2019届全国高考仿真试卷(四)(文)数试卷

合集下载

北京专家2019届高考模拟试卷(四)文综答案

北京专家2019届高考模拟试卷(四)文综答案

北京专家2019届高考模拟(四)文科综合能力测试参考答案1.【答案】C【解析】我国是有着悠久历史的文明古国,在农业经济发展中,传统的男耕女织,使大量农村妇女闲赋在家,有时间从事丝织工作,香包也成为了人们寄托祝福的一种象征。

因此浓郁的农耕文化习俗是庆阳香包传承久远的最基础的社会因素,C对。

2.【答案】C【解析】材料中提到,香包深受华人华侨的喜爱,因此,重点推销市场应该是有大量华人华侨聚集的地区,C对。

3.【答案】B【解析】从表中可以看出,新加坡建屋发展局三种类型的“邻里中心”社区规划,严格按照人口规模进行设置,按不同的人口规模建设的“邻里中心”,商品的服务等级存在明显差别。

因此,新加坡建屋发展局通过社区规划,最主要是限制了各类“邻里中心”的服务等级,B对。

服务质量材料没有显示,A错;而服务范围和服务人口,不同的“邻里中心”可以存在交叉,不是主要限制内容,排除C、D。

4.【答案】D【解析】“邻里中心”其实质是集合了多种生活服务设施的综合性市场,为百姓提供“一站式”的服务。

按人口规模设置,规模适中,A符合;“一站式”的服务,有凝聚力,有休闲性,B、C符合;分散化与其设置不符,选D。

5.【答案】C【解析】“邻里中心”只是打造综合性的服务市场,不能增加服务种类,A错;提供“一站式”的服务,会聚集人流,B错;也不会提高城市等级,D错;“邻里中心”模式,改变原来分散化的商业模式,是社区类的商业服务集中设置,可以改善城市居民的生活环境质量,C对。

6.【答案】C【解析】灾备为主的大数据中心,安全性是其考虑的首要问题,一般在选址时,多选址在地质条件稳定的地方, C对。

市场、交通、地租,不是影响安全的主要因素。

7.【答案】D【解析】图中的制冷方式为风冷,贵州地处西南地区,为亚热带季风气候,冬季降水较少,但风力较大,气温较低,适合选用风冷方式制冷,选D。

8.【答案】A【解析】与贵州相比,内蒙古地区纬度更高,冬季寒冷漫长,低温时间长,有利于节约制冷成本,A对。

2019届全国高考仿真试卷(四)(理)数学试卷

2019届全国高考仿真试卷(四)(理)数学试卷

2019届全国高考仿真试卷(四)(理)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. (2017·成都市二诊)已知集合,,则()A. B. C. D.【答案】B【解析】【分析】解不等式可得,从而可求.【详解】,故,故选B.【点睛】本题考察集合的运算-并,为基础题.2. (2017·太原市一模)已知是虚数单位,则复数的共轭复数是()A. B. C. D.【答案】A【解析】【分析】利用复数的除法计算后取所得结果的共轭即可.【详解】,故所求共轭复数为,故选A.【点睛】本题考察复数的概念及其运算,是基础题.3. (2017·合肥市质检)某校高三年级共有学生900人,编号为1,2,3,…,900,现用系统抽样的方法抽取一个容量为45的样本,则抽取的45人中,编号落在区间的人数为()A. 10B. 11C. 12D. 13【答案】C【解析】【分析】因用系统抽样的方法抽取,所以900人分成45组,每组20人,每组取1人,因此可用等差数列的通项公式计算落在区间的人数.【详解】900人分成45组,每组20人,每组取1人,其编号构成等差数列,故编号落在区间的人数为,故选C.【点睛】抽样方法共有简单随机抽样、系统抽样和分层抽样三种,(1)简单随机抽样是每个个体等可能被抽取;(2)系统抽样是均匀分组,按规则抽取(通常每组抽取的序号成等差数列);(3)分层抽样就是按比例抽取.4. 已知双曲线:的离心率为,则的渐近线方程为()A. B. C. D.【答案】C【解析】根据题意,双曲线:的离心率为,则有,即,即有,又由双曲线的焦点在轴上,则其渐近线方程为,故选C.5. 如图所示,当输入,的值分别为2,3时,最后输出的的值是()..............................A. 1B. 2C. 3D. 4【答案】C【解析】【分析】题设中的算法是求中的较大者.【详解】算法是求中的较大者,故最后输出的是3,故选C.【点睛】本题考查算法中的选择结构,属于容易题.6. 某几何体的三视图如图所示,其中俯视图下半部分是半径为1的半圆,则该几何体的表面积是()A. B. C. D.【答案】B【解析】【分析】几何体为正方体中挖掉半个圆柱,故可求其表面积.【详解】几何体为正方体中挖去半个圆柱,正方体的棱长为2,正方体的3个侧面的面积为,上下底面的面积为,半个圆柱的侧面积为,因此所求几何体的表面积为,故选B.【点睛】本题考察三视图,要求根据三视图复原几何体,注意复原后表面积的合理计算.7. (2017·陕西省质检)已知等比数列的前项和为.若,,则()A. B. C. D.【答案】A【解析】试题分析:由已知可得,解之得,应选A。

