【中考复习】中考数学复习反比例函数教案
九年级中考数学一轮复习教案:反比例函数复习精选全文

精选全文完整版(可编辑修改)《反比例函数》复习课简案【教学目标】1.熟练掌握反比例函数的定义,能应用其图像与性质解决相关问题,会用待定系数法求一次函数的表达式;2. 通过反比例函数知识的整理、归纳,感受数学思考过程的条理性,发展学生的收集、整理、小结、概括、运用的能力;3. 通过学生自主设计问题、教师引导的方式,提高学生自主分析问题、解决问题的能力,培养学生独立思考、合作交流的意识,提升学生学习数学的基本素养.【教学重难点】教学重点:能用反比例函数的图像与性质解决问题,会用待定系数法求反比例函数的表达式; 教学难点:能用反比例函数的知识解决综合问题,提高学生分析问题、解决问题的能力.【教学过程】一、 自主建构,梳理知识1、 反比例函数的定义:2、 反比例函数的图像:3、 反比例函数的图像特征:二、 自主设计,合作交流问题一:已知反比例函数的图像经过3(,4)2Q --(1)写出这个函数表达式;(2)若点Q (-1,m )在这个图像上,写出m 的值;(3)若P (-2,y 1) ,Q (3,y 2) 在这个图像上,你能比较y 1 ,y 2 的大小吗?(4)若P (x 1,y 1) , Q (x 2,y 2) 在这个图像上,且120x x <<,你还能比较y 1、y 2的大小吗?(5)如图,点P 是这个图像上任意一点,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,你能求出矩形OAPB 的面积吗?在第(5)问的基础上你还能提出哪些问题?一轮复习研讨课三、 变题研究,提高能力 变式1:如图,A 、B 两点在双曲线6y x =上,分别经过A 、B 两点向坐标轴作垂线段,已知S 阴影=1,则S 1+S 2= .变式2:如图,过点P (4,5)分别作PC ⊥x 轴于点C ,PD ⊥y 轴 于点D ,PC 、PD 分别交反比例函数6y x =(x >0)的图象于点 A 、B ,则四边形BOAP 的面积为 .变式3:如图,A 、B 是双曲线6y x=上的两点,过A 点作 AC⊥x 轴,交OB 于D 点,垂足为C.若D 为OB 的中点,则△ADO 的面积为 .四、总结反思,提升素养问题二:1、如图,直线y kx =与反比例函数6y x =的图像交于P 、Q 两点. (1)若P(1,6),你能说出点Q 的坐标吗?(2)在(1)的条件下,结合图像,你能写出方程6kx x =的解吗? 你能写出不等式6kx x >中x 的取值范围吗?2、已知A (3,2)、B (-2,﹣3)两点是一次函数y kx b =+ 和反比例函数m y x =图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB 的面积;(3)观察图象,直接写出不等式0m kx b x+->的解集.在这一学年中,不仅在业务能力上,还是在教育教学上都有了一定的提高。
2025年九年级中考数学一轮复习课件:第11讲反比例函数

=-.
,解得
,∴当0≤x<3时,硫化物的浓度
+=.
=
y与时间x的函数表达式为y=-2.5x+12.
12),(3,x≥3时,求硫化物的浓度y与时间x的函数表达式.
(3)该企业所排污水中硫化物的浓度能否在15天内降到最高允许的1.0mg/L内?为什么?
函
数
反
比
例
函
数
反
比
例
函
数
基础知识逐点练
巩固基础·提升能力
反比例函数的图象和性质
考查角度1:反比例函数的图象及其对称性
1.(2023·荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻
R(单位:Ω)是反比例函数关系(I= ).下列反映电流I与电阻R之间函数关系的图象大致
是(
B两点.已知点A的坐标为(1,3),点C为x轴上任意一点.如果S△ABC=9,那么点C的坐
标为( D )
A.(-3,0)
B.(5,0)
C.(-3,0)或(5,0)
D.(3,0)或(-5,0)
10.(2022·烟台)如图,A,B是双曲线y= (x>0)上的两点,连接OA,OB.过点A作
AC⊥x轴于点C,交OB于点D.若D为AC的中点,△AOD的面积为3,点B的坐标为(m,
2),则m的值为 6
.
一次函数与反比例函数的综合
考查角度1:一次函数与反比例函数图象的共存
11.(2022·滨州)在同一平面直角坐标系中,函数y=kx+1与y=- (k为常数且k≠0)的
图象大致是( A )
12.在同一直角坐标系中,若k>0,则函数y=kx-k与y= 的图象可能是( B )
中考数学考点专题复习课件反比例函数的图象和性质

解:(1)过点 D 作 x 轴的垂线,垂足为 F,∵点 D 的坐标为(4,3),∴OF
=4,DF=3,∴OD=5,∴AD=5,∴点 A 坐标为(4,8),∴k=xy=4×8
=32,∴k=32 (2)将菱形 ABCD 沿 x 轴正方向平移,使得点 D 落在函数 y=3x2(x>0)的
图象 D′点处,过点 D′做 x 轴的垂线,垂足为 F′.∵DF=3,∴D′F′=3,∴ 点 D′的纵坐标为 3,∵点 D′在 y=3x2的图象上,∴3=3x2,解得:x=332,即 OF′=332,∴FF′=332-4=230,∴菱形 ABCD 平移的距离为230
3.(2015·苏州)若点 A(a,b)在反比例函数 y=2x的图象上,则代数式 ab
-4 的值为( B)
A.0 B.-2 C.2 D.-6
4.(2015·牡丹江)在同一直角坐标系中,函数 y=-xa与 y=ax+1(a≠0)
的图象可能是( B )
,A)
,B)
,C)
,D)
5.(2015·青岛)如图,正比例函数 y1=k1x 的图象与反 比例函数 y2=kx2的图象相交于 A,B 两点,其中点 A 的横坐标为 2,当
①ACMN =||kk12||; ②阴影部分面积是12(k1+k2); ③当∠AOC=90°时,|k1|=|k2|; ④若 OABC 是菱形,则两双曲线既关于 x 轴对称,也关于 y 轴对称.
