验证,分析 设计方案的可行性和经济性。
02 精馏塔工艺设计
工艺流程确定
原料预处理
将丙酮和水按一定比例混合,经 过预热器加热至适宜温度,进入
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精馏塔课程设计第一章概述高径比很大的设备称为塔器。

用于蒸馏(精馏)和吸收的塔器分别称为蒸馏塔和吸收塔。

塔设备是化工、石油化工、生物、制药等生产过程中广泛采用的气液传质设备。

蒸馏和吸收作为分离过程,虽基于不同的物理化学原理,但均属于气液两相间的传质过程,有着共同特点,可在同样的设备中进行操作。

一、塔设备的基本功能和性能评价指标为获得最大的传质速率,塔设备应该满足两条基本原则:(1)使气液两相充分接触,适当湍动,以提供尽可能大的传质面积和传质系数,接触后两相又能及时完善分离;(2)在塔内使气液两相有最大限度的接近逆流, 以提供最大的传质推动力。

板式塔的各种结构设计、新型高效填料的开发,均是以这两条原则的体现和展示。

从工程目的出发,塔设备性能的评价指标如下:(1)通量-----单位塔截面的生产能力,表征塔设备的处理能力和允许空塔气速;(2)分离效率-----单位压降塔的分离效果,对板式塔以板效率表示,对填料塔以等板高度表示;(3)适应能力-----操作弹性,表现为对物料的适应性及对负荷的适应性。