2019届全国高考仿真试卷(四)数学(理科)卷

2019届全国高考仿真试卷(四)数学(理科)卷

2019届全国高考仿真试卷(四)数学(理科)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的1. 集合,,则()A. B. C. D.【答案】C【解析】【分析】分别根据完全平方式和绝对值为非负数,求出及两函数的值域,确定出两集合,找出两集合的公共部分即可得到两集合的交集.【详解】由集合中的函数,集合;由集合中的函数中,得到,集合,则,故选C.【点睛】集合分为有限集合和无限集合,若集合个数比较少时可以用列举法表示;若集合是无限集合就用描述法表示,并注意代表元素是什么.集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或图进行处理.2. 设有下面四个命题::若复数满足,则;:若复数满足,则;:若复数,满足,则;:若复数,则.其中的真命题为A. ,B. ,C. ,D. ,【答案】B【解析】令,则由得,所以,故正确;当时,因为,而知,故不正确;当时,满足,但,故不正确;对于,因为实数的共轭复数是它本身,也属于实数,故正确,故选B.点睛:分式形式的复数,分子、分母同乘以分母的共轭复数,化简成的形式进行判断,共轭复数只需实部不变,虚部变为原来的相反数即可.3. 已知,则的值等于()A. B. C. D.【答案】D【解析】因为,所以.,故选A.4. 若,则下列不等式:①;②;③;④中正确的不等式有()个.A. 个B. 个C. 个D. 个【答案】C【解析】故①错;故②对;,,当且仅当时等号成立,而,故,故③对;,故④对;综上,正确的不等式有3个.本题选择C选项.5. 已知双曲线的离心率为2,则椭圆的离心率为( )A. B. C. D.【答案】A【解析】【分析】将双曲线的方程化为标准方程,求得离心率,化简可得,再将椭圆方程化为标准方程,代入离心率公式,从而可得结果.【详解】双曲线即为,可得离心率化简可得,则椭圆即为,可得离心率为,故选A.【点睛】本题主要考查双曲线与椭圆的方程及离心率,属于中档题.离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,从而求出;②构造的齐次式,求出;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.6. 设是半径为1的圆上的三点,且,则的最大值为A. B. C. D. 1【答案】C【解析】以OA,OB所在直线分别为轴,轴,则,设,且,所以,由于,所以,当时,有最大值,选A.7. 若函数对任意的都有,则等于()A. 3B. 0C.D.【答案】C【解析】【分析】由题意判断函数的对称轴为,说明是函数的最值,从而可判断选项.【详解】由题意可知函数对任意的都有,函数关于对称,可得是函数的最值,,故选C.【点睛】本题考查函数的基本性质,函数的对称性的应用,意在考查灵活运用所学知识解决问题的能力,属于中档题.8. 已知实数,执行如图所示的程序框图,则输出的不小于的概率为A. B. C. D.【答案】B【解析】【分析】由程序框图的流程,写出前三项循环得到的结果,得到输出的值与输入的值的关系,令输出值大于等于得到输入值的范围,利用几何概型概率公式求出输出的不小于的概率. 【详解】设实数,经过第一次循环得到;经过第二次循环得到;经过第三次循环得到,此时输出,输出的值为,令得,由几何概型概率得到输出的不小于的概率为,故选B.【点睛】本题主要考查条件语句以及算法的应用,属于中档题 .算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.9. 某正四棱锥的正(主)视图和俯视图如图所示,该正四棱锥的侧棱长是A. B. C. D.【答案】B【解析】【分析】利用三视图的数据,由正四棱锥法性质,根据勾股定理可得结果.【详解】由三视图可知该正四棱锥,底面正方形对角线长是,可得底面边长为2,高为3,所以正四棱锥的侧棱长为,故选B.【点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.10. 已知抛物线,过焦点作直线与抛物线交于点,,设,,则的最小值为A. B.C. D.【答案】D【解析】【分析】由抛物线与过其焦点的直线方程联立,消去整理成关于一元二次方程,设出两点坐标,再依据抛物线的定义,由韦达定理可以求得结论.【详解】由题意知,抛物线的焦点坐标为,直线方程为,当斜率存在时,设直线的方程为,联立抛物线方程,可得,设出,则,依据抛物线定义得出,当斜率不存在时,,则的最小值是4,故选D.【点睛】本题主要考查抛物线的定义以及直线与抛物线的位置关系,属于中档题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距离转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.11. 点从点出发,按逆时针方向沿周长为的正方形运动一周,记,两点连线的距离与点走过的路程为函数,则的图像大致是().A. B.C. D.【答案】C【解析】如图,当时,为正比例函数,当时,不是正比例函数,且图象关于对称,只有项符合要求.12. 在中,,点在边上,且满足,若,则可等于()A. B. C. D.【答案】A【解析】【分析】设,利用两角和差的正切公式计算,整理解得,即可计算解得的值.【详解】,,设,,又,,整理解得,(舍去),或,,故选A.【点睛】本题主要考查三角函数的定义,两角差的正切公式,意在考查对基础知识掌握的熟练程度,考查了数形结合思想和转化思想,属于难题.二、填空题:本大题共4小题,每小题5分,共20分.将答案写在答题卡上相应的位置13. 已知实数、满足约束条件,若使得目标函数取最大值时有唯一最优解,则实数的取值范围是_______________(答案用区间表示)【答案】【解析】【分析】画出不等式组的可行域,将目标函数变形,数形结合判断出最大时,从而可得的取值范围. 【详解】作出不等式组表示的可行域,如图所示,令,则可得,当最大时,直线的纵截距最大,画出直线将变化,结合图象得到当时,直线经过时纵截距最大,,故答案为.【点睛】本题主要考查线性规划中,利用可行域求目标函数的最值,属于简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.14. 为了考查考生对于“数学知识形成过程”的掌握情况,某高校自主招生考试面试中的一个问题是:写出对数的换底公式,并加以证明.甲、乙、丙三名考生分别写出了不同的答案.公布他们的答案后,三考生之间有如下对话,甲说:“我答错了”;乙说:“我答对了”;丙说:“乙答错了”.评委看了他们的答案,听了他们之间的对话后说:你们三人的答案中只有一人是正确的,你们三人的对话中只有一人说对了.根据以上信息,面试问题答案正确的考生为_______.【答案】丙【解析】分析:利用反证法对每个人的说法进行分析、排除可得结论.详解:①当甲的答案正确时,则甲的说法错误,乙、丙的说法有一个正确,符合题意.故甲的答案正确.②当乙的答案正确时,则乙的说法正确,甲、丙的说法不正确,与符合题意矛盾.故乙的答案不正确.③当丙的答案正确时,则丙的说法正确,甲、乙的说法不正确,与符合题意矛盾.故丙的答案不正确.综上可得甲的答案正确.点睛:本题考查演绎推理的应用,解答类似问题的常用方法是反证法,即假设每个说法都正确,通过推理看是否能得到矛盾,经过逐步排除可得结果.15. 过原点作圆的两条切线,设切点分别为,则线段的长为__________________.