其中正确的是①__④__.(把所有正确的结论的序号都填上)
(3)(2015·宿迁)如图,在平面直角坐标系中,已知点 A(8,1),B(0,-3), 反比例函数 y=kx(x>0)的图象经过点 A,动直线 x=t(0<t<8)与反比例函数 的图象交于点 M,与直线 AB 交于点 N.
【大师特稿】中考数学一轮复习第13讲:反比例函数教案

第13讲:反比例函数一、复习目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象2、能够将反比例函数有关的实际应用题转化为函数问题二、课时安排1课时三、复习重难点1、反比例函数图象与性质2、反比例函数图象、性质的应用四、教学过程(一)知识梳理反比例函数的图象与性质·PN=|y|·|x|=(二)题型、技巧归纳考点1:反比例函数的概念技巧归纳:判断点是否在反比例函数图象上的方法有两种:一是口算选项中点的横坐标与纵坐标乘积是否都等于比例系数,二是将选项中点的坐标诸个代入反比例函数关系式,看能否使等式成立.考点2:反比例函数的图象与性质技巧归纳:1、比较反比例函数值的大小,在同一个象限内根据反比例函数的性质比较,在不同象限内,不能按其性质比较,函数值的大小只能根据特征确定.2、过反比例函数y =kx的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.考点3反比例函数的应用技巧归纳:先根据双曲线上点C 的坐标求出m 的值,从而确定点C 的坐标,再将点C 的坐标代入一次函数关系式中确定n 的值,在求出两个函数关系式后结合条件可求出三角形的面积.过反比例函数y =k x的图象上的某点向两坐标轴作垂线,两垂线与坐标轴围成的矩形的面积就等于|k |,故而常过图象上某点向坐标轴作一条或两条垂线,引出三角形或矩形的面积来解决问题.(三)典例精讲例1 某反比例函数的图象经过(-1,6),则下列各点中,此函数图象也经过的点是( ) A .(-3,2) B .(3,2) C .(2,3) D .(6,1)[解析] 设反比例函数的关系式为y =kx,把点(-1,6)代入可求出k =-6,所以反比例函数的关系式为y =-6x,故此函数也经过点(-3,2),答案选A.例2在反比例函数y =k x (k <0)的图象上有两点()-1,y 1,⎝ ⎛⎭⎪⎫-14,y 2,则y 1-y 2的值是( ) A .负数 B .非正数C .正数D .不能确定 [解析] 反比例函数y =kx :当k <0时,该函数图象位于第二、四象限,且在每一象限内,y 随x 的增大而增大.又∵点(-1,y 1)和⎝ ⎛⎭⎪⎫-14,y 2均位于第二象限,-1<-14, ∴y 1<y 2,∴y 1-y 2<0,即y 1-y 2的值是负数,故选A.例3 如图点A ,B 在反比例函数y = (k>0,x>0)的图象上,过点A ,B 作x 轴的垂线,垂足分别为M ,N ,延长线段AB 交x 轴于点C ,若OM =MN =NC ,△AOC 的面积为6,则k 的值为________.[解析] ∵S △AOC =6,OM =MN =NC =13OC ,∴S △OAC =12×OC×AM,S △AOM =12×OM×AM=13 S △OAC =2=12|k|.又∵反比例函数的图象在第一象限,k >0,则k =4.例4 如图13-2,在平面直角坐标系xOy 中,直线y =2x +n 与x 轴、y 轴分别交于点A 、B ,与双曲线y =4y x=在第一象限内交于点C (1,m ). (1)求m 和n 的值;(2)过x 轴上的点D (3,0)作平行于y 轴的直线l ,分别与直线AB 和双曲线y = 交于点P 、Q ,求△APQ 的面积.解:(1) ∵点C(1,m)在双曲线y =4x上,∴m =4,将点C(1,4)代入y =2x +n 中,得n =2;(2)在y =2x +2中,令y =0,得x =-1,即A(-1,0).将x =3代入y =2x +2和y =4x,得点P(3,8),Q ⎝ ⎛⎭⎪⎫3,43,∴PQ =8-43=203.又∵AD =3-(-1)=4,∴△APQ 的面积=12×4×203=403. (四)归纳小结本部分内容要求熟练掌握反比例函数的求法,能画出反比例函数的图象,能够将反比例函数有关的实际应用题转化为函数问题(五)随堂检测1、已知点A(-2,y 1)、B(1,y 2)和C(2,y 3)都在反比例函数ky x= (k<0)的图象上,那么y 1、y 2和y 3的大小关系如何?2、已知反比例函数7y x=-图象上三个点的坐标分别是A(-2,y 1)、B(-1,y 2)、C(2,y 3),能正确反映y 1、y 2、y 3的大小关系的是( )A .y 1>y 2>y 3B .y 1>y 3>y 2C .y 2>y 1>y 3D .y 2>y 3>y 13、已知反比例函数y=(k 为常数,k≠0)的图象经过点A (2,3). (Ⅰ)求这个函数的解析式;(Ⅱ)判断点B (﹣1,6),C (3,2)是否在这个函数的图象上,并说明理由; (Ⅲ)当﹣3<x <﹣1时,求y 的取值范围.4、如图,在平面直角坐标系xOy 中,正比例函数y=kx 的图象与反比例函数y=的图象有一个交点A (m ,2).(1)求m 的值;(2)求正比例函数y=kx 的解析式;(3)试判断点B(2,3)是否在正比例函数图象上,并说明理由.五、板书设计反比例函数六、作业布置反比例函数课时作业七、教学反思借助多媒体形式,使同学们能直观感受本模块内容,以促进学生对所学知识的充分理解与掌握。
2024年中考数学一轮复习考点精讲课件—反比例函数的图象、性质及应用

其中,两个变量之间的函数关系可以用如图所示的图象表示的是( )
A.①②
B.①③
C.②③
D.①②③
【详解】解:由函数图象可知,这两个变量之间成反比例函数关系,
①矩形的面积= ⋅ ,因此矩形的面积一定时,一边长y与它的邻边x可以用形如 = ≠ 0 的式子表
示,即满足所给的函数图象;
②耕地面积= ⋅ ,因此耕地面积一定时,该村人均耕地面积S与全村总人口n可以用形如 =
这个函数图象上的点是(
)A. 1,6
1
B. − 2 , 12 ,
C. −2, −3
2
D.
