图像边缘检测的综述
canny边缘检测的原理

canny边缘检测的原理
Canny边缘检测是一种多级检测算法,其基本原理如下:
首先,使用高斯滤波器对图像进行平滑处理,以减少图像中的噪声。
然后,计算图像的梯度大小和方向,以便确定边缘的位置和方向。
在计算梯度的过程中,会遍历每个像素点,判断该像素点是否为边缘点。
在Canny算法中,非极大值抑制和双阈值法是两个关键步骤。
非极大值抑制的目的是去除那些非边缘的像素点,保留可能的边缘点。
双阈值法则是为了进一步筛选出真正的边缘点,避免出现过多的假边缘。
最后,Canny算法会对检测到的边缘进行跟踪和连接,形成完整的边缘图像。
总的来说,Canny边缘检测算法是一种非常有效的边缘检测算法,能够准确地检测出图像中的边缘,并且在处理噪声和防止假边缘方面具有很好的性能。
徐云-文献综述

文献综述数学形态学在电力设备图像边缘检测中的应用研究一选题背景及其意义图像边缘[1-2]是图像的最基本特征之一,是图像灰度不连续性的反映,它包含了图像的大量信息,反映了物体的特征,边缘检测在图像分析和处理中有特殊的价值和重要性,具有能勾画区域形状,且能局部定义以及传递大部分图像信息等优点,是图像分析的重要内容,是处理许多复杂问题的关键,其得到广泛的应用。
基于数学形态学的边缘检测方法是一种新兴的方法,1964年法国的Matheron 和Serra[3]在积分几何研究成果上,创立了数学形态学,20世界90年代初,吴敏金把顺序统计学的思想注入数学形态学,把形态学应用于图像处理中,其基本思想史利用一个携带对象特征的结构元素去探测图像,收集图像的信息。
基于形态学的边缘信息提取不像微分算法那样对噪声敏感,同时计算量较小,合理地运用数学形态学,可以较好地分析和处理图像。
数学形态学的图像处理时应用具有一定形态的结构元素去量度和提取图像中的对应形状,已达到对图像分析和识别的目的。
数学形态学对信号的处理具有直观上的简单性和数学上的严谨性,在描述信号形态特征上具有独特的优势。
因而,将数学形态学用于边缘检测,既能有效地滤除噪声,又可保留图像中的原有细节信息,是边缘检测技术的一个重大突破。
数学形态学的应用可以简化图像数据,保持它们基本的形状特性,并除去不相干的结构。
数学形态学的算法具有天然的并行实现的结构,实现了形态学分析和处理算法的并行,大大提高了图像分析和处理的速度。
二国内外研究动态经典的、最简单的边缘检测方法是对原始图像按像素的某领域构造边缘算子。
由于原始图像往往含有噪声,而边缘和噪声在空间域表现为灰度有比较大的起落,在频域则反映为同是高频分量,这就给边缘检测带来困难。
传统的边缘检测方法主要是经典的微分算子法,近年来有出现了许多新的边缘检测方法[4],对于传统边缘检测主要有Soble算子、Roberts算子、拉普拉斯算子、Prewit算子、Canny算子等。
边缘检测

边缘检测算子图像配准的方法7.4.1 基于特征的图像配准基于特征的图像配准首先提取图像信息的特征,然后以这些特征为模型进行配准。
特征提取的结果是一含有特征的表和对图像的描述,每个特征由一组属性表示,对属性的进一步描述包括边缘的定向和弧度、区域的大小等。
局部特征之间存在着相互关系,如几何关系、辐射度量关系、拓扑关系等。
可以用这些局部特征之间的关系描述全局特征。
通常基于局部特征配准大多都是基于点、线或边缘的,而全局特征的配准则是利用局部特征之间的关系进行配准的方法。
由于图像的特征点比图像的像素点要少很多,因此大大减少了配准过程的计算量,但特征提取方法的计算代价通常较大,不便于实时应用。
特征点的配准度量值对位置的变化比较敏感,可以大大提高配准的精确程度。
对于纹理较少的图像区域提取的特征的密度通常比较稀少,局部特征的提取就比较困难。
特征点的提取过程可以减少噪声的影响,对灰度变化、图像形变和遮挡等都有较好的适应能力。
因此,在图像配准领域得到了广泛应用。
基于特征的图像配准方法有两个重要环节:特征提取和特征配准。
7.4.2 基于互信息的图像配准医学图像配准技术从基于特征的配准方法发展到基于统计的配准方法有其突破性的意义。
与基于特征的配准方法相比,基于统计的配准方法的突出优点为鲁棒性好、配准精度高、人工干预少。