【答案】4【解析】可得圆方程是又由圆的切线性质及在三角形中运用正弦定理得视频16. 已知四面体中, ,且,,,则该四面体的外接球的表面积为__________.【答案】【解析】【分析】根据已知,结合勾股定理,可得,由勾股定理可证明,取的中点,则,即为该四面体的外接球的球心,求出球半径所得,代入球的表面积公式,可得结论.【详解】,且,,又,即,取的中点,根据直角三角形的性质,可得,即为该四面体的外接球的球心,则该四面体的外接球的半径,故该四面体的外接球的表面积,故答案为.【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题:本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤17. 已知数列的前项和为, 满足, 且.(1) 令, 证明:; (2) 求的通项公式.【答案】(1)见解析(2)【解析】【分析】(1)由,利用可化为,从而可得结果;(2)根据“累加法”可得,可得,从而,检验时是否符合即可得结果.【详解】(1)证明:∵S n=n2a n﹣n2(n﹣1),∴n≥2时,S n=n2(S n﹣S n﹣1)﹣n2(n﹣1),化为:S n﹣=n,∵b n=,∴b n﹣b n﹣1=n(n≥2).(2)解:b1=2a1=1.∴b n=n+(n﹣1)+……+2+1=.∴b n==,可得S n=.∴a n=S n﹣S n﹣1=﹣=(n≥2),n=1时也符合.∴a n=.【点睛】本题主要考查数列的通项公式与前项和公式之间的关系,属于中档题. 已知数列前项和与第项关系,求数列通项公式,常用公式,将所给条件化为关于前项和的递推关系或是关于第项的递推关系,若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式. 在利用与通项的关系求的过程中,一定要注意的情况.18. 一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器运转速度而变化,下表为抽样试验的结果:(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?(2)如果y与x有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001.参考数据:,,)回归分析有关公式:r=,,.【答案】(1)y与x有线性性相关关系(2)(3)【解析】【分析】(1)利用所给的数据根据公式求出两个变量的相关系数,得到相关关系数趋势大于,得到两个变量具有线性相关关系;(2)先做出横坐标和纵坐标的平均数,求出利用小二乘法求线性回归方程的系数公式中所需的量,利用公式可得系数的值,从而求出,进而可得线性回归方程;(3)根据上一问做出的线性回归方程,使得函数值小于或等于,解出不等式即可. 【详解】(1),,∴,y与x有线性性相关关系.(2)解:∴,∴回归直线方程为:(3),解得【点睛】本题主要考查线性回归方程的求法与应用,属于中档题.求回归直线方程的步骤:①依据样本数据确定两个变量具有线性相关关系;②计算的值;③计算回归系数;④写出回归直线方程为;回归直线过样本点中心是一条重要性质,利用线性回归方程可以估计总体,帮助我们分析两个变量的变化趋势.19. 如图,已知平面,是矩形,,,是中点,点在边上.(1)求三棱锥的体积;(2)求证:;(3)若平面,试确定点的位置.【答案】(1)(2)见解析(3)见解析【解析】【分析】(1)由三棱锥的体积等于三棱锥的体积,利用棱锥的体积公式可得结论;(2)先证明平面,可得,再由等腰三角形的性质可得从而利用线面垂直的判定定理可得平面即可;(3)利用平面,可得,根据是中点,可得结论.【详解】(1)解:三棱锥E﹣PAD的体积等于三棱锥P﹣EAD的体积∵PA⊥平面ABCD,ABCD是矩形,PA=AB=1,,∴V P﹣EAD=∴三棱锥E﹣PAD的体积为;(2)证明:∵PA⊥平面ABCD,EB⊂平面ABCD,∴EB⊥PA∵EB⊥AB,PA∩AB=A∴EB⊥平面PAB∵AF⊂平面PAB∴AF⊥EB∵PA=AB=1,F是PB中点,∴AF⊥PB∵EB∩PB=B,∴AF⊥平面PBC∵PE⊂平面PBC∴AF⊥PE;(3)解:E是BC中点∵EF∥平面PAC,PC⊂平面PAC,∴EF∥PC∵F是PB中点,∴E是BC中点.【点睛】本题主要考查线面垂直的判定与性质,棱锥的体积公式,属于中档题. 解答空间几何体中垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;证明直线和平面垂直的常用方法有:(1)利用判定定理;(2)利用判定定理的推论;(3)利用面面平行的性质;(4)利用面面垂直的性质,当两个平面垂直时,在一个平面内垂直于交线的直线垂直于另一个平面.20. 已知动圆过定点,且在轴上截得的弦长为.(1)求动圆圆心的轨迹的方程;(2)设点是轨迹上的两点,且,记,求的最小值.【答案】(1)(2)【解析】试题分析: (1) 根据垂径定理得等量关系,再将等量关系用坐标表示,可得动圆圆心的轨迹的方程;(2)先用,坐标化简条件,得,而,根据弦长公式及点到直线距离公式可得.最后利用基本不等式求最值.试题解析: (1)设,的中点,连,则:,,∴.又,∴∴,整理得.(2)设,,不失一般性,令,则,∵,∴,解得③直线的方程为:,,即,令得,即直线恒过定点,当时,轴,,.直线也经过点.∴.由③可得,∴.当且仅当,即时,.21. 已知(1)证明:;(2)若时,恒成立,求实数的取值范围.【答案】(1)见解析(2)【解析】【分析】(1)令,,利用单调性可证明函数的最小值不小于零,从而可得结论;(2)令,,函数,对分三种情况讨论,分别利用导数研究函数的单调性,利用单调性可排除不合题意的的取值范围,筛选出符合题意的的取值范围.【详解】(1)令,令,可得函数在上单调递增,因此存在,使得可得,函数在上单调递减,在上单调递增,函数在处取得极小值即最小值,因此;(2)令函数时,,可得,函数在上单调递增,满足条件,时,在上单调递增,时,此时函数在上单调递增,,满足条件,时,存在,使得因此函数在上单调递减,因此不满足条件舍去,综上可得,的取值范围是.【点睛】本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数的单调区间、极值、最值等;第三层次是综合考查,包括解决应用问题,将导数内容和传统内容中有关不等式甚至数列及函数单调性有机结合,设计综合题.22. 极坐标与参数方程在直角坐标系xOy中,以原点O为极点,轴的正半轴为极轴建立极坐标系.已知曲线C1的极坐标方程为ρ2=,直线l的极坐标方程为ρ=.(1)写出曲线C1与直线l的直角坐标方程;(2)设Q为曲线C1上一动点,求 Q点到直线l距离的最小值.【答案】(1)(2)【解析】试题分析:(I)借助题设条件运用极坐标与直角坐标之间的关系求解;(II)借助题设运用参数方程建立函数探求.试题解析:(I),.………………4分(II)设,则点到直线的距离.当且仅当,即时,点到直线距离的最小值为.………………10分考点:极坐标与参数方程等有关知识的综合运用.23. 不等式选讲已知函数,且的解集为.(1)求的值;(2)若都是正实数,且,求证:.【答案】(I)m=1;(II)见解析.【解析】试题分析:(I)考查绝对值不等式的解法(II)采用配“1”法应用基本不等式证明或者采用柯西不等式证明.试题解析:(I)依题意,即,∴(II)方法1:∵∴当且仅当,即时取等号方法2: ∵∴由柯西不等式得整理得当且仅当,即时取等号.。