3
,4
2
6
【对点训练1】(2019·吉林长春·中考模拟)如图,函数y=(x>0)、y=(x>0)的图象将第一象限分成了A、
B、C三个部分.下列各点中,在B部分的是( )
即:反比例函数的图象关于直线y=±x成轴对称,关于原点成中心对称.
反比例 待定系数法求反比例函数解析式的一般步骤:
函数解
析式的
确定方
法
k
1)设反比例函数的解析式为y = (k为常数,k≠0);
x
2)把已知的一对x,y的值带入解析式,得到一个关于待定系数k的方程;
3)解方程求出待定系数k;
4)将所求的k值代入所设解析式中.
【例3】(2022上·山东枣庄·九年级校考期末)已知函数 = ( + 1)
是
【详解】∵函数 = ( + 1)
.
2 −5
2 −5
是关于的反比例函数,则的值
是关于的反比例函数,
∴ + 1 ≠ 0,2 − 5 = −1,
∴ = ±2,
中考一轮复习 数学专题08 反比例函数(学生版) 教案

专题08 反比例函数一.选择题1.(2022·山东潍坊)地球周围的大气层阻挡了紫外线和宇宙射线对地球生命的伤害,同时产生一定的大气压,海拔不同,大气压不同,观察图中数据,你发现,正确的是( )A .海拔越高,大气压越大B .图中曲线是反比例函数的图象C .海拔为4千米时,大气压约为70千帕D .图中曲线表达了大气压和海拔两个量之间的变化关系 2.(2022·湖南郴州)如图,在函数()20=>y x x 的图像上任取一点A ,过点A 作y 轴的垂线交函数()80y x x=-<的图像于点B ,连接OA ,OB ,则AOB 的面积是( )A .3B .5C .6D .103.(2022·黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .1-D .2-4.(2022·江苏常州)某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( )A .50y x =+B .50y x =C .50y x=D .50=x y 5.(2022·四川内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣226.(2022·内蒙古通辽)如图,点D 是OABC 内一点,AD 与x 轴平行,BD 与y 轴平行,BD =120BDC ∠=︒,BCD S =△()0ky x x =<的图像经过C ,D 两点,则k 的值是( )A .-B .6-C .-D .12-7.(2022·湖南)在同一平面直角坐标系中,函数1(0)y kx k =+≠和(0)ky k x=≠的图像大致是( )A .B .C .D .8.(2022·海南)若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( )A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)9.(2022·广西贺州)己知一次函数y kx b =+的图象如图所示,则y kx b =-+与by x=的图象为( )A .B .C .D .10.(2022·广东)点()11,y ,()22,y ,()33,y ,()44,y 在反比例函数4y x=图象上,则1y ,2y ,3y ,4y 中最小的是( ) A .1yB .2yC .3yD .4y11.(2022·江苏无锡)一次函数y =mx +n 的图像与反比例函数y =mx的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m,-2m )、B (m ,1),则△OAB 的面积( ) A .3B .134 C .72D .15412.(2022·河南)呼气式酒精测试仪中装有酒精气体传感器,可用于检测驾驶员是否酒后驾车.酒精气体传感器是一种气敏电阻(图1中的1R ),1R 的阻值随呼气酒精浓度K 的变化而变化(如图2),血液酒精浓度M 与呼气酒精浓度K 的关系见图3.下列说法不正确...的是( )A .呼气酒精浓度K 越大,1R 的阻值越小B .当K =0时,1R 的阻值为100C .当K =10时,该驾驶员为非酒驾状态D .当120=R 时,该驾驶员为醉驾状态13.(2022·湖北荆州)如图是同一直角坐标系中函数12y x =和22y x =的图象.观察图象可得不等式22x x>的解集为( )A .11x -<<B .1x <-或1x >C .1x <-或01x <<D .10x -<<或1x >14.(2022·河北)某项工作,已知每人每天完成的工作量相同,且一个人完成需12天.若m 个人共同完成需n 天,选取6组数对(),m n ,在坐标系中进行描点,则正确的是( )A .B .C .D .15.(2022·湖北十堰)如图,正方形ABCD 的顶点分别在反比例函数()110k y k x =>和()220ky k x=>的图象上.若BD y ∥轴,点D 的横坐标为3,则12k k +=( )A .36B .18C .12D .9二.填空题16.(2022·辽宁)如图,在平面直角坐标系中,△AOB 的边OB 在y 轴上,边AB 与x 轴交于点D ,且BD =AD ,反比例函数y =kx(x >0)的图像经过点A ,若S △OAB =1,则k 的值为___________.17.(2022·内蒙古呼和浩特)点()121,-a y 、()2,a y 在反比例函数(0)ky k x=>的图象上,若120y y <<,则a 的取值范围是______.18.(2022·山东烟台)如图,A ,B 是双曲线y =kx(x >0)上的两点,连接OA ,O B .过点A 作AC ∥x 轴于点C ,交OB 于点D .若D 为AC 的中点,∥AOD 的面积为3,点B 的坐标为(m ,2),则m 的值为 _____.19.(2022·北京)在平面直角坐标系xOy 中,若点12(2,),(5,)A y B y 在反比例函数(0)ky k x=>的图象上,则1y ______2y (填“>”“=”或“<”)20.(2022·贵州铜仁)如图,点A 、B 在反比例函数ky x=的图象上,AC y ⊥轴,垂足为D ,BC AC ⊥.若四边形AOBC 间面积为6,12AD AC =,则k 的值为_______.21.