基于统计的配准方法通常是指最大互信息的图像配准方法。
基于互信息的图像配准是用两幅图像的联合概率分布与完全独立时的概率分布的广义距离来估计互信息,并作为多模态医学图像配准的测度。
当两幅基于共同的解剖结构的图像达到最佳配准时,它们的对应像素的灰度互信息应为最大。
由于基于互信息的配准对噪声比较敏感,首先,通过滤波和分割等方法对图像进行预处理。
然后进行采样、变换、插值、优化从而达到配准的目的。
基于互信息的配准技术属于基于像素相似性的方法。
它基于图像中所有的像素进行配准,基于互信息的图像配准引入了信息论中的概念,如熵、边缘熵、联合熵和互信息等,可使配准精度达到亚像素级的高精度。
图像边缘检测算法比较研究

测 。S b l 用 图 3所 示 的两个 核做 卷积 , oe 利 一个 核对垂
直边缘 影响 最大.而 另一个 核对水 平边 缘影 响最 大. 两 个 卷积 的最 大值作 为像 素点的输 出值 。
()原图 a
图 3s b 1 缘 算 子 o e 边
对 于 图像 f , ,o e 算子定义 如下 : (y S b l x)
较 尖锐 , 在 图像 噪声 比较 小 时. 度算 子 工 作 的效果 如果 Ri) H , 为 阶跃边 缘点 。 且 梯 ( ≥T 则 ’ j 较好 。对 于一 个 连续 图像 函数 x, , 梯度 可 表示 Y 其 ) 为一个 矢量 :
广 ]r
() , = = Io 【 r f o fl
基金项 目: 南京 林 业 大 学创 新 基 金 。 目号 1 37 0 6 项 6003
6
福
建 电
脑
2 1 年第 5期 01
G( =f - ,+ ) fx + ) f + ,+ )f - ,- ) 算 子很 少直 接用 于边缘检 测,而 主要 确定 已知的边缘 y Ix 1 1+ (y 1+ ( 1y 1- ( 1 1 ) ( y , x x y 像 素是在 图像的暗 区还是在 明区。 f , 1  ̄ + ,- ) (y ) x ly 1l x- - 3 几 种 算 法 实验 结 果 比较 、 则 Pxy m x Gx, ( ) (,= a ( ( Gy ) ) ) Pe i 算 子对 噪声具 有 平滑 作用 .但 定位 精度 不 rwt t 传 统 的边 缘检 测算法 通过 梯度算 子来 实现 .在求 够高 。 边缘 的梯度 时 . 要对每个 像素位 置计 算 。 需 在实际 中常 1 Sb l 子 . oe 算 3 用 小 区域 模板卷 积来近似 计算 . 板是 N N 的权 值方 模 * S bl 子 利用 像 素的 上下 、 右邻 域 的灰 度加 权 阵 。图 5给 出上述各种算 子处理 的不同结果 。 oe算 左 算法 . 据在 边 缘点 处 达到 极值 这一 原 理进 行 边缘 检 根
边缘检测技术及比较

Gn nG其中
G * f x , y n G * f x , y G / x G G / y n表示边缘方向,G表示梯度矢量,边缘强度由 G * f x, y 决定。
河北工业大学 机械工程学院
三、几种边缘检测算法的比较
3.Krisch算子对8个方向边缘信息进行检测,因此具有较好的边缘定 位能力,并且对噪声有一定的抑制作用,就边缘定位能力和抗噪声 能力来说,该算子的效果比较理想;但Krisch算子和LOG算子提取出 的边缘和细节都比较多,能够提取出对比度弱的边缘,也正因如此, 受噪声的影响较大,虚假边缘较多,边缘较粗。 4.LOG算子首先通过高斯函数对图像作平滑处理,因此对噪声的抑制 作用比较明显,但同时也可能将原有的边缘也平滑了,造成某些边 缘无法检测到。此外高斯函数中方差参数σ的选择,对图像边缘检 测效果有很大的影响。σ越大,检测到的图像细节越丰富,但对噪 声抑制能力相对下降,易出现伪边缘,反之则抗噪声性能提高,但 边缘定位准确性下降,易丢失许多真边缘,因此,对于不同图像应 选择不同参数;
河北工业大学 机械工程学院
1.1 一阶微分算子
f f f x , y i j为图像的梯度,f x, y 可包含灰度变化信息。 x y 记:e x, y f x2 f y2 为f x, y 的梯度幅值,e x, y 可以用作边缘 检测算子,为简化运算也可将e x, y 定义为偏导数f x、f y的绝对值之 和:e x, y f x x, y f y x, y