塔设备在兼顾通量大、效率高、适应行强的前提下,还应该满足流动阻力低、结构简单、金属耗量少、造价低、易于操作控制等要求。

一般来说,通量、效率和压强是互相影响甚至是互相矛盾的。

对于工业大规模生产来说,应该在保持高通量前提下,争取效率不过与降低;对于精密分离来说,应优先考虑高效率,而通量和压强则放在第二位。

二、塔设备的类型根据塔内气液接触部件的结构型式,可分为板式塔和填料塔两大类。

按塔内气液接触方式,有逐级接触式和微分(连续)接触式之分。

板式塔内设置一定数量的塔板,气体以鼓泡状、蜂窝状、泡沫状或喷射形式穿过板上的液层,进行传质与传热。

在正常操作下,气相为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。

工业生产中,一般当理物料量较大时多采用板式塔,当要求塔径在0.8m以下时多采用填料塔。

现在这种局面已有所改变,直径在30m以上的填料塔已在工业生产中运行。

按照塔内气液流动的方式,可将塔板分为错流塔与逆流塔板两类。

筛板塔为错流塔板类型之一。

塔内气液两相成错流流动,即液体横向流过塔板,而气体垂直穿过液层,但对整体塔来说,两相基本上成逆流流动。

错流塔板降液管的设置方式及堰高可以控制板上液体流径与液层厚度,以期获得较高的效率。

在几种主要类型错流塔中,应用最早的是泡罩塔板,目前使用最广泛的是筛板塔和浮阀塔板。

(一)泡罩塔板泡罩塔是应用最早的气液传质设备之一,长期以来,人们对泡罩塔的性能作了较充分的研究,在工业生产实践中积累了丰富的经验。

泡罩塔板结构如图一所示。

每层塔板上开有若干个孔,孔上焊有短管作为上升气体的通道,称为升气管。

升气管上覆以泡罩,泡罩下部周边开有许多齿缝。

齿缝一般有矩形、三角形及梯形三种,常用的是矩形。

泡罩在塔板上作等边三角形排列。

化工厂中广泛使用的圆形泡罩的主要结构参数已系列化。

泡罩塔的优点是:因升气管高出液面,不易发生漏夜现象,有较好的操作弹性,即当气液流量有较大的波动时,仍能维持几乎恒定的板效率;塔板不易堵塞,适于处理各种物料。

缺点是:塔板结构复杂,金属耗量大,造价高;塔板压降大,兼因物沫夹带现象严重,限制了气速的提高,致使生产能力及板效率均较低。

目前仍有采用的。

图一:泡罩塔(二)筛板筛板结构如图二所示。

塔板上开有许多均布的筛孔,孔径一般为3~8mm,筛孔在塔板上作正三角形排列.塔板上设置溢流堰,使板上能维持一定厚度的液层。

操作时,上升气流通过筛孔分散成细小的流股,在板上液层中鼓泡而出,气夜间密切接触而进行传质。

在正常的气速操作下,通过筛孔上升的气流,应能阻止液体经筛孔向下泄漏。

图二:筛板塔板筛板塔的优点是:结构简单,造价低廉,气体压降小,板上液面落差也较小,生产能力及板效率均较泡罩塔高。

主要缺点是:操作弹性小,筛孔小时容易堵塞。

近年来采用大孔径(直径10~25mm)筛板可避免堵塞,而且由于气速的提高,生产能力增大。

过去由于对筛板的性能研究不充分,认为操作不易稳定而未普遍应用,直到20世纪50年代初对筛板塔的结构、性能作了较充分的研究,认识到只要设计合理、操作正确,同样可获得较满意的塔板效率和一定的操作弹性,故近年来筛板塔的应用日趋广泛。

(三)浮阀塔板浮阀塔于20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩塔和筛板塔的优点,已成为国内最广泛的塔型,特别是在石油、化学工业中使用最普遍,对其性能研究也较充分。

浮阀塔板的结构特点是在塔板上开有若干大孔(标准孔径为39mm),每个孔上装有一个可以上下浮动的阀门。

浮阀的形式很多,目前国内采用的浮阀有五种,但最常用的浮阀形式为F1型和V-4型。

F-1型 V-4型 A型十字架型方形浮阀图三:浮阀塔板F1型浮阀(国外称为V-1型)如图所示。

阀片本身有四条“腿”,插入阀孔后将各腿底脚扳转90度角,用以限制操作时阀片在板上升起的最大高度(8.5mm);阀片周边有冲出三块略向下弯的定距片。

当气速很低时,靠这三个定距片使阀片与塔板呈点接触而坐落在阀孔上,阀片与塔板间始终保持2.5mm的开度供气体均匀的流过,避免了阀片启闭不匀的脉动现象。

阀片与塔板的接触也可防止停工后阀片与板面黏结。

操作时,由阀孔上升的气流,经过阀片与塔板间的间隙而与板上横流的液体接触。

浮阀开度随气体负荷而变。

当气量很小时,气体仍能通过静止开度的缝隙而鼓泡。

F1型浮阀的结构简单、制造方便、节省材料、性能良好,广泛用于化工及炼油生产中,现已列入部颁标准(JB1118-68)内。

F1浮阀又分轻阀与重阀两种:重阀采用2mm的薄板冲制,每阀质量约为33g;轻阀采用厚度为1.5mm的薄板冲制,每阀质量约为25g。

一般情况下都采用重阀,在处理量大并且要求压强很低的系统(如减压塔)中,才用轻阀。

V-4行浮阀如图所示,其特点是阀孔冲成向下弯曲的文丘里形,以减小气体通过塔板时的压强降。

阀片除腿部相应加强外,其余结构尺寸与F1型轻阀无异。

V-4型浮阀适用于减压系统。

T型浮阀如图所示,拱形阀片的活动范围由固定于塔板上的支架来限制。

T型浮阀的性能与F1型浮阀相近,但结构较复杂,适于处理含颗粒或易聚合的物料。

为避免阀片生锈,浮阀多采用不锈钢制造。

浮阀塔具有下列优点:(1)生产能力大。

由于浮阀塔板具有较大的开孔率,故其生产能力比泡罩塔的大20﹪~40﹪,而与筛板塔相近。

(2)操作弹性大。

由于伐片可以自由升降以适应气量的变化,故维持正常操作所容许的负荷波动范围比泡罩塔和筛板塔都宽。

(3)塔板效率高。

因上升气体以水平方向吹入液层,故气、液接触时间较长而物沫夹带量较小,板效率较高。

(4)气体压强降及液面落差较小。

因为气液流过浮阀塔板时所遇到的阻力较小,故气体的压强降及板上的液面落差都比泡罩塔的小。

(5)塔的造价低。

因构造简单,易于制造,浮阀塔的造价一般为泡罩塔的60﹪~80﹪,为筛板塔的120﹪~130﹪。

浮阀塔不宜处理易结焦或黏度大的系统,但对于黏度稍大及有一般聚合现象的系统,浮阀塔也能正常操作。

(四)喷射型塔板上述塔板不同程度的存在物沫夹带现象。

为了克服这一不利因素的影响,设计了斜向喷射的舌形塔板、斜孔板、垂直筛板、浮舌塔板、浮动喷射塔板等不同的结构形式,有些塔板结构还能减少因水力梯度造成的气体不均匀分布现象。