(2022·广西桂林)如图,点A 在反比例函数y =kx的图像上,且点A 的横坐标为a (a <0),AB ∥y 轴于点B ,若AOB 的面积是3,则k 的值是 _____.22.(2022·贵州遵义)反比例函数()0ky k x=≠与一次函数1y x =-交于点()3,A n ,则k 的值为__________.23.(2022·黑龙江哈尔滨)已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.24.(2022·湖北武汉)在反比例1k y x-=的图象的每一支上,y 都随x 的增大而减小,且整式24x kx -+是一个完全平方式,则该反比例函数的解析式为___________.25.(2022·黑龙江齐齐哈尔)如图,点A 是反比例函数(0)ky x x=<图象上一点,过点A 作AB ∥y 轴于点D ,且点D 为线段AB 的中点.若点C 为x 轴上任意一点,且∥ABC 的面积为4,则k =______________.26.(2022·贵州毕节)如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.27.(2022·湖北鄂州)如图,已知直线y =2x 与双曲线ky x=(k 为大于零的常数,且x >0)交于点A ,若OA k 的值为 _____.28.(2022·福建)已知反比例函数ky x=的图象分别位于第二、第四象限,则实数k 的值可以是______.(只需写出一个符合条件的实数)29.(2022·贵州黔东南)如图,在平面直角坐标系中,等腰直角三角形ABC 的斜边BC x ⊥轴于点B ,直角顶点A 在y 轴上,双曲线()0ky k x=≠经过AC 边的中点D ,若BC =k =______.30.(2022·内蒙古包头)如图,反比例函数(0)ky k x=>在第一象限的图象上有(1,6)A ,(3,)B b 两点,直线AB 与x 轴相交于点C ,D 是线段OA 上一点.若AD BC AB DO ⋅=⋅,连接CD ,记,ADC DOC 的面积分别为12,S S ,则12S S -的值为___________.31.(2022·广西梧州)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于点()()2,2,,1A B n --.当12y y <时,x 的取值范围是_________.32.(2022·山东威海)正方形ABCD 在平面直角坐标系中的位置如图所示,点A 的坐标为(2,0),点B 的坐标为(0,4).若反比例函数y =kx(k ≠0)的图象经过点C ,则k 的值为 _____.33.(2022·广西玉林)如图,点A 在双曲线(0,0)k y k x x=>>上,点B 在直线2(0,0)y mx b m b =->>上,A 与B 关于x 轴对称,直线l 与y 轴交于点C ,当四边形AOCB 是菱形时,有以下结论:①()A b ②当2b =时,k =③m =④22AOCB S b =四边形 则所有正确结论的序号是_____________.34.(2022·四川宜宾)如图,△OMN 是边长为10的等边三角形,反比例函数y =kx(x >0)的图象与边MN 、OM分别交于点A 、B (点B 不与点M 重合).若AB ∥OM 于点B ,则k 的值为______.35.(2022·山西)根据物理学知识,在压力不变的情况下,某物体承受的压强()Pa p 是它的受力面积2()m S 的反比例函数,其函数图象如图所示,当20.25m S =时,该物体承受的压强p 的值为_________ Pa .三.解答题36.(2022·湖南湘潭)已知()3,0A 、()0,4B 是平面直角坐标系中两点,连接AB .(1)如图①,点P 在线段AB 上,以点P 为圆心的圆与两条坐标轴都相切,求过点P 的反比例函数表达式;(2)如图②,点N 是线段OB 上一点,连接AN ,将AON 沿AN 翻折,使得点O 与线段AB 上的点M 重合,求经过A 、N 两点的一次函数表达式.37.(2022·山东临沂)杠杆原理在生活中被广泛应用(杠杆原理:阻力×阻力臂=动力×动力臂),小明利用这一原理制作了一个称量物体质量的简易“秤”(如图1).制作方法如下:第一步:在一根匀质细木杆上标上均匀的刻度(单位长度1cm ),确定支点O ,并用细麻绳固定,在支点O 左侧2cm 的A 处固定一个金属吊钩,作为秤钩; 第二步:取一个质量为0.5kg 的金属物体作为秤砣.(1)图1中,把重物挂在秤钩上,秤砣挂在支点О右侧的B 处,秤杆平衡,就能称得重物的质量.当重物的质量变化时,OB 的长度随之变化.设重物的质量为kg x ,OB 的长为cm y .写出y 关于x 的函数解析式;若048y <<,求x 的取值范围.(2)调换秤砣与重物的位置,把秤砣挂在秤钩上,重物挂在支点О右侧的B 处,使秤杆平衡,如图2.设重物的质量为kg x ,OB 的长为cm y ,写出y 关于x 的函数解析式,完成下表,画出该函数的图象.38.(2022·山东聊城)如图,直线()30y px p =+≠与反比例函数()0ky k x=>在第一象限内的图象交于点()2,A q ,与y 轴交于点B ,过双曲线上的一点C 作x 轴的垂线,垂足为点D ,交直线3y px =+于点E ,且:3:4AOB COD S S =△△.(1)求k ,p 的值;(2)若OE 将四边形BOCE 分成两个面积相等的三角形,求点C 的坐标.39.(2022·湖北武汉)如图,OA OB =,90AOB ∠=︒,点A ,B 分别在函数1k y x =(0x >)和2ky x =(0x >)的图象上,且点A 的坐标为(1,4).(1)求1k ,2k 的值:(2)若点C ,D 分在函数1k y x =(0x >)和2k y x=(0x >)的图象上,且不与点A ,B 重合,是否存在点C ,D ,使得COD AOB △△≌,若存在,请直接出点C ,D 的坐标:若不存在,请说明理由.40.(2022·黑龙江大庆)已知反比例函数ky x=和一次函数1y x =-,其中一次函数图象过(3,)a b ,31,3k a b ⎛⎫++ ⎪⎝⎭两点.(1)求反比例函数的关系式;(2)如图,函数1,33y x y x ==的图象分别与函数(0)ky x x =>图象交于A ,B 两点,在y 轴上是否存在点P ,使得ABP △周长最小?若存在,求出周长的最小值;若不存在,请说明理由.41.