遥感图像变化检测综述_刘占红

随着空间科学技术的迅猛发展,遥感图像获取技术 也呈现出三多(多传感器、多平台、多角度)和三高(高 空 间 分 辨 率 、 高 光 谱 分 辨 率 、 高 时 间 分 辨 率 ) 的 特 点 [1]。 遥感卫星获取的图像的空间分辨率从几米提高到 1 m 以下,时间分辨率也由几十天提高到 1 天,从而每天都 可以获取海量的遥感图像数据,实现了遥感数据长周期 积累。 如何从这些遥感图像中检测出变化信息已成为遥 感应用领域中的一个重要研究方向,即遥感图像变化检 测技术。 它是指从不同时期的遥感图像中,定量地分析 和 确 定 地 物 变 化 的 特 征 和 过 程 的 技 术[2]。
( 1 .Indemnification office , Shijiazhuang Flying College of Air Force Training , Shijiazhuang 050081 , China ; 2 .College of Humanities , Hebei University of Economics , Shijiazhuang 050061 , China )
Abstract : This paper focuses on the basic theory of change detection was introduced. First of all, the basic concept of the remote sensing image change detection brief description and analysis of the nature of the change detection is a pattern classification problems; then comprehensive review of the existing change detection method, summarized as the pixel level, feature level and object level three categories, discusses in detail the basic principles and characteristics of the various methods and its scope of application and the advantages and disadvantages of are summarized.
拉普拉斯边缘检测算法

拉普拉斯边缘检测算法边缘检测是数字图像处理中的一个基本问题,它的任务是从一幅图像中找出物体的边界。
边界的定义是物体内部的灰度变化很大的地方,比如物体与背景之间的边界或者物体内部的边界。
边缘检测可以被广泛应用于计算机视觉、机器人控制、数字信号处理等领域。
本文将介绍一种常用的边缘检测算法——拉普拉斯边缘检测算法。
拉普拉斯边缘检测算法是一种基于二阶微分的算法。
它的基本思想是在图像中寻找像素灰度值变化明显的位置,这些位置就是边缘的位置。
具体来说,该算法使用拉普拉斯算子来进行图像的二阶微分,然后通过对图像进行阈值处理来得到边缘。
在数学上,拉普拉斯算子可以表示为:∇2f(x,y) = ∂2f(x,y)/∂x2 + ∂2f(x,y)/∂y2其中,f(x,y)是图像上的像素灰度值,∂2f(x,y)/∂x2和∂2f(x,y)/∂y2分别是图像在水平和竖直方向上的二阶导数。
我们可以使用卷积运算来实现对图像的二阶微分:L(x,y) = ∑i,j(G(i,j) * f(x+i,y+j))其中,G(i,j)是拉普拉斯算子的离散化矩阵,f(x+i,y+j)是待处理图像在位置(x+i,y+j)的像素灰度值。
卷积运算的结果L(x,y)就是图像在位置(x,y)处的二阶微分。
得到图像的二阶微分之后,我们需要对其进行阈值处理。
一般来说,图像的二阶微分值越大,说明该位置的像素灰度值变化越明显,很有可能是边缘的位置。