高效、大通量、低压降的新型垂直筛板塔近几年得到快速的推广应用。

层出不穷的新型塔板结构各具特点,应根据不同的工艺及生产需要来选择塔型。

一般来说,对难分离物质的高度分离,希望得到高的塔板效率;对处理量大又易分离的物质,往往追求高的生产能力;而对真空精馏,则要求有低的塔板压强降。

第二章设计方案的确定及流程说明一、装置流程的确定精馏装置有精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。

热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。

在此过程中,热能利用率很低,为此,在确定流程时应考虑余热的利用,注意节能。

塔顶冷凝装置根据生产情况决定采用分凝器或全凝器。

一般塔顶分凝器对上升蒸汽虽有一定增浓作用,但在石油等工业中获取液相产品时往往采用全凝器,以便于准确地确定回流比。

若后继装置使用气态物料,则宜用分凝器。

苯—甲苯混合液原料经预热器加热到指定温度后送入精馏塔德进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底在肺气肿。

在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程。

操作时,连续的从再沸器取出部分液体作为塔底产品,部分液体气化,产生上升蒸汽,一次通过各层塔板。

塔顶蒸汽进入冷凝器中被冷凝,并将部分冷凝液用泵送回塔顶作为回流液,其余部分经冷凝器冷凝后送出作为塔顶产品,经冷凝器冷却后送入贮槽。

塔釜采用间接蒸汽和再沸器共热。

塔底产品经冷却后送入贮槽。

流程图如图二、操作压力的选择精馏操作可在常压、减压和加压下进行。

塔内操作压力的选择不仅牵涉到分离问题,而且与塔顶和塔底温度的选取有关。

根据所处理的物料性质,兼顾技术上的可行性和经济上的合理性来综合考虑。

压力增加可提高塔的处理能力,但会增加塔身的壁厚,导致设备费用增加;压力增加,组分间的相对挥发度降低,回流比或塔高增加,导致操作费用或设备费用增加。

因此如果在常压下操作时,塔顶蒸气可以用普通冷却水进行冷却,一般不采用加压操作。

本设计中已制定为塔顶表压为4kPa。

三、进料热状态的选择进料热状态以进料热状况参数q表达。

进料状态有5种,可用进料状态参数q 值来表示。

进料为过冷液体:q>1;饱和液体(泡点):q=1;气、液混合物:0<q <1;饱和蒸气(露点):q=0;过热蒸气:q<0。

q值增加,冷凝器负荷降低而再沸器负荷增加,由此而导致的操作费用的变化与塔顶出料量D和进料量F的比值D/F 有关;对于低温精馏,不论D/F值如何,采用较高的q值为经济;对于高温精馏,当D/F值大时宜采用较小的q值,当D/F值小时宜采用q值较大的气液混合物。

本设计任务书中已设定q=1。

四、加热方式蒸馏一般采用间接蒸汽加热,设置再沸器,但对塔底产物基本是水,且在低浓度时的相对挥发度较大的体系,也可采用直接蒸汽加热。

直接蒸汽加热的优点是:可利用压力较低的蒸汽加热以节省操作费用,并省掉间接加热设备。

但由于直接蒸汽的加入,对釜内溶液起一定稀释作用,在进料条件和产品纯度、轻组分收率一定的前提下,釜液浓度相应降低,故需在提留段增加塔板以达到生产要求。

本设计采用间接蒸汽加热。

五、回流比的选择影响精馏操作费用的主要因素是塔内蒸气量V。

对于一定的生产能力,即馏出量D一定时,V的大小取决于回流比。

实际回流比总是介于最小回流比和全回流两种极限之间。

由于回流比的大小不仅影响到所需理论板数,还影响到加热蒸汽和冷却水的消耗量,以及塔板、塔径、蒸馏釜和冷凝器的结构尺寸的选择,因此,适宜回流比的选择是一个很重要的问题。

相关文档
最新文档