2019届全国高考仿真模拟(四)数学(文科)试卷

2019届全国高考仿真模拟(四)数学(文科)试卷

2019届全国高考仿真模拟(四)文科数学本试题卷共6页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合2{|30}A x x x =->,{|2}B x x =<,则AB =( )A .(2,0)-B .(2,3)-C .(0,2)D .(2,3)2.(2019·海口市调研)已知复数12z i =-,22z a i =+(i 为虚数单位,a R ∈),若12z z R ∈,则a =( )A .1B .1-C .4D .4-3.(2018·桂林市模拟)若向量a ,b 满足:1a =,()a b a +⊥,(3)a b b +⊥,则b =( )A .3B .1 D .34.(2019·福建省质检)在ABC ∆中,3B π=,2AB =,D 为AB 的中点,BCD ∆的面积为4AC 等于( )A .2B 5.已知,{1,2,3,4,5,6}x y ∈,且7x y +=,则2xy ≥的概率为( ) A .13 B .23 C .12 D .566.(2019·昆明市统考)如图,网格纸上正方形小格的边长为1(单位:cm ),图中粗线画出的是某种零件的三视图,则该零件的体积(单位:3cm )为( )A .24024π-B .24012π-C .2408π-D .2404π- 7.(2018·长春市三模)阅读如图所示的程序框图,运行相应的程序,若输出的S 为1112,则判断框中填写的内容可以是( )A .6n =B .6n <C .6n ≤D .8n ≤8.(2019·郑州一预)函数()cos xf x e x =在点(0,(0))f 处的切线斜率为( )A .0B .1-C .1D .29.(2017·海口市调研)若x ,y 满足30300x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩,且z y x =-的最小值为12-,则k 的值为( ) A .12 B .12- C .14 D .14- 10.(2017·桂林市模拟)设抛物线22(0)y px p =>的焦点为F ,过F交抛物线于A ,B 两点.若线段AB 的垂直平分线与x 轴交于点(11,0)M ,则p =( ) A .2 B .3 C .6 D .1211.(2017·河南九校联考)四面体的一条棱长为c ,其余棱长为3,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为( ) A .272π B .92π C .152πD .15π 12.设'()f x 是函数()f x 的导函数,且'()2()()f x f x x R >∈,12f e ⎛⎫= ⎪⎝⎭(e 为自然对数的底数),则不等式2(ln )f x x <的解集为( )A .0,2e ⎛⎫ ⎪⎝⎭ B. C .1,2e e ⎛⎫ ⎪⎝⎭ D.2e ⎛ ⎝ 第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.(2017·长春三模)函数1sin 0,22y x x x π⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是 .14.(2017·潍坊一中模拟)已知命题:在平面直角坐标系xOy 中,椭圆22221(0)x y a b a b +=>>,ABC ∆的顶点B 在椭圆上,顶点A ,C 分别为椭圆的左、右焦点,椭圆的离心率为e ,则sin sin 1sin A C B e+=,现将该命题类比到双曲线中,ABC ∆的顶点B 在双曲线上,顶点A 、C分别为双曲线的左、右焦点,设双曲线的方程为22221(0,0)x y a b a b-=>>.双曲线的离心率为e ,则有 .15.在一幢10m 高的房屋顶测得对面一塔顶的仰角为60,塔基的俯角为30,假定房屋与塔建在同一水平地面上,则塔的高度为 m .16.设函数()f x 在[1,)+∞上为增函数,(3)0f =,且()(1)g x f x =+为偶函数,则不等式(22)0g x -<的解集为 .三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知数列{}n a 满足1511a =,143(2)n n a a n -=-≥.(1)求证:数列{1}n a +为等比数列,并求数列{}n a 的通项公式; (2) 令2log (1)n n b a =+,求数列{}n b 的前n 项和n S .18.(2017·合肥市质检)四棱锥E ABCD -中,//AD BC ,222AD AE BC AB ====,AB AD ⊥,平面EAD ⊥平面ABCD ,点F 为DE 的中点.(1)求证://CF 平面EAB ;(2)若CF AD ⊥,求四棱锥E ABCD -的体积.19.有7位歌手(1至7号)参加一场歌唱比赛,由550名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:(1)为了调查大众评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取若干评委,其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表.(2)在(1)中,若A ,C 两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.20.(2017·昆明市统考)已知动圆E 经过定点(1,0)D ,且与直线1x =-相切,设动圆圆心E 的轨迹为曲线C . (1)求曲线C 的方程;(2)设过点(1,2)P 的直线1l ,2l 分别与曲线C 交于A ,B 两点,直线1l ,2l 的斜率存在,且倾斜角互补,证明:直线AB 的斜率为定值.21.(2017·贵州省适应性考试)设*n N ∈,函数ln ()n x f x x =,函数()(0)xn e g x x x=>.(1)当1n =时,求函数()y f x =的零点个数;(2)若函数()y f x =与函数()y g x =的图象分别位于直线1y =的两侧,求n 的取值集合A ; (3)对于n A ∀∈,12,(0,)x x ∀∈+∞,求12()()f x g x -的最小值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分,作答时请写清题号.22.选修4-4:坐标系与参数方程 已知直线l 的参数方程为1cos 1sin x t y t αα=-+⎧⎨=+⎩(t 为参数),曲线1C 的参数方程为22cos 42sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,且曲线2C 的极坐标方程为4cos ρθ=.(1)若直线l 的斜率为2,判断直线l 与曲线1C 的位置关系; (2)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤<). 23.选修4-5:不等式选讲 已知函数()(0)1af x ax a x =+>-在(1,)+∞上的最小值为15,函数()1g x x a x =+++. (1)求实数a 的值; (2)求函数()g x 的最小值.普通高等学校招生全国统一考试 仿真模拟(四)文科数学一、选择题1-5: ACBBB 6-10: BCCDC 11、12:DB 二、填空题13. 0,6π⎡⎤⎢⎥⎣⎦14.sin sin 1sin A C B e -= 15. 40 16. (0,2) 三、解答题17.解析:(1)证明:由11344n n a a -=-知111(1)4n n a a -+=+, 所以数列{1}n a +是以512为首项,14为公比的等比数列.则11212n n a -+=,11221n n a -=-. (2)112n b n =-,设数列{112}n -前n 项和为n T ,则210n T n n =-, 当5n ≤时,210n n S T n n ==-;当6n ≥时,2521050n n S S T n n =-=-+;所以2210,51050,6n n n n S n n n ⎧-≤⎪=⎨-+≥⎪⎩.18.解析:(1)证明:如图,取AE 的中点G ,连接GF ,GB . ∵点F 为DE 的中点, ∴//GF AD ,且12GF AD =, 又//AD BC ,2AD BC =, ∴//GF BC ,且GF BC =, ∴四边形CFGB 为平行四边形, 则//CF BG ,而CF ⊄平面EAB ,BG ⊂平面EAB , ∴//CF 平面EAB .(2)∵CF AD ⊥,∴AD BG ⊥,而AB AD ⊥, ∴AD ⊥平面EAB , ∴AD EA ⊥,又平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,∴EA ⊥平面ABCD , ∴113E ABCD ABCDV S EA -=⋅=梯形. 19.解析:(1)(2)A 组抽取的3人中有2人支持1号歌手,则从3人中任选1人,支持1号歌手的概率为3. C 组抽取的12人中有2人支持1号歌手,则从12人中任选2人,支持1号歌手的概率为21126=. 现从抽样评委A 组3人,C 组12人中各自任选一人,则这2人都支持1号歌手的概率211369p =⨯=.∴从,两组抽样评委中,各自任选一人,则这2人都支持1号歌手的概率为19. 20.解析:(1)由已知,动点E 到定点(1,0)D 的距离等于E 到直线1x =-的距离,由抛物线的定义知E 点的轨迹是以(1,0)D 为焦点,以1x =-为准线的抛物线,故曲线C 的方程为24y x =.(2)由题意可知直线1l ,2l 的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零. 设11(,)A x y ,22(,)B x y ,直线1l 的方程为(1)2y k x =-+,0k ≠. 直线2l 的方程为(1)2y k x =--+,由2(1)24y k x y x=-+⎧⎨=⎩得2222(244)(2)0k x k k x k --++-=, 已知此方程一个根为1,∴22122(2)441k k k x k k --+⨯==, 即21244k k x k -+=,同理22222()4()444()k k k k x k k ---+++==-, ∴212228k x x k ++=,12288k x x k k ---==, ∴1212[(1)2][(1)2]y y k x k x -=-+---+2122288()22k k x x k k k k k+=+-=⋅-=,∴1212818ABy yk k x x k-===---, 所以,直线AB 的斜率为定值1-. 21.解析:(1)当1n =时,ln ()x f x x =,21ln '()(0)xf x x x-=>. 由'()0f x >得0x e <<;由'()0f x <得x e >.所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减,因为1()0f e e=>,10f e e ⎛⎫=-< ⎪⎝⎭, 所以函数()f x 在(0,)e 上存在一个零点; 当(,)x e ∈+∞时,ln ()0xf x x=>恒成立, 所以函数()f x 在(,)e +∞上不存在零点.综上得函数()f x 在(0,)+∞上存在唯一一个零点. (2)由函数ln ()n x f x x =求导,得11ln '()(0)n n xf x x x+-=>, 由'()0f x >,得10nx e <<;由'()0f x <,得1nx e >, 所以函数()f x 在1(0,)n e 上单调递增,在1(,)ne +∞上单调递减, 则当1nx e =时,函数()f x 有最大值1max 1()()nf x f e ne==; 由函数()(0)x n e g x x x =>求导,得1()'()(0)xn x n e g x x x+-=>, 由'()0g x >得x n >;由'()0f x <得0x n <<.所以函数()g x 在(0,)n 上单调递减,在(,)n +∞上单调递增,则当x n =时,函数()g x 有最小值min()()ne g x g n n ⎛⎫== ⎪⎝⎭;因为*n N ∀∈,函数()f x 的最大值11()1nf e ne=<, 即函数ln ()nxf x x =在直线1y =的下方, 故函数()(0)xn e g x x x=>在直线l :1y =的上方,所以min()()1ne g x g n n ⎛⎫==> ⎪⎝⎭,解得n e <.所以n 的取值集合为{1,2}A =.(3)对12,(0,)x x ∀∈+∞,12()()f x g x -的最小值等价于min max 1()()ne g xf x n ne⎛⎫-=- ⎪⎝⎭,当1n =时,min max 1()()g x f x e e-=-; 当2n =时,2min max1()()42e g x f x e-=-;因为2211(4)20424ee e e e e e ⎛⎫--⎛⎫---=> ⎪ ⎪⎝⎭⎝⎭, 所以12()()f x g x -的最小值为2312424e e e e--=. 22.解析:(1)斜率为2时,直线l 的普通方程为12(1)y x -=+, 即23y x =+. ①将22cos 42sin x ty t=+⎧⎨=+⎩消去参数t ,化为普通方程得22(2)(4)4x y -+-=,②则曲线1C 是以1(2,4)C 为圆心,2为半径的圆,圆心1(2,4)C 到直线l 的距离2d ==<, 故直线l 与曲线(圆)1C 相交.(2)2C 的直角坐标方程为2240x y x +-=,由22224816040x y x y x y x ⎧+--+=⎪⎨+-=⎪⎩,解得22x y =⎧⎨=⎩,所以1C 与2C 的交点的极坐标为4π⎛⎫⎪⎝⎭. 23.解析:(1)∵()(1)11a a f x ax a x a x x =+=+-+--,1x >,0a >, ∴()3f x a ≥,即有315a =,解得5a =.(2)由于51(5)(1)4x x x x +++≥+-+=,当且仅当51x -≤≤-时等号成立,∴()51g x x x =+++的最小值为4.。

2019届全国高考原创仿真试卷(三)数学(文科)试卷

2019届全国高考原创仿真试卷(三)数学(文科)试卷

2019届全国高考原创仿真试卷(三)数学(文科)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一.选择题:(四个选项你都找不到对的选项,还想在十几亿人中找到对的人)1. 三年前大家在荆中“集合”,今天终于学有所成,长大成人,老师们高兴啊!那么满足的集合的个数为A. 1B. 2C. 3D. 4【答案】C【解析】【分析】运用子集和真子集的概念找出集合【详解】根据子集和真子集的定义,满足的集合可以是:、、共个,故选【点睛】本题考查了子集和真子集的概念,结合题目即可找出满足要求的集合,较为基础。

