研究报告有限差分格式稳定性的其他方法-报告

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究有限差分格式稳定性的其他方法

摘要

偏微分方程的求解一直是大家比较关心的一个问题,而有限差分格式则是求解偏微分方程时常用并且有效的一个方法。因此,研究有限差分格式的性质就显得尤为重要。在课上我们已经跟着老师学习了运用Fourier方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt启示型方法、直接方法(或称矩阵方法)和能量不等式方法。

关键字:偏微分方程;有限差分格式;稳定性

Abstract

The solution of partial differential equations has been more concerned with a problem, and the finite difference scheme is a mon and effective method for solving partial differential equations. Therefore, it is very important to study the character of the finite difference scheme. We have followed the teacher to learn the use of Fourier method of finite difference scheme stability, but in a lot of research on the stability of finite difference scheme is only used Fourier method is not enough, so in this paper, will introduce the other three kinds of monly used in the study of finite difference scheme stability method, respectively is: Hirt enlightenment method, direct method (or matrix method) and energy inequality method.

Key words: partial differential equation; finite difference scheme; stability

1 前言

微分方程的定解问题就是在满足某些定解条件下求微分方程的解。在空间区域的边界上要满足的定解条件称为边值条件。如果问题与时间有关,在初始时刻所要满足的定解条件,称为初值条件。不含时间而只带边值条件的定解问题,称为边值问题。与时间有关而只带初值条件的定解问题,称为初值问题。同时带有两种定解条件的问题,称为初值边值混合问题。定解问题往往不具有解析解,或者其解析解不易计算。所以要采用可行的数值解法。有限差分方法就是一种数值解法,它的基本思想是先把问题的定义域进行网格剖分,然后在网格点上,按适当的数值微分公式把定解问题中的微商换成差商,从而把原问题离散化为差分格式,进而求出数值解。此外,还要研究差分格式的解的存在性和唯一性、解的求法、解法的数值稳定性、差分格式的解与原定解问题的真解的误差估计、差分格式的解当网格大小趋于零时是否趋于真解(即收敛性),等等。有限差分方法具有简单、灵活以及通用性强等特点,容易在计算机上实现。在课上我们已经跟着老师学习了运用Fourier 方法研究有限差分格式的稳定性,但是在很多研究有限差分格式稳定性的问题中仅仅会用Fourier 方法是不够的,所以在本篇论文中,将会介绍其他三种常用的研究有限差分格式稳定性的方法,分别是:Hirt 启示型方法、直接方法和能量不等式方法。

2 Hirt 启示性方法

2.1 方法概述

Hirt 启示性方法是一种近似分析方法。主要是把差分格式在某确定点上作泰勒级数近似展开,把高阶误差略去,只留下最低阶的误差项。如果差分格式是相容的,那么这样得到的新的微分方程(称之为第一微分近似或修正微分方程)与原来的微分方程相比只增加了一些含小参数的较高阶导数的附加项。Hirt 方法就是利用第一微分近似的适应性来研究差分格式的稳定性。Hirt 方法的判别准则是这样的:如果第一微分近似是适定的,那么原来微分方程的差分格式是稳定的,否则不稳定。其实所述的微分格式是原来微分方程问题的相容的差分格式,那么也可以看作第一微分近似问题的相容的差分格式。如果第一微分近似问题是不适

定的,那么它的差分格式将不稳定[1]

2.2 操作方法

先给出几个方程

0,,0,0>∈>=∂∂+∂∂t R x a x

u a t u (2.1) ,2,1,0,,2,1,0,011=±±==-+-++n j h

u u a

u u n

j

n j n j

n j τ

(2.2)

01

1=-+--+h

u u a

u u n j n j n j

n j τ

(2.3)

考虑对流方程(2.1)的差分格式(2.3),在点)

,(n j t x 进行Taylor 技术展开,有 )(][2][)

,(),(2221h O x

u h x u h t u u t x u n

j n j n j n j +∂∂-∂∂=--

)(][2][)

,(),(2221ττ

O t

u h t u t u u t x u n

j n j n j n j +∂∂-∂∂=-+ 利用对流方程(2.1),有

22

222)(x

u a x u a t t u ∂∂=∂∂-∂∂=∂∂ 因此,在点)

,(n j t x 上,有差分方程(2.3)可以得到 )(2222222h O x

u a ah x u a t u ++∂∂-=∂∂+∂∂ττ)( 略去高阶误差项,得出第一微分方程近似

2

2222x u

a ah x u a t u ∂∂-=∂∂+∂∂)(τ 要使上面的抛物型方程有意义,必须有

02

22>-τ

a ah 而上面的不等号改为等号,则就化为原来的对流方程。在这两种情况下,相应的问题是适定

的。即第一微分近似适定的条件是

02

22≥-τa ah 由此得出差分格式(2.3)的稳定性条件是1≤λa ,其中h

τ

λ=

。此结论与Fourier 方法分析

得到的结论是一致的。

下面我们再来分析逼近对流方程(2.1)(仍设0>a )的差分格式(2.2)的稳定性。模仿上面的推导可以得到它的第一微分近似是

22222x

u a ah x u a t u ∂∂+-=∂∂+∂∂)(τ 可以看出22x

u

∂∂的系数小于0,因此第一微分近似是不适定的,从而推出差分格式(2.2)是

不稳定的。

3 直接方法

关于抛物型方程初值问题的差分格式的稳定性问题,可以用直接方法(或称矩阵方法)来研究。下面用具体例子来说明这个方法的基本思想及使用方法。

考虑常系数扩散方程的初值问题

相关文档
最新文档