因此,我们可以将所有二阶微分值大于一个设定的阈值的位置标记为边缘点。
然而,拉普拉斯边缘检测算法还存在一些问题。
首先,它对噪声比较敏感,因此在使用该算法时需要进行噪声抑制。
其次,拉普拉斯算子的离散化矩阵在处理图像时会引入锐化效果,这可能会导致图像中出现一些不必要的细节。
因此,在实际应用中,我们往往会使用其他算法和技术来对拉普拉斯边缘检测算法进行改进和优化。
拉普拉斯边缘检测算法是一种基于二阶微分的边缘检测算法。
它的基本思想是使用拉普拉斯算子对图像进行二阶微分,然后通过阈值处理来得到边缘。
图像边缘检测算子

图像边缘检测算子图像边缘检测算子是一种用来检测图像中边缘的算法,在图像处理中是一项基本技术,其在三维重建、识别、检测、增强、跟踪等方面发挥着重要作用。
这种算法可以用来寻找图像中对象的轮廓和细微结构,改善图像的质量,为后续图像处理提供有效的前提条件。
边缘检测算子的基本思想是通过检测图像的梯度信息,来判断图像中的物体边缘,从而可以提取出物体的边缘,并实现物体边缘的检测和特征量化。
主要有锐化算子、滤波算子、统计算子和结构运算算子等类型,其中锐化算子是最常用的。
锐化算子是图像边缘检测算子中最为重要的一类,它通过对图像进行卷积,将图像中的梯度信息提取出来,并根据梯度信息计算像素值的改变,从而实现物体边缘的检测。
其中常用的算子有Sobel算子、Prewitt算子和Robert算子等,这些算子可以检测到图像中不同方向的边缘,并可以根据不同的方法进行加强。
此外,滤波算子也是一类重要的边缘检测算子,它们可以改善图像的质量并减少噪声信息,其中最常用的是高斯滤波算子,它可以降低图像中的噪声并在不改变原始图像的前提下改善图像的质量。
统计算子是另一类比较常用的边缘检测算子,它们可以利用彩色图像的多个通道的像素信息来检测边缘,比如局部均值算子、局部方差算子和平均灰度值算子等,它们可以抑制噪声对边缘检测的影响。
最后,结构运算算子是另一类重要的边缘检测算子,它们主要利用形态学运算,如腐蚀和膨胀来检测图像中的边缘,其中最常用的是拉普拉斯算子,它可以检测图像中物体的边界和细微结构。
综上所述,图像边缘检测算子是图像处理的一个重要基础技术,它可以检测图像中的边缘,为后续的图像处理提供有效的前提条件。
主要有锐化算子、滤波算子、统计算子和结构运算算子等类型,它们可以改善图像的质量,从而实现物体边缘的检测和特征量化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像边缘检测的综述 1.1 0 前 言
边缘是图象最基本的特征. 边缘检测在计算机视觉、图象分析等应用中起着重要的作用,是图象分析与识别的重要环节,这是因为子图象的边缘包含了用于识别的有用信息. 所以边缘检测是图像分析和模式识别的主要特征提取手段。 所谓边缘是指其周围像素灰度后阶变化或屋顶状变化的那些像素的集合,它存在于目标与背景、目标与目标、区域与区域,基元与基元之间。 因此它是图象分割所依赖的重要的特征,也是纹理特征的重要信息源和形状特征的基础;而图象的纹理形状特征的提取又常常依赖于图象分割。 图象的边缘提取也是图象匹配的基础,因为它是位置的标志,对灰度的变化不敏感,它可作为匹配的特征点。 图象的其他特征都是由边缘和区域这些基本特征推导出来的. 边缘具有方向和幅度两个特征. 沿边缘走向,像素值变化比较平缓;而垂直与边缘走向,则像素值变化比较剧烈. 而这种剧烈可能呈现阶跃状,也可能呈现斜坡状。 边缘上像素值的一阶导数较大;二阶导数在边缘处值为零,呈现零交叉。 经典的、最简单的边缘检测方法是对原始图象按像素的某邻域构造边缘算子. 由于原始图象往往含有噪声,而边缘和噪声在空间域表现为灰度有比较大的起落;在频域则反应为同是高频分量,这就给边缘检测带来困难. Marr 和Hildreth 提出的零交叉边缘检测是一种十分有效的方法,他们认为:其一,图象强度的突变将在一阶导数中产生一个峰或等价于二阶导数中产生一个零交叉(Zero - Crossing) ;其二,图象中的强度变化是以不同的尺度出现的,故应该用若干大小不同的算子才能取得良好的检测效果。 鉴于边缘检测技术的重要性,在此我们有必要对边缘检测技术进行讨论.