2. 读了高中才知道,数绝对不止1,2,3啊,比如还有这种奇葩数,他的平方居然是负数!那么复数在复平面内对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】运用复数除法法则运算得到结果【详解】由题意得,在复平面内对应的点为在第一象限,故选【点睛】本题考查了复数的几何意义,根据复数除法法则进行运算化成的形式即可得到答案3. 周而复始,踏着朝霞当思如何学习,踏着晚霞当思是否进步?已知函数是定义在R上的周期为6的奇函数,且满足,,则A. B. C. D. 4【答案】D【解析】【分析】因为函数是定义在上的周期为的奇函数,可得,由题意满足,,可以求出,再根据函数的周期性求出,即可求得结果【详解】函数是定义在上的周期为的奇函数,,则则故选【点睛】本题主要考查了奇函数的性质和应用,以及函数的周期性问题,运用函数的性质来解题,属于基础题4. 题目略长,不要彷徨,套路不深,何必当真.荆州某公园举办水仙花展,有甲、乙、丙、丁4名志愿者,随机安排2人到A展区,另2人到B展区维持秩序,则甲、乙两人同时被安排到A展区的概率为A. B. C. D.【答案】B【解析】【分析】先分析总的基本事件数和“甲、乙两人同时被安排到展区”所包含的基本事件数,再利用古典概型的概率公式进行求解【详解】随机安排人到展区,另人到展区维持秩序,有种不同的方法其中甲、乙两人同时被安排到展区,有种不同的方法则由古典概型的概率公式,得甲、乙两人同时被安排到展区的概率为故选【点睛】本题考查了组合应用题,古典概型等知识,意在考查学生的数学分析能力,属于基础题。