(2022·内蒙古赤峰)阅读下列材料定义运算:min ,a b ,当a b ≥时,min ,a b b =;当a b <时,min ,a b a =.例如:min 1,31-=-;min 1,22--=-.完成下列任务(1)①()0min 3,2-= _________;②min 4-=_________ (2)如图,已知反比例函数1ky x=和一次函数22y x b =-+的图像交于A 、B 两点.当20x -<<时,()()2min,213kx b x x x x-+=+--.求这两个函数的解析式.42.(2022·四川雅安)如图,在平面直角坐标系中,等腰直角三角形ABO 的直角顶点A 的坐标为(m ,2),点B 在x 轴上,将∥ABO 向右平移得到∥DEF ,使点D 恰好在反比例函数y =8x(x >0)的图象上.(1)求m 的值和点D 的坐标;(2)求DF 所在直线的表达式; (3)若该反比例函数图象与直线DF 的另一交点为点G ,求S △EFG .43.(2022·黑龙江绥化)在平面直角坐标系中,已知一次函数11y k x b =+与坐标轴分别交于()5,0A ,50,2B ⎛⎫⎪⎝⎭两点,且与反比例函数22ky x =的图象在第一象限内交于P ,K 两点,连接OP ,OAP △的面积为54.(1)求一次函数与反比例函数的解析式;(2)当21y y >时,求x 的取值范围; (3)若C 为线段OA 上的一个动点,当PC KC +最小时,求PKC 的面积.44.(2022·湖南永州)受第24届北京冬季奥林匹克运动会的形响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道A 端以平均()2x +米/秒的速度滑到B 端,用了24秒;第二次从滑雪道A 端以平均()3x +米/秒的速度滑到B 端,用了20秒.(1)求x 的值;(2)设小勇从滑雪道A 端滑到B 瑞的平均速度为v 米/秒,所用时间为t 秒,请用含t 的代数式表示v (不要求写出t 的取值范围).45.(2022·湖南岳阳)如图,反比例函数()0ky k x=≠与正比例函数()0y mx m =≠的图象交于点()1,2A -和点B ,点C 是点A 关于y 轴的对称点,连接AC ,BC .(1)求该反比例函数的解析式;(2)求ABC 的面积; (3)请结合函数图象,直接写出不等式kmx x<的解集.45.(2022·湖北荆州)小华同学学习函数知识后,对函数()()2410410x x y x x x ⎧-<≤⎪=⎨-≤->⎪⎩或通过列表、描点、连线,画出了如图1所示的图象.请根据图象解答:(1)【观察发现】①写出函数的两条性质:______;______;②若函数图象上的两点()11,x y ,()22,x y 满足120x x +=,则120y y +=一定成立吗?______.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过()1,4A -,()4,1B -两点的直线向下平移n 个单位长度后,得到直线l 与函数()41y x x=-≤-的图象交于点P ,连接P A ,PB . ①求当n =3时,直线l 的解析式和∥P AB 的面积;②直接用含....n 的代数式表示......∥P AB 的面积.46.(2022·四川宜宾)如图,一次函数y ax b =+的图象与x 轴交于点()40A ,,与y 轴交于点B ,与反比例函数()0ky x x=>的图象交于点C 、D .若tan 2BAO ∠=,3BC AC =. (1)求一次函数和反比例函数的表达式;(2)求OCD 的面积.47.(2022·湖北恩施)如图,在平面直角坐标系中,O 为坐标原点,已知∥ACB =90°,A (0,2),C (6,2).D 为等腰直角三角形ABC 的边BC 上一点,且S △ABC =3S △ADC .反比例函数y 1=kx(k ≠0)的图象经过点D .(1)求反比例函数的解析式;(2)若AB 所在直线解析式为()20y ax b a =+≠,当12y y >时,求x 的取值范围.48.(2022·贵州贵阳)一次函数3y x =--的图象与反比例函数ky x=的图象相交于()4,A m -,(),4B n -两点. (1)求这个反比例函数的表达式;(2)根据图象写出使一次函数值小于反比例函数值的x 的取值范围.49.(2022·山东青岛)如图,一次函数y kx b =+的图象与x 轴正半轴相交于点C ,与反比例函数2y x=-的图象在第二象限相交于点(1,)A m -,过点A 作AD x ⊥轴,垂足为D ,AD CD =. (1)求一次函数的表达式;(2)已知点(,0)E a 满足CE CA =,求a 的值.50.(2022·辽宁营口)如图,在平面直角坐标系中,OAC 的边OC 在y 轴上,反比例函数()0ky x x=>的图象经过点A 和点()2,6B ,且点B 为AC 的中点.(1)求k 的值和点C 的坐标;(2)求OAC 的周长.51.(2022·江苏常州)如图,在平面直角坐标系xOy 中,一次函数2y x b =+的图象分别与x 轴、y 轴交于点A 、B ,与反比例函数(0)ky x x=>的图象交于点C ,连接OC .已知点(0,4)B ,BOC 的面积是2.(1)求b 、k 的值;(2)求AOC △的面积.52.(2022·四川广安)如图,一次函数y =kx +b (k 、b 为常数,k ≠0)的图象与反比例函数y =mx(m 为常数,m ≠0)的图象在第二象限交于点A (﹣4,3),与y 轴负半轴交于点B ,且OA =OB (1)求反比例函数和一次函数的解析式.(2)根据图象直接写出当x <0时,不等式kx +b ≤mx的解集.53.(2022·内蒙古呼和浩特)如图,在平面直角坐标系中,一次函数1y kx b =+的图象与反比例函数2my x=的图象交于A 、B 两点,且A 点的横坐标为1,过点B 作BE x ∥轴,AD BE ⊥于点D ,点71,22⎛⎫- ⎪⎝⎭C 是直线BE上一点,且AC =.(1)求一次函数与反比例函数的解析式;(2)根据图象,请直接写出不等式0mkx b x+-<的解集.54.(2022·广西)已知:点 A (1,3)是反比例函数1ky x=(k ≠0)的图象与直线2y mx =( m ≠0)的一个交点.