1.2经典的边缘检测算子 边缘检测的实质是采用某种算法来提取出图像中对象与背景间的交界线。我们将边缘定义为图像中灰度发生急剧变化的区域边界。图像灰度的变化情况可以用图像灰度分布的梯度来反映,因此我们可以用局部图像微分技术来获得边缘检测算子。经典的边缘检测方法,是对原始图像中像素的某小邻域来构造边缘检测算子。以下是对几种经典的边缘检测算子进行理论分析,并对各自的性能特点作出了比较和评价
不妨记:▽f(x,y)=ixf+jyf 为图像的梯度,▽f(x,y)包含灰度变化信息
记: e(x,y)=yxff22为▽f(x,y)的梯度,e(x,y)可以用作边缘检测算子。为了简化计算,也可以将e(x, y)定义为偏导数xf与yf的绝对值之和: ),(yxe=|),(yxfx|+|),(yxfy|
以这些理论为依据,提出了许多算法,常用的边缘检测方法有:Roberts边缘检测算子、Sobel边缘检测算子、Prewitt边缘检测算子、Canny边缘检测算子、Laplace边缘检测算子等等。 1.2.1Roberts边缘检测算子 Roberts边缘检测算子根据任意一对互相垂直方向上的差分可用来计算梯度的原理,采用对角线方向相邻两像素之差,即:
△xf=),(jif-)1,1(jif , △yf=)1,(jif-),1(jif (1.2.4)
),(jiR=ffyx22或),(jiR|fx|+|fy| (1.2.5) 它们的卷积算子fx01 10 ,fy10 01
有了fx , fy之后,很容易计算出Roberts的梯度幅值),(jiR,适当取门限TH,作如下判断: ),(jiR >TH, (i, j)为阶跃状边缘点。{),(jiR}为边缘图像。 Roberts算子采用对角线方向相邻两像素之差近似梯度幅值检测边缘。检测水平和垂直边缘的效果好于斜向边缘,定位精度高,对噪声敏感。
1.2.2 Sobel边缘检测算子
对数字图像{f(i,j)}的每个像素,考察它上、下、左、右邻点灰度的加权差,与之接近的邻点的权大。据此.定义Sobel算子如下: ),(jis|fx|+|fy|
|()1,1(jif+2),1(jif+)1,1(jif)-()1,1(jif+2),1(jif+)1,1(jif)|+|(f(i-1,j-1)+2f(i,j-1)+f(i+1.j-1))-((fi-1,j+1)+2f(i,j+1)+f(i+1.j+1))|
其卷积算子fx 101202101, fy121000121 图1-4 Sobel边缘检测算子方向模板 适当取门限TH,作如下判断: ),(jis >TH, (i, j)为阶跃状边缘点,{ ),(jis}为边 缘图像。 Sobel算子很容易在空间上实现,Sobel边缘检测器不但产生较好的边缘检测效果,而且受噪声的影响也比较小。当使用大的领域时,抗噪声特性会更好,但这样做会增加计算量,并且得出的边缘也较粗。 Sobel算子利用像素点上下、左右邻点的灰度加权算法,根据在边缘点处达到极值这一现象进行边缘的检测。Sobel算子对噪声具有平滑作用,提供较为精确的边缘方向信息,但它同时也会检测出许多的伪边缘,边缘定位精度不够高。当对精度要求不是很高时,是一种较为常用的边缘检测方法。
1.2.3 Prewitt边缘检测算子 Prewitt算子是一种边缘样板算子。这些算子样板由理想的边缘子图像构成。依次用边缘样板去检测图像,与被检测区域最为相似的样板给出最大值。用这个最大值作为算子的输出值(i,j),这样可将边缘像素检测出来。定义Prewitt边缘检测算子模板如下:
111121111 111121111 111121111
111121111