2019届全国高考仿真试卷(四)数学理科试卷

2019届全国高考仿真试卷(四)数学理科试卷

2019届全国高考仿真试卷(四)数学理科本试题卷共8页,23题(含选考题)分选择题和非选择题两部分。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】B【解析】分析:先解不等式得到集合A,B,再求并集.详解:∵,∴.故选B.点睛:对于集合运算的问题,若集合中的不等式需要求解,则先求出不等式的解集,然后再根据集合的运算顺序求解.2. 若复数,则复数在复平面内对应的点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】由题意可得,对应点为,所以在复平面对应的点在第三象限,选C.3. 《九章算术》中的“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则该竹子最上面一节的容积为()A. 升 B. 升 C. 升 D. 升【答案】C【解析】设竹子自上而下各节的容积分别为,且为等差数列,根据题意得,即,解得,即最上面一节的容积为升,故选C.4. 根据如下程序框图,运行相应程序,则输出的值为()A. 3B. 4C. 5D. 6【答案】B【解析】结合流程图可知该流程图运行过程如下:首先初始化数据:,,不满足,执行:;,不满足,执行:;,不满足,执行:;,满足,输出.本题选择B选项.5. 被圆所截弦长为4,则的最小值是()A. 3B.C. 2D.【答案】C【解析】圆心为,半径为,由于所截弦长为,故直线过圆心,将圆心坐标代入直线方程得,即,的几何意义是原点到直线的距离的最小值的平方,故最小值为.所以选.6. 如图是某四棱锥的三视图,则几何体的表面积等于()A. B.C. D.【答案】A【解析】分析:由三视图得到几何体的直观图,再结合题中的数据求表面积.详解:由三视图可得,该几何体为如图所示的长方体内的四棱锥,为DC的中点,为棱锥的高,其中长方体的长、宽、高分别为6,2,4.由题意得,故中边上的高为.故几何体的表面积为.故选A.点睛:三视图和几何体体积或面积结合的问题主要考查学生的空间想象能力和运算能力,解题时先要由三视图得到几何体的直观图.7. 已知,则()A. 2B.C. -2D. -【答案】D【解析】分析:先将条件化简,然后把所求式子再化简,可得结果.详解:由题意得,∴.故选D.点睛:解决三角变换中的给值求值问题时,一定要注意先化简再求值,同时要注意所给条件在解题中的整体作用.8. 如图,在棱长为1的正方体中,点,分别是棱,的中点,是侧面内一点,若,则线段长度的取值范围是()A. B. C. D.【答案】B【解析】分析:先判断出点的位置,确定使得取得最大值和最小值时点的位置,然后再通过计算可求得线段长度的取值范围.详解:如下图所示,分别取棱的中点M、N,连MN,,∵分别为所在棱的中点,则,∴MN∥EF,又MN⊄平面AEF,EF⊂平面AEF,∴MN∥平面AEF.∵,∴四边形为平行四边形,∴,又平面AEF,AE⊂平面AEF,∴∥平面AEF,又,∴平面∥平面AEF.∵P是侧面内一点,且∥平面AEF,∴点P必在线段MN上.在中,.同理,在中,可得,∴为等腰三角形.当点P为MN中点O时,,此时最短;点P位于M、N处时,最长.∵,.∴线段长度的取值范围是.故选B.点睛:本题难度较大,解题时要借助几何图形判断得出使得取得最值时的点P的位置,然后再根据勾股定理进行计算.9. 已知关于的方程在区间上有两个根,,且,则实数的取值范围是()A. B. C. D.【答案】D详解:由题意得,∴.画出函数内的图象,如图所示.由图象可得要使方程在区间上有两个根,,且,则,解得.故选D.点睛:本题考查三角函数图象的画法和应用,解题时要注意分离参数方法的利用和函数图象中的特殊点的利用.10. 函数,则使得成立的取值范围是()A. B. C. D.【答案】B【解析】分析:先判断出偶函数在上单调递减,然后根据对称性将函数不等式化为绝对值不等式求解.详解:由题意知函数的定义域为,当时,,∴在上单调递减,∵是偶函数,∴在上单调递增.∵,∴,两边平方后化简得且,解得或,故使不等式成立的取值范围是.故选B...............................②解绝对值不等式时,要根据绝对值不等式的特点进行求解,解题时要注意绝对值的几何意义的利用.11. 已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,椭圆的离心率为,双曲线的离心率为,若,则的最小值为()A. B. C. 8 D. 6【答案】C【解析】设,则,选C.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.12. 偶函数满足,当时,,不等式在上有且只有200个整数解,则实数的取值范围是()A. B. C. D.【答案】C【解析】分析:根据题意得到函数周期性,结合周期性将问题转化在一个周期内来研究,然后在结合函数图象的对称性将问题转化在内研究,最后结合函数在内整数解的个数及图象中的特殊点确定实数的取值范围.详解:由得函数图象的对称轴为,故;又,∴,∴函数的周期为.作出函数在一个周期上的图象(如图所示).∵函数为偶函数,且不等式在上有且只有200个整数解,∴不等式在上有且只有100个整数解.∵函数在内有25个周期,∴函数在一个周期内有4个整数解,即在内有4个整数解.①当时,由得或,由图象可得在一个周期内有7个整数解,不合题意.②当时,由得或,显然,在上无整数解,∴在上有4个整数解.∵的图象在上关于对称,∴在上有2个整数解.又,∴,解得,故实数的取值范围是.点睛:①已知函数零点个数或方程根的个数求参数的取值(或范围)时,一般根据数形结合的方法求解,将问题转化为两个函数图象公共点的个数的问题处理.②解题时注意函数性质的综合运用及性质间的相互转化的结论,即已知函数的奇偶性、对称性和周期性中的两个可得到第三个性质.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若非零向量,满足,则在方向上的投影为__________.【答案】-1【解析】分析:先求出、和与的夹角,然后根据投影的定义求解.详解:将两边平方整理得,∴.将两边平方整理得.又,故.设向量与的夹角为,则在方向上的投影为.点睛:解答本题的关键是正确掌握一个向量在另一个向量方向上的投影的定义,利用定义可将问题转化为数量积的运算.另外,数量积的几何意义是计算数量积的一种重要方法.14. 如果的展开式中各项系数之和为128,则展开式中的系数是__________.【答案】-189【解析】令,得展开式中各项系数之和为.由,得,所以展开式的通项为.由,得,展开式中的系数是.15. 某货运员拟运送甲、乙两种货物,每件货物的体积、重量、可获利润如下表所示:在一次运输中,货物总体积不超过110升,总重量不超过100公斤,那么在合理的安排下,一次运输获得的最大利润为__________元.【答案】62【解析】设运送甲种货物件,乙种货物件,利润为,则由题意得,即,且,作出不等式组多对应的平面区域如图所示,由,得,即,由得,平移直线,由图可知当直线,经过点时,直线的截距最大,此时最大,故,一次运输获得的最大利润为元,故答案为.16. 在中,角、、所对的边分别分,若,且,则的面积的最大值是__________.【答案】【解析】试题分析:由得,代入得,,即,由余弦定理得,,所以,则的面积,当且仅当取等号,此时,所以的面积的最大值为,故答案为:.考点:(1)正弦定理;(2)余弦定理.【方法点晴】本题考查余弦定理,平方关系,基本不等式的应用,以及三角形的面积公式,考查变形、化简能力,对计算能力要求较高,属于中档题;由得,代入化简,根据余弦定理求出,由平方关系求出,代入三角形面积公式求出表达式,由基本不等式即可求出三角形面积的最大值.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列的前项和满足.(1)求数列的通项公式;(2)求数列的前项和.【答案】(1).(2).【解析】分析:(1)根据仿写可得到,两式相减整理得,从而可得数列为等比数列,于是可求得通项公式.(2)由(1)可得,故可根据错位相减法求和.详解:(1)当时,,所以;当时,,则,即.又因为,所以数列是以1为首项,3为公比的等比数列,所以.(2)由(1)得,所以,①,②①②得.所以.点睛:(1)用错位相减法求和时弄清错位相减法的适用条件及解题格式是关键.解题时首先要抓住数列的特征,即数列的项是由一个等差数列和一个公比不为1的等比数列对应项相乘所得,另外所谓“错位”就是找“同类项”相减.(2)已知和的关系解题时,要注意关系式的运用,应用时一定要注意使用的条件是.18. 某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:(发芽数该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻的2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?(注:,)【答案】(1).(2).(3)见解析.【解析】试题分析:(1)求出抽到相邻两组数据的事件概率,利用对立事件的概率计算抽到不相邻两组数据的概率值;(2)由表中数据,利用公式计算回归直线方程的系数,写出回归直线方程,利用方程计算并判断所得的线性回归方程是否可靠.试题解析:(1)设抽到不相邻两组数据为事件,因为从第5组数据中选取2组数据共有10种情况,每种情况是等可能出现的,其中抽到相邻两组数据的情况有4种,所以故选取的2组数据恰好是不相邻的2天数据的概率是,(2)由数据,求得,由公式得,,所以关于的线性回归方程这(3)当时,同样地,当时,所以,该研究所得到的线性回归方程是可靠19. 在四棱锥中,平面,,,且,,.(1)求证:;(2)在线段上,是否存在一点,使得二面角的大小为,如果存在,求与平面所成角的正弦值,如果不存在,请说明理由.【答案】(1)见解析.(2).【解析】分析:(1)由条件可得在直角梯形ABCD中可得,然后根据线面垂直的性质可得,最后由线面垂直的判定定理得到,于是可得.(2)解决立体几何中的探索性问题,可利用向量的坐标运算求解.根据题意建立空间直角坐标系,假设存在满足题意的点M,由可求得点M的坐标.在此基础上可得平面的法向量和平面的法向量,然后根据求得后再求线面角的正弦值.详解:(1)由已知得四边形是直角梯形,又,,所以是等腰直角三角形,故.因为,所以,又,所以,因为,所以.(2)建立如图所示空间直角坐标系,则,,,,,故,设,可得的坐标为.设是平面的一个法向量,由,得,令,可得,又是平面的一个法向量,由题意得,解得.所以平面的一个法向量可取,,设与平面所成的角为,则,故当点M是线段的中点时,可使得二面角的大小为,此时与平面所成角的正弦值为.点睛:解决立体几何中的探索性问题的基本策略通常假定题中的数学对象存在(或结论成立),然后在这个前提下进行逻辑推理,若能导出与条件吻合的数据或事实,说明假设成立,即存在,并可进一步证明;若导出与条件或实际情况相矛盾的结果,则说明假设不成立,即不存在.20. 已知,是抛物线上不同两点.(1)设直线与轴交于点,若两点所在的直线方程为,且直线恰好平分,求抛物线的标准方程.(2)若直线与轴交于点,与轴的正半轴交于点,且,是否存在直线,使得?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1).(2).【解析】(1)设,由,消去整理得,则,∵直线平分,∴,∴,即:,∴,满足,∴抛物线标准方程为.(2)由题意知,直线的斜率存在,且不为零,设直线的方程为:,由,得,∴,∴,∵,∴,∵,∴.∴直线的方程为:.假设存在直线,使得,即,作轴,轴,垂足为,∴,∵,,∴,由,得,故存在直线,使得,直线方程为.21. 已知,其中为自然对数的底数.(Ⅰ),(其中为的导函数),判断在上的单调性;(Ⅱ)若无零点,试确定正数的取值范围.【答案】(Ⅰ)见解析.(Ⅱ).【解析】试题分析:(1)在定义域内恒正,则在上单调递增.(2)结合(1)的结论分类讨论:①当时,不符合题意;②当时,不符合题意;③当时,没有零点.综上所述,正数的取值范围是.试题解析:(Ⅰ)因为,则,,所以,所以在上单调递增. (Ⅱ)由知,由(Ⅰ)知在上单调递增,且,可知当时,,则有唯一零点,设此零点为.易知时,,单调递增;时,,单调递减,故,其中.令,则,易知在上恒成立,所以,在上单调递增,且.①当时,,由在上单调递增知,则,由在上单调递增,,所以,故在上有零点,不符合题意;②当时,,由的单调性知,则,此时有一个零点,不符合题意;③当时,,由的单调性知,则,此时没有零点.综上所述,当无零点时,正数的取值范围是.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 在平面直角坐标系中,曲线的参数方程为(为参数,且),已知曲线的极坐标方程为.(1)将曲线的参数方程化为普通方程,并将曲线的极坐标方程化为直角坐标方程;(2)求曲线与曲线交点的极坐标,.【答案】(1)(或). .(2).【解析】试题分析:(1)先求出t,再代入消元将曲线的参数方程化为普通方程,根据将曲线的极坐标方程化为直角坐标方程;(2)先求曲线与曲线交点的直角坐标,再化为极坐标.试题解析:解:(1)∵,∴,即,又,∴,∴或,∴曲线的普通方程为(或).∵,∴,∴,即曲线的直角坐标方程为.(2)由得,∴(舍去),,则交点的直角坐标为,极坐标为.23. 已知函数.(1)若,使不等式成立,求满足条件的实数的集合;(2)为中最大正整数,,,,,求证:.【答案】(1);(2)见解析.【解析】【试题分析】(1)化简,利用零点分段法去绝对值,将上述式子转化为分段函数,求得它的取值范围,由此求得的取值范围.(2)由(1)得,,,,, 则.【试题解析】(1)由已知得则,由于,使不等式成立,所以,即(2)由(1)知,则因为,,,所以,,,则,(当且仅当时等号成立),,(当且仅当时等号成立),(当且仅当时等号成立),则(当且仅当时等号成立),即.。

2019届全国高考仿真试卷(四)数学(理科)

2019届全国高考仿真试卷(四)数学(理科)