(1)求k 、m 的值:(2)在第一象限内,当21>y y 时,请直接写出x 的取值范围55.(2022·吉林)密闭容器内有一定质量的气体,当容器的体积V (单位:3m )变化时,气体的密度ρ(单位:3kg/m )随之变化.已知密度ρ与体积V 是反比例函数关系,它的图像如图所示. (1)求密度ρ关于体积V 的函数解析式;(2)当3m 10V =时,求该气体的密度ρ.56.(2022·四川达州)如图,一次函数1y x =+与反比例函数ky x=的图象相交于(,2)A m ,B 两点,分别连接OA ,OB .(1)求这个反比例函数的表达式;(2)求AOB 的面积;(3)在平面内是否存在一点P ,使以点O ,B ,A ,P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.57.(2022·浙江金华)如图,点A 在第一象限内,AB x ⊥轴于点B ,反比例函数(k 0,x 0)k y x=≠>的图象分别交,AO AB 于点C ,D .已知点C 的坐标为(2,2),1BD =.(1)求k 的值及点D 的坐标.(2)已知点P 在该反比例函数图象上,且在ABO 的内部(包括边界),直接写出点P 的横坐标x 的取值范围.58.(2022·四川南充)如图,直线AB 与双曲线交于(1,6),(,2)A B m -两点,直线BO 与双曲线在第一象限交于点C ,连接AC .(1)求直线AB 与双曲线的解析式.(2)求ABC 的面积.59.(2022·重庆)反比例函数4y x =的图象如图所示,一次函数y kx b =+(0k ≠)的图象与4y x=的图象交于(,4)A m ,(2,)B n -两点,(1)求一次函数的表达式,并在所给的平面直角坐标系中面出该函数的图象;(2)观察图象,直接写出不等式4kx b x+<的解集;(3)一次函数y kx b =+的图象与x 轴交于点C ,连接OA ,求OAC 的面积.60.(2022·四川德阳)如图,一次函数312y x =-+与反比例函数k y x =的图象在第二象限交于点A ,且点A 的横坐标为-2.(1)求反比例函数的解析式;(2)点B 的坐标是()3,0-,若点P 在y 轴上,且AOP 的面积与AOB 的面积相等,求点P 的坐标.61.(2022·山东泰安)如图,反比例函数y=mx的图象与一次函数y=kx+b的图象交于A,B两点,点A的坐标为(2,6),点B的坐标为(n,1).(1)求反比例函数与一次函数的表达式;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.。
《反比例函数》复习课教案
反比例函数复习课教学设计一、教学目标1、知识与能力目标:〔1〕复习反比例函数概念、图象与性质的知识点,通过相应知识点的配套练习加深学生对反比例函数本章知识的理解与掌握。
〔2〕能够根据问题中的条件确定反比例函数的解析式,会画出它的图象并根据问题确定自变量的取值范围及增减性2、过程与方法目标:通过对相关问题的变式探究,正确运用反比例函数知识,进一步体验形成解决问题的一些根本策略,开展实践能力和创新精神。
3、情感态度与价值观目标:创设教学情景,鼓励学生主动参与反比例函数复习活动,激发学习兴趣,获得问题解决后的乐趣,继续渗透数形结合等数学思想方法。
二、教学重点和难点重点:进一步掌握反比例函数的概念、图像、性质并正确运用。
难点:反比例函数性质的灵活运用。
数形结合思想的应用。
三、教学方法:探究——讨论——交流——总结四、教学媒体:多媒体课件。
五、教学过程:导入:播放视频?悲伤的双曲线?,引出课题?反比例函数复习?一、知识梳理:同学们,通过刚刚的视频,大家肯定猜到了,今天我们来复习反比例函数。
通过今天的复习课,希望大家加深对反比例函数知识的理解和运用。
首先请同学们看一下本章知识构造图来回忆一下,对反比例函数你了解那知识考点?课件展示:1.反比例函数的考点一:反比例函数的定义。
2.反比例函数的考点二:反比例函数的图象与性质。
3.反比例函数的考点三:反比例函数图象中比例系数k的几何意义。
4.反比例函数的考点四:反比例函数解析式确实定。
5.反比例函数的考点五:反比例函数的实际应用。
二、合作交流、解读探究〔一〕与反比例函数的意义和图像与性质、比例系数K的几何意义有关的问题课件展示:稳固练习:课件展示:1〔二〕反比例函数解析式确实定问题方法:待定系数法由于解析式y=k/x(k≠0)因此只需一对对应值或一个点的坐标综合练习:中考闯关_________ .(三)反比例函数的实际应用〔课件展示〕解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围。
反比例函数复习课的教案
揭阳林超纪念中学教学设计课例名称:《反比例函数复习》姓名:黄婉冰年级:九年(4)班学科:数学教学内容分析(含教材分析)反比例函数在前面已经学习了“图形与坐标”、“一次函数”基础上研究一类基本函数.本专题复习在反比例函数单元复习基础上展开的,以函数图象为载体,以数形结合思想为主线,围绕“比较大小、图象法解方程与不等式、函数实际应用”核心内容进行,学生在解决问题过程中进一步领悟反比例函数的概念并积累研究函数性质的方法及用函数观点解决问题的经验。
课时学情分析反比例函数是函数的重要知识,核心知识是反比例函数的概念、图象、性质与应用.从学生学习情况分析,反比例函数的增减性,用函数观点看待方程、不等式、函数间的关系在理解上、思维方式上存在一定困难,用反比例函数解决实际问题需要建模的思想与策略,需要一定的生活背景知识,对学生有较高的要求.基于以上分析,从学习函数最本质的思想——数形结合思想为立意,设计函数图象,在学生疑难问题解决过程中加深对反比例函数的理解.课时教学目标(需体现学科核心素养的培养)1.注重数学概念的形成过程和对概念意义的理解,教学中提供直观背景。
2.创设学生自主探索与合作交流的环境。
教学中,应引导学生在了解函数的三种表示方法的基础上,通过观察,分析函数的图象,自主地对反比例函数的主要性质作出直观描述。
3.经历数学知识的应用过程,关注对问题的分析过程。
教学时将实际问题置于已有知识背景中,用数学知识重新解释,让学生逐步会用数学的眼光考察实际问题。
同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。
