微机控制技术课程设计报告

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1方案简述

随着中国经济的持续增长和汽车价格的持续下降,越来越多的家庭拥有了私家车。在享受汽车给人们带来便利的同时,由于倒车而产生的问题也日益突出。据初步调查统计,15%的汽车事故是由汽车倒车“后视”不良造成的。早期的倒车防撞仪可以测试车后一定距离范围的障碍物从而发出警报,后来发展到根据距离分段报警。随着人们对汽车驾驶辅助系统易用性要求的提高,对汽车倒车雷达的要求也越来越高。本文设计的基于51单片机的倒车雷达,采用温度传感器进行温度补偿提高了测距精度,采用显示模块对车距进行实时显示和蜂鸣器实现了倒车雷达语音报警的功能。由于采用了超声波传感器,有效地提高了系统的可靠性和稳定性。

系统框图如图1.1所示。该系统由单片机控制电路、超声波发射与接收电路、温度补偿电路、LCD显示电路以及语音报警电路等几部分组成。单片机AT89C51是整个系统的核心部件,协调各部分电路的工作。单片机在超声波信号发射的同时开始计时,超声波信号在空气中传播遇到障碍物后发生反射,反射的回波信号经过处理后输入到单片机的INTO端产生中断,计数器停止计数。通过计数器测得的脉冲数可得到超声波信号往返所需要的时间,从而达到测距的目的。

图1.1 系统原理框图

2 系统方案设计及确定

2.1 CPU选择

方案一:采用STC89C52单片机

STC89C52是一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash 存储器。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89S51为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。具有以下标准功能: 8k字节Flash,512字节RAM, 32 位I/O 口线,看门狗定时器,内置4KB EEPROM,MAX810复位电路,三个16 位定时器/计数器,一个6向量2级中断结构,全双工串行口。另外 STC89X52可降至0Hz 静态逻辑操作,支持2种软件可选择节电模式。空闲模式下,CPU 停止工作,允许RAM、定时器/计数器、串口、中断继续工作。掉电保护方式下,RAM内容被保存,振荡器被冻结,单片机一切工作停止,直到下一个中断或硬件复位为止。最高运作频率35Mhz,6T/12T可选。内带4K字节EEPROM存储空间,可直接使用串口下载,价格比较便宜。

方案二:采用AT89S51单片机

AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,AT89S51在众多嵌入式控制应用系统中得到广泛应用。

综合比较以上两种方案,选择方案二。

2.2传感器选择

2.2.1超声波传感器选择

超声传感器是一种将其他形式的能转变为所需频率的超声能或是把超声能转变为同频率的其他形式的能的器件。

本次设计采用HC-SR04超声波传感器。该传感器可提供5cm-400cm的非接触式距离感测功能,测量精度可达3mm,模块包括超声波发射器,接收器和控制电路。由于内置模数转换器,所以可省略A/D转换电路。

2.2.2温度传感器选择

本次设计采用数字温度传感器,将温度直接转化成数字信号经单片机输出。数字温度传感器的内部都包含温度传感器、A/D转换器、信号处理器、存储器(或寄存器)和接口电路,其特点是能直接输出数字化的温度数据及相关的温度控制量,自动适配各种微控制器(MCU)。采用数字温度传感器以实现温度数字化,既能以数字形式直接输出被测温度值,具有测量误差小,分辨力高,抗干扰能力强,能够远程传输数据,带串行总线接口等优点。

本此温度传感器选用的是DS18B20芯片。DS18B20是美国Dallas公司最新推出的一种单总线系统的数字温度传感器。与传统的热敏电阻温度传感器不同,它能够直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式,可以分别在93.75ms和750ms内将温度值转化9位和12位的数字量。因而使用DS18B20可使系统结构更简单,可靠性更高。芯片的耗电量很小,从总线上“偷”一点电存储在片内的电容中就可正常工作,一般不用另加电源。最可贵的是这些芯片在检测点已把被测信号数字化了,因此在单总线上传送的是数字信号,这使得系统的抗干扰性好、可靠性高、传输距离远。

2.3 显示电路选择

方案一:使用LED数码管显示

LED 数码管是由发光二极管构成的,亦称半导体数码管.将条状发光二极管按照共阴极(负极)或共阳极(正极)的方法连接,组成"8"字,再把发光二极管另一电极作笔段电极,就构成了 LED 数码管。若按规定使某些笔段上的发光二极管发光, 就能显示从 0~9 的…系列数字。同荧光数码管(VFD), 辉光数码管(NRT)相比,它具有:体积小,功耗低,耐震动,寿命长,亮度高,单色性好,发光响应的时间短,能与 TTL,CMOS 电路兼容等的数显器件。+,-分别表示公共阳极和公共阴极。a~g是7个笔段电极,DP为小数点。另有一种字高为7.6mm 的超小型LED数码管,管脚从左右两排引出,小数点则是独立的。由于本次设计不只是显示数字,还需要显示汉字,故不采用此方案。

方案二:使用LCD液晶显示

LCD是一种利用液晶的扭曲/向列效应制成的新型显示器,它具有功耗极低、体积小,抗干扰能力强,价格廉等特点,目前已广泛应用于各个显示领域,尤其袖珍仪表和低功耗应用系统中。LCD 液晶显示器是 Liquid Crystal Display 的简称,LCD 的构造是在两片平行的玻璃当中放置液态的晶体,两片玻璃中间有许多垂直和水平的细小电线,透过通电与否来控制杆状水晶分子改变方向,将光线

折射出来产生画面。

综合比较以上两种方案,选择方案二。

本次课程设计采用1602A液晶显示。

2.4 键盘电路选择

键盘可以分为两类:非编码键盘和编码键盘。非编码键盘是利用按键直接与单片机相连接而成,这种键盘通常使用在按键数量较少的场合。使用这种键盘,系统功能通常比较简单,需要处理的任务较少,但是可以降低成本、简化电路设计。常见的非编码键盘有两种结构:独立式键盘和矩阵式键盘。

独立式键盘:其特点是:一键一线,各键相互独立。每个按键各接一条I/O 口线,通过检测I/O输入线的电平状态,可以很容易的判断哪个按键被按下。这种键盘的优点是:电路简单,各条检测线独立,识别按下按键的软件编写简单。适用于键盘按键数目较少的场合,不适合用于键盘按键数目较多的场合,因为将占用较多的I/O口线。

矩阵式键盘:这种键盘用于按键数目较多的场合。

由于本次课程设计使用的按键比较少,所以采用的是独立式键盘。

本次设计超声波探头选用HC-SR04超声波传感器,不仅外围元件较少,电路简单,而且有更好的稳定性及可靠性;温度补偿电路采用一线制数字温度传感器DS18B20,利用声速和温度之间的关系对声速进行校正,从而消除温度对声速的影响;报警电路采用蜂鸣器,可实现汽车倒车过程中的报警,显示电路采用LCD1602A显示,键盘采用独立式键盘。

相关文档
最新文档