2019届全国高考仿真试卷(四)数学(理科)本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 设集合,,则()A. B. C. D.【答案】A【解析】【分析】化简集合A、B,再求A∩B即可.【详解】∵集合={x|x<0或x>3}=(﹣∞,0)∪(3,+∞),={x|﹣2<x<2}=(﹣2,2),∴A∩B=(﹣2,0).故选:A.【点睛】求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2. 已知复数,(为虚数单位,),若,则()A. B. C. D.【答案】C【解析】【分析】利用复数代数形式的乘法运算化简,再由虚部等于0求得a值.【详解】∵z1=2﹣i,z2=a+2i,∴z1z2=(2﹣i)(a+2i)=2a+2+(4﹣a)i,又z1z2∈R,∴4﹣a=0,即a=4.故选:C.【点睛】本题考查复数代数形式的乘除运算,考查了复数的基本概念,属于基础题.3. 若向量,满足:,,,则()A. B. C. D.【答案】B【解析】【分析】利用向量垂直的性质直接求解.【详解】∵向量,满足:,,,∴,解得=.故选:B.【点睛】本题考查向量的模的求法,考查向量垂直的性质等基础知识,考查运算求解能力,考查函数与方程思想,属于基础题.4. 在中,,,为的中点,的面积为,则等于()A. B. C. D.【答案】B【解析】【分析】在△BCD中,由面积公式可得BC,再由余弦定理可得结果.【详解】由题意可知在△BCD中,B=,AD=1,∴△BCD的面积S=×BC×BD×sinB=×BC×=,解得BC=3,在△ABC中由余弦定理可得:AC2=AB2+BC2﹣2AB•BCcosB=22+32﹣2•2•3•=7,∴AC=,故选:B.【点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是:第一步:定条件,即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具,即根据条件和所求合理选择转化的工具,实施边角之间的互化.第三步:求结果.5. 已知,且,则的概率为()A. B. C. D.【答案】B【解析】【分析】先列举出所有的基本事件,再找到满足条件的基本事件,根据古典概型概率公式计算即可.【详解】由题基本事件空间中的元素有:(1,6),(2,5),(3,4),(4,3),(5,2)(6,1),满足题意的有(1,6),(2,5),(3,4),(4,3),故则的概率为=故选:B.【点睛】古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.6. 如图,网格纸上正方形小格的边长为(单位:),图中粗线画出的是某种零件的三视图,则该零件的体积(单位:)为()A. B. C. D.【答案】B【解析】【分析】由三视图知该该零件是一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,由三视图求出几何元素的长度,由柱体的体积公式求出几何体的体积.【详解】根据三视图可知该零件是:一个长方体在上面中心、两侧对称着分别挖去了三个相同的半圆柱,且长方体的长、宽、高分别为:8、6、5,圆柱底面圆的半径为1,母线长是8,∴该零件的体积V=8×6×5﹣=240﹣12π(cm3),故选:B.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.7. 阅读如图所示的程序框图,运行相应的程序,若输出的为,则判断框中填写的内容可以是()A. B. C. D.【答案】C【解析】试题分析:,判断是,,判断是,,判断是,,判断否,输出,故填.考点:算法与程序框图.视频8. 函数在点处的切线斜率为()A. B. C. D.【答案】C【解析】分析:先求函数的导数,因为函数图象在点处的切线的斜率为函数在处的导数,就可求出切线的斜率.详解:∴函数图象在点处的切线的斜率为1.故选:C.点睛:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属基础题.9. 若,满足,且的最小值为,则的值为()A. B. C. D.【答案】D【解析】【分析】作出不等式组对应的平面区域,根据目标是的最小值建立不等式关系进行求解即可.【详解】由z=y﹣x得y=x+z,要使z=y﹣x的最小值为﹣12,即y=x﹣12,则不等式对应的区域在y=x﹣12的上方,先作出对应的图象,由得,即C(12,0),同时C(12,0)也在直线kx﹣y+3=0上,则12k+3=0,得k=﹣,故选:D.【点睛】本题考查的是线性规划问题,解决线性规划问题的实质是把代数问题几何化,即数形结合思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意让其斜率与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大值或最小值会在可行域的端点或边界上取得.10. 设抛物线的焦点为,过且斜率为的直线交抛物线于,两点.若线段的垂直平分线与轴交于点,则()A. B. C. D.【答案】D【解析】【分析】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x﹣11),则直线AB的方程为y=(x﹣),代入抛物线方程,由韦达定理可知:x1+x2=,根据中点坐标公式求得中点P坐标,代入AB的垂直平分线方程,即可求得p的值.【详解】由题意可知:抛物线y2=2px(p>0)的焦点为F(,0),直线AB的斜率为,则垂直平分线的斜率为﹣,且与x轴交于点M(11,0),则y=﹣(x ﹣11),设直线AB的方程为:y=(x﹣),A(x1,y1),B(x2,y2),AB的中点为P(x0,y0),,整理得:3x2﹣5px+=0,由韦达定理可知:x1+x2=,由中点坐标公式可知:x0=,则y0=,由P在垂直平分线上,则y0=﹣(x0﹣11),即p=﹣(﹣11),解得:p=6,故选:C.【点睛】本题考查抛物线的标准方程,直线与抛物线的位置关系,考查韦达定理,弦长公式及垂直平分线的性质,考查计算能力,属于中档题.11. 四面体的一条棱长为,其余棱长为,当该四面体体积最大时,经过这个四面体所有顶点的球的表面积为()A. B. C. D.【答案】D【解析】【分析】根据几何体的特征,判定外接球的球心,求出球的半径,即可求出球的表面积.【详解】底面积不变,高最大时体积最大,所以,面ACD与面ABD垂直时体积最大,由于四面体的一条棱长为c,其余棱长均为3,所以球心在两个正三角形的重心的垂线的交点,半径R==;经过这个四面体所有顶点的球的表面积为:S==15π;故选:D.【点睛】空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P,A,B,C构成的三条线段PA,PB,PC两两互相垂直,且PA=a,PB=b,PC=c,一般把有关元素“补形”成为一个球内接长方体,利用4R2=a2+b2+c2求解.12. 设是函数的导函数,且,(为自然对数的底数),则不等式的解集为()A. B. C. D.【答案】B【解析】【分析】构造函数F(x)=,求出导数,判断F(x)在R上递增.原不等式等价为F(lnx)<F(),运用单调性,可得lnx<,运用对数不等式的解法,即可得到所求解集.【详解】可构造函数F(x)=,F′(x)==,由f′(x)>2f(x),可得F′(x)>0,即有F(x)在R上递增.不等式f(lnx)<x2即为<1,(x>0),即<1,x>0.即有F()==1,即为F(lnx)<F(),由F(x)在R上递增,可得lnx<,解得0<x<.故不等式的解集为(0,),故选:B.【点睛】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造. 构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13. 函数的单调递增区间是__________.【答案】【解析】化简可得y=sinxcos+cosxsin=sin(x+),由2kπ﹣≤x+≤2kπ+可得2kπ﹣≤x≤2kπ+,k∈Z,当k=0时,可得函数的一个单调递增区间为[﹣,],又由x∈[0, ]可取交集得x∈[0,],故答案为:[0,].14. 展开式中的常数项是,则__________.【答案】4【解析】试题分析:由题意得,,所以展开式的常数项为,令,解得.考点:二项式定理的应用.【方法点晴】本题主要考查了二项式定理的应用,其中解答中涉及到多项式的化简与二项式定理的通项等知识,解答中把化为是解答问题的关键,再根据二项展开式,得到展开式的常数项,即可求解的值,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于中档试题.15. 