4.利用思维导图激起学生数学知识复习兴趣,令学生数学抽象能力得到很好的发展,能够通过抽象、概括去认识、理解数学本质,善于用抽象思维解决相关数学问题。
课时教学重点、难点重点:反比例函数的图象性质与数形结合思想,用待定系数法求表达式。
难点:利用图像比较一次函数与反比例函数的大小,反比例函数的应用课时教学资源(含教学媒体、工具、素材等)多媒体课件,复习案课时教学过程(应包括教学步骤、教学活动、设计意图、组织形式等内容)唤醒反比例函数的记忆回忆一:反比例函数定义如果两个变量 x , y 之间的关系可以表示成( k 为常数 , 且 k ≠ 0)的形式 , 那么称 y 是 x 的反比例函数 .师生活动:教师引导学生回忆知识点并归纳总结注意点设计意图:让学生成为复习课的主体回忆二:反比例函数的图像和性质师生活动:请同学回答表格的问题设计意图:用表格的形式呈现反比例函数的图像与性质更清晰直观的归纳这一知识点回忆三:待定系数法求反比例函数的表达师生活动:请同学直接在黑板上写出答案设计意图:这一知识点比较简单,用一道题直接考察学生的基础知识,为下面的难点节省时间回忆四:反比例函数中k的几何意义师生活动:同学们一起回答几何意义,解释其中意义的理由,教师给予鼓励肯定,并用多媒体动态图演示其中过程设计意图:学生从动态图中更加深刻的理解了其意义的“变”与“不变”的过程,使得这节课更有复习意义唤醒大家的记忆深处回忆五:反比例函数与一次函数(1)求函数的表达式(2)图像的交点问题(3)不等式问题如图,已知A(-4,2)、B(n ,-4)是一次函数y=kx+b 的图象与反比例函数x m y的图象的两个交点.(1)求此反比例函数表达式和一次函数表达式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.师生活动:请学生独立完成后回答,并让学生自己说说分析过程.教师对学生的说理过程进行点评,利用多媒体展示过程.设计意图:设计利用图象法解不等式,让学生经历观察、发现、比较、抽象的过程,从而更好认识函数、方程、不等式三者间的联系,开阔学生的思维.体会借助图象,利用数形结合思想解题作用.回忆六:反比例函数的实际应用(1)生活实际建模问题(2)跨学科建模问题师生活动:由学生说解题思路,教师多媒体演示.1.教学过程设计中,可选择3-5处设计说明设计意图,设计意图在片段下方用括号加以说明。
中考数学总复习反比例函数教案
中考数学总复习反比例函数教案一、教学目标1.了解反比例函数的定义;2.掌握如何根据题目中的已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.掌握反比例函数的运算和性质;5.能够解决与反比例函数相关的实际问题。
二、教学重点和难点1.理解反比例函数的定义;2.运用已知条件建立反比例函数;3.理解反比例函数图像的特点和性质;4.进行反比例函数的运算;5.解决与反比例函数相关的实际问题。
三、教学过程Step 1:导入新知1.引入与反比例函数相关的实际问题,如两车以不同的速度行驶,行驶时间和路程之间的关系等。
Step 2:反比例函数的定义1.引导学生回顾函数的概念,并介绍反比例函数的定义。
2.反比例函数的定义:当一个变量的值与另一个变量的值成反比例关系时,可以用反比例函数来表示,形如y=k/x(其中k不等于0)。
Step 3:反比例函数的图像1.让学生思考如何绘制反比例函数的图像。
2.引导学生发现反比例函数的图像是一个以原点为对称中心的平面曲线,且相似于双曲线的形状。
Step 4:根据题目中的条件建立反比例函数1.引导学生通过具体的实例,如题目中的两车行驶的问题,来建立反比例函数。
2.引导学生根据题目中给定的条件,如两车的速度和行驶时间,建立相应的反比例函数,并求解未知量。
Step 5:反比例函数的运算和性质1.反比例函数的运算:介绍反比例函数的加、减、乘、除运算,并进行相应的例题训练。
2.反比例函数的性质:引导学生总结反比例函数的基本性质,如对称性、渐近线等。
Step 6:解决与反比例函数相关的实际问题1.给学生提供一些实际问题,如两车的速度和行驶时间问题、材料的供需关系问题等,引导学生运用反比例函数解决问题。
2.让学生结合实际情境,分析并建立合理的数学模型,进而解决问题。
Step 7:拓展与应用1.引导学生思考反比例函数在实际生活中的应用,如电阻与电流的关系、药物剂量与体重的关系等。
2.让学生尝试寻找更多与反比例函数相关的实际问题,并用所学知识解决。
2023中考复习专题突破反比例函数及其应用( 课件)
图象如图所示,则一次函数y=kx+2的图象经过的象限是( )
A.一、二、三 B.一、二、四 C.一、三、四 D.二、三、四
知识点1:反比例函数的图象及性质
典型例题
【考点】一次函数的性质;反比例函数的图象;反比例函数的性质 【分析】先根据反比例函数的图象位于二,四象限,可得k<0,由一次函数y=kx+2 中,k<0,2>0,可知它的图象经过的象限. 【解答】解:由图可知:k<0, ∴一次函数y=kx+2的图象经过的象限是一、二、四. 故选:B.
B.(1,8)
C.(-1,8)
D.(-1,-8)
【解答】解:∵反比例函数 y k(k≠0)的图象经过点(-2,4), x
∴k=-2×4=-8, A、∵4×2=8≠-8,∴此点不在反比例函数的图象上,故本选项错误; B、∵1×8=8≠-8,∴此点不在反比例函数的图象上,故本选项错误; C、-1×8=-8,∴此点在反比例函数的图象上,故本选项正确; D、(-1)×(-8)=8≠-8,∴此点不在反比例函数的图象上,故本选项错误. 故选:C.
x (1)求k,m的值; (2)在图中画出正比例函数y=kx的图象, 并根据图象,写出正比例函数值大于反比例 函数值时x的取值范围.
知识点1:反比例函数的图象及性质
典型例题
【解答】解:(1)将点A坐标代入反比例函数得:2m=6.
∴m=3. ∴A(3,2)
将点A坐标代入正比例函数得:2=3k.
∴k=
PB2 3 PQ B2Q
∴
AO
b k
1 PO 1
3
3
,
B2O
1 3
B2Q
1 OQ 2
b
2,
∴b=-2,
∴k=6,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数
课时共一课时
课时目标:
根据新课程标准的要求以及学生的认知水平确定了如下教学目标:
1、掌握并熟练运用反比例函数的概念、图象及性质;
2、运用反比例函数的知识解决实际问题.