(a)方向1 (b)方向2 (c)方向3 (d)方向4 111121111 111121111 111121111 111121111 (e)方向5 (f)方向6 (g)方向7 (h)方向8 8个算子样板对应的边缘方向如下图所示:
图1-6样板方向 适当取门限TH,作如下判断: (i,j) >TH, (i, j)为阶跃状边缘点。{ (i,j)}为边缘图像。
1.2.4 Laplacian of Gaussian(LoG)算子 正如上面所提到的,利用图像强度二阶导数的零交叉点来求边缘点的算法对噪声十分敏感,所以,希望在边缘增强前滤除噪声.为此,Marr和Hildreth[146]将高斯滤波和拉普拉斯边缘检测结合在一起,形成LoG(Laplacian of Gaussian, LoG)算法,也称之为拉普拉斯高斯算法.LoG边缘检测器的基本特征是: 1. 平滑滤波器是高斯滤波器. 2. 增强步骤采用二阶导数(二维拉普拉斯函数). 3. 边缘检测判据是二阶导数零交叉点并对应一阶导数的较大峰值. 4. 使用线性内插方法在子像素分辨率水平上估计边缘的位置. 这种方法的特点是图像首先与高斯滤波器进行卷积(高斯滤波器在6.6节中将详细讨论),这一步既平滑了图像又降低了噪声,孤立的噪声点和较小的结构组织将被滤除.由于平滑会导致边缘的延展,因此边缘检测器只考虑那些具有局部梯度最大值的点为边缘点.这一点可以用二阶导数的零交叉点来实现.拉普拉斯函数用作二维二阶导数的近似,是因为它是一种无方向算子.为了避免检测出非显著边缘,应选择一阶导数大于某一阈值的零交叉点作为边缘点. LoG算子的输出hxy(,)是通过卷积运算得到的:
hxygxyfxy(,)[(,)(,)]2 根据卷积求导法有 hxygxyfxy(,)[(,)](,)2 其中:
2222422222gxyxyexy(,)
滤波(通常是平滑)、增强、检测这三个边缘检测步骤对使用LoG边缘检测仍然成立,其中平滑是用高斯滤波器来完成的;增强是将边缘转换成零交叉点来实现的;边缘检测则是通过检测零交叉点来进行的. 可以看到,零交叉点的斜率依赖于图像强度在穿过边缘时的变化对比度.剩下的问题是把那些由不同尺度算子检测到的边缘组合起来.在上述方法中,边缘是在特定的分辨下得到的.为了从图像中得到真正的边缘,有必要把那些通过不同尺度算子得到的信息组合起来.
00100012101216210121000100
图1-7 55拉普拉斯高斯模板 1.2.5 Canny 算子 边缘提取的基本问题是解决增强边缘与抗噪能力间的矛盾,由于图像边缘和噪声在频率域中同是高频分量,简单的微分提取运算同样会增加图像中的噪声,所以一般在微分运算之前应采取适当的平滑滤波,减少噪声的影响。Canny运用严格的数学方法对此问题进行了分析,推导出由# 个指数函数线性组合形式的最佳边缘提取算子网,其算法的实质是用一个准高斯函数作平滑运算,然后以带方向的一阶微分定位导数最大值,Canny算子边缘检测是一种比较实用的边缘检测算子,具有很好的边缘检测性能。Canny边缘检测法利用高斯函数的一阶微分,它能在噪声抑制和边缘检测之间取得较好的平衡。
1.2.6 经典边缘提取算子提取图像边缘的结果对比分析 以下分别采用上述几种最常用的经典图像边缘提取算子对标准的tire 图像进行边缘特征提取,其结果如下图所示: 从下图可以看出,Roberts 算子提取边缘的结果边缘较粗,边缘定位不很准确,Sobel算子和Prewitt 算子对边缘的定位就准确了一些,而采用拉普拉斯高斯算子进行边缘提取的结果要明显优于前三种算子,特别是边缘比较完整,位置比较准确。相比而言,Canny 算子提取的边缘最为完整,而且边缘的连续性很好,效果优于以上其他算子,这主要是因为