3、渗透数学建模并体会数形结合的思想。
根据对教学目标的分析,确定了如下重难点:
重点:掌握并熟练运用反比例函数图象及性质;
难点:运用反比例函数的知识解决实际问题。
课标分解:
学生能够通过反比例函数定义及三种表达形式,解决相关问题,能根据反比例函数的解析式画出其相应的图象,并能根据图象指出其增减性、对称性和相关问题,进一步体会数型结合思想。
学生能从具体问题中抽象出反比例函数模型,运用反比例函数的图象、性质解决实际问题。
考试内容要求:
1。
反比例函数概念;
2。
反比例函数图象;
3。
反比例函数性质;
4。
待定系数法确定函数解析式。
5.运用反比例函数的知识解决实际问题
能力要求
经历探索问题和再发现问题的过程,培养学生查漏补缺、系统整理和综合应用知识的能力,感受数学模型和数学应用的价值。
教学过程:
本节一共设计以下几个环节:基本内容、基础习题、典型例题、走进中考、归纳小结以及布置作业。
【设计意图】设计这几个环节既让学生掌握基本内容,又达到训练的目的,且能使题型设计层层深入,有梯度,有层次。
第一环节:基本内容
(一)定义
什么是反比例函数?有那三种形式?
(二)图像和性质
反比例函数图像是______
1、当k〉0时,双曲线两支分别位于第______象限,在每一象限内,y随x的增大而_____;
2、当k<0时,,双曲线两支分别位于第______象限,在每一象限内,y随 x的增大而_____。
(三)实际问题
本章基本内容分为三部分:定义、图像和性质以及实际问题,以提问的方式来回顾本章的基本知识.
【设计意图】通过回顾基本内容,为后面的学习做好铺垫。
y
x
o
X1
x2
A
y1
y2
B
第二环节:基础习题
1、下列函数中,是反比例函数的是( )
A、y/x=k
B、y=9/x
C、3/2×x
D、1/x-2
2、当m=____时,y=(m²+2m)x^m²-m-1是反比例函数。
3、反比例函数y=—2\x的图象是________,分布在________象限,在每个象限内,y随x的增大而_______。
4、已知点M(-2,3)在双曲线y=k\x上,则下列各点一定在该双曲线上的是( )
A.(3,-2)
B.(-2,-3)
C.(2,3) D。
(3,2)
5、已知反比例函数y=(2m—1)\x的图象在第一、三象限,那么m的取值范围是
_________.
【设计意图】1、2题是为了巩固反比例函数的概念,后三道题考察了反比
例函数的图像和性质。
通过基础习题对基本知识进行巩固提高。
第三环节:典型例题
1、函数y=kx—k 与在同一条直角坐标系中的图象可能是()
2、已知点 A(x
1
,y
1
),B(x
2
,y
2
)且x
1
<0<x
2
,都在反比例函数的
图象上,则y
1
与y
2
的大小关系为 .
3、如图,一次函数y
1
=½x+2与反比例
函数y
2
=16/x的图象交于点A(4,m)和
B(-8,-2),与y轴交于点C,当y1>y2
时,x的取值范围是______.
变式:对于函数,当x<—2时,y的取值围是______,当y﹥—1时,x的
取值范围是_______。
y
o
y
o
y
o x
y
o
(A) (B) (C) (D)
(0
k
y k
x
=≠
()0
k
y k
x
=<
2
y
x
=
设计的这三道题分别是求函数的大致图像、比较函数的大小以及求自变量的取值范围。
而第三道例题对于学生来说,难度较大,我会让学生从:找交点—分象限—定区间来解决此类问题,为让学生学以致用,我又多设计了一道变式来巩固提高此类问题。
【设计意图】这三道题都是考察了反比例函数的图像和在各区间的增减性,并且都体现了数形结合的思想。
4、如图,点P是反比例函数y=2/x图象上的一点,PD⊥x轴于D。
则△POD的面积为( )。
【设计意图】主要考查了k的几何意义,即对两个定值的理解。
两个定值
①图象上任一点的坐标的乘积是一个定值,即 xy=k。
= ½▏k▕,与点A的位置无关。
②图中S
△PAO
5、如图,点P是反比例函数与正比例函数的图象的交点,PQ垂直于x轴,垂足Q 的坐标为(2,0).
(1) 求这个反比例函数的解析式.
(2) 如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.
【设计意图】本题主要是一次函数和反比例函数的综合应用,主要是考查了学生
用待定系数法求解析式,此类题目在中考中很常见,是本节课的重点,所以让学生
通过小组交流来加深对本道习题的理解。
6、如图,制作一种产品,需先加热直到60℃,该材料加热时,温度y℃与时间x(分
钟)成一次函数关系;停止加热进行操作时,温度y℃与时间x(分钟)成反比
例关系。
(1)分别求出将材料加热和停止加热进行操作时y与x的函数关系式;
(2)根据工艺要求,当材料温度低于15 ℃时,必须停止操作,那么从开始加
热到停止操作,共经历了多少时间?
【设计意图】本题是反比例函数在实际问题中的应用,认真审题是解题的关键,要求学生会利用数学知识解决实际问题。
第四环节:走进中考 1、(2010四川南充市)如图,直线 y=x+2与双曲线 相交于点A ,点A
的纵坐标为3,k 的值为( ). 2、 已知点(-1,y1),(2,y2),(3,y3)在反比例函数 的图象上。
下列结论中正确的是( ) A 、y1>y2〉y3 B 、y1>y3〉y2 C 、y3〉y1〉y2 D 、y2〉y3〉y1 电源时,电流I (A )和电阻R (Ω)的 函数关系如右图:
(1)请写出这一函数的表达式, 蓄电池的电压是多少? (2)完成下表:
(3)如果经此蓄电池为电源的用电器限制电流不超过10A ,那么用电器可变电阻应控制在什么范围?
【设计意图】使学生了解中招的出题动向,增强学习的信心和勇气。
第五环节:归纳小结
1、本节课复习了哪些知识?
2、通过本节复习,有什么新收获?
【设计意图】归纳总结可以培养学生的语言表达能力,同时使学生对所复习的知识有更全面、更系统的认识。
第六环节:布置作业
课本P21:1—8(必做题)9-11(选做题)
【设计意图】通过分层布置作业,让不同层次的学生得到不同的发展. 板书设计力求简洁明了,体现教材中的知识点.
以上便是我的说课内容,谢谢各位评委老师。
板书设计: 反比例函数 总复习
R/Ω 3
4
5
6
7
8
9
10
I/A
x
y 10 60 50 40 30 20
k y x
形结合。