在一幢高的房屋顶测得对面一塔顶的仰角为,塔基的俯角为,假定房屋与塔建在同一水平地面上,则塔的高度为__________.【答案】40【解析】【分析】作出图示,利用30°角的性质和勾股定理依次求出BC,CE,AC,AE,则AB=AE+BE.【详解】如图所示,过房屋顶C作塔AB的垂线CE,垂足为E,则CD=10,∠ACE=60°,∠BCE=30°,∴BE=CD=10,BC=2CD=20,EC=BD=.∵∠ACE=60°,∠AEC=90°,∴AC=2CE=20,∴AE==30.∴AB=AE+BE=30+10=40.故答案为:40.【点睛】解决测量角度问题的注意事项(1)明确仰角、俯角的含义;(2)分析题意,分清已知与所求,再根据题意正确画出示意图,这是最关键、最重要的一步;(3)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的“联袂”使用.16. 设函数在上为增函数,,且为偶函数,则不等式的解集为__________.【答案】【解析】【分析】根据函数的平移关系得到函数g(x)的单调递增区间,根据函数的单调性解不等式即可得到结论.【详解】∵f(x)在[1,+∞)上为增函数,∴f(x)向左平移1个单位得到f(x+1),则f(x+1)在[0,+∞)上为增函数,即g(x)在[0,+∞)上为增函数,且g(2)=f(2+1)=0,∵g(x)=f(x+1)为偶函数∴不等式g(2﹣2x)<0等价为g(2﹣2x)<g(2),即g(|2﹣2x|)<g(2),则|2﹣2x|<2,则﹣2<2x﹣2<2,即0<2x<4,则0<x<2,即不等式的解集为(0,2),故答案为:(0,2).【点睛】对于比较大小、求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列满足,.(1)求证:数列为等比数列,并求数列的通项公式;(2)令,求数列的前项和.【答案】(1);(2)【解析】【分析】(1)由知:,利用等比数列的通项公式即可得出;(2)b n=|11﹣2n|,设数列{11﹣2n}的前n项和为T n,则.当n≤5时,S n=T n;当n≥6时,S n=2S5﹣Tn.【详解】(1)证明:由知,所以数列是以为首项,为公比的等比数列.则,.(2),设数列前项和为,则,当时,;当时,;所以.【点睛】本题考查了等比数列与等差数列的通项公式及其前n项和公式、分类讨论方法,考查了推理能力与计算能力,属于中档题.18. 如图,在四棱柱中,,,,,,,侧棱底面,是的中点.(1)求证:平面;(2)设点在线段上,且,求直线与平面所成角的正弦值.【答案】(1)见解析;(2)【解析】【分析】(1)以A为坐标原点,AB,AD,AA1所在的直线分别为x,y,z轴建立空间直角坐标系,利用向量法能证明BD⊥平面A1ACC1.(2)设Q(x,y,z),直线QC与平面A1ACC1所成角为θ,求出平面A1ACC1的一个法向量,利用向量法能求出直线CQ与平面A1ACC1所成角的正弦值.【详解】(1)证明:∵平面,,∴以为坐标原点,,,所在的直线分别为,,轴建立空间直角坐标系,则,,,,所以,,,所以,.所以,,因为,平面,平面,所以平面.(2)设,直线与平面所成角为,由(1)知平面的一个法向量为.∵,∴,,平面法向量,.【点睛】利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”,构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”,求出平面的法向量;第四,破“应用公式关”.19. 为普及学生安全逃生知识与安全防护能力,某学校高一年级举办了安全知识与安全逃生能力竞赛,该竞赛分为预赛和决赛两个阶段,预赛为笔试,决赛为技能比赛,现将所有参赛选手参加笔试的成绩(得分均为整数,满分为分)进行统计,制成如下频率分布表.(1)求表中,,,,的值;(2)按规定,预赛成绩不低于分的选手参加决赛.已知高一(2)班有甲、乙两名同学取得决赛资格,记高一(2)班在决赛中进入前三名的人数为,求的分布列和数学期望.【答案】(1)见解析;(2)1【解析】【分析】(1)由题意知,参赛选手共有50人,由此能求出表中的x,y,x,s,p的值.(2)由题意随机变量X的可能取值为0,1,2,分别求出相应的概率,由此能求出随机变量X的分布列和随机变量X的数学期望.【详解】(1)由题意知,参赛选手共有(人),所以,,,. (2)由(1)知,参加决赛的选手共人,随机变量的可能取值为,,,,,,随机变量的分布列为:因为,所以随机变量的数学期望为.【点睛】本题主要考查离散型随机变量的分布列与数学期望,属于中档题. 求解该类问题,首先要正确理解题意,其次要准确无误的找出随机变量的所以可能值,计算出相应的概率,写出随机变量的分布列,正确运用均值、方差的公式进行计算,也就是要过三关:(1)阅读理解关;(2)概率计算关;(3)公式应用关.20. 已知动圆经过定点,且与直线相切,设动圆圆心的轨迹为曲线.(1)求曲线的方程;(2)设过点的直线,分别与曲线交于,两点,直线,的斜率存在,且倾斜角互补,证明:直线的斜率为定值.【答案】(1);(2)【解析】【分析】(1)由抛物线的定义可知E的轨迹为以D为焦点,以x=﹣1为准线的抛物线,(2)设l1,l2的方程,联立方程组消元解出A,B的坐标,代入斜率公式计算k AB.【详解】(1)由已知,动点到定点的距离等于到直线的距离,由抛物线的定义知点的轨迹是以为焦点,以为准线的抛物线,故曲线的方程为.(2)由题意可知直线,的斜率存在,倾斜角互补,则斜率互为相反数,且不等于零. 设,,直线的方程为,.直线的方程为,由得,已知此方程一个根为,∴,即,同理,∴,,∴,∴,所以,直线的斜率为定值.【点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.21. 设,函数,函数.(1)当时,求函数的零点个数;(2)若函数与函数的图象分别位于直线的两侧,求的取值集合;(3)对于,,求的最小值.【答案】(1)见解析;(2);(3)【解析】【分析】(1)当n=1时,f(x)=,f′(x)=(x>0),确定函数的单调性,即可求函数y=f (x)的零点个数;(2)若函数y=f(x)与函数y=g(x)的图象分别位于直线y=1的两侧,∀n∈N*,函数f(x)有最大值f()=<1,即f(x)在直线l:y=1的上方,可得g(n)=>1求n的取值集合A;(3)∀x1,x2∈(0,+∞),|f(x1)﹣g(x2)|的最小值等价于,发布网球场相应的函数值,比较大小,即可求|f(x1)﹣g(x2)|的最小值.【详解】(1)当时,,.由得;由得.所以函数在上单调递增,在上单调递减,因为,,所以函数在上存在一个零点;当时,恒成立,所以函数在上不存在零点.综上得函数在上存在唯一一个零点.(2)由函数求导,得,由,得;由,得,所以函数在上单调递增,在上单调递减,则当时,函数有最大值;由函数求导,得,由得;由得.所以函数在上单调递减,在上单调递增,则当时,函数有最小值;因为,函数的最大值,即函数在直线的下方,故函数在直线:的上方,所以,解得.所以的取值集合为.(3)对,的最小值等价于,当时,;当时,;因为,所以的最小值为.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.22. 已知直线的参数方程为(为参数),曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,且曲线的极坐标方程为.(1)若直线的斜率为,判断直线与曲线的位置关系;(2)求与交点的极坐标(,).【答案】(1)见解析;(2)【解析】【分析】(1)利用加减消元法和平方消元法消去参数t,可把直线l与曲线C1的参数方程化为普通方程,结合直线与圆的位置关系,可得结论;(2)将曲线C2的极坐标方程化为直角坐标方程,求出交点的坐标,进而可化为极坐标.【详解】(1)斜率为时,直线的普通方程为,即. ①将消去参数,化为普通方程得,②则曲线是以为圆心,为半径的圆,圆心到直线的距离,故直线与曲线(圆)相交.(2)的直角坐标方程为,由,解得,所以与的交点的极坐标为.【点睛】本题考查的知识点是参数方程与极坐标,直线与圆的位置关系,圆的交点,难度中档.23. 已知函数在上的最小值为,函数.(1)求实数的值;(2)求函数的最小值.【答案】(1)5;(2)4【解析】【分析】(1)由f(x)=+ax=a[(x﹣1)++1],运用基本不等式可得最小值,解方程可得a的值;(2)运用|x+5|+|x+1|≥|(x+5)﹣(x+1)|=4,即可得到所求的最小值.【详解】(1)∵,,,∴,即有,解得.(2)由于,当且仅当时等号成立,∴的最小值为.【点睛】本题考查函数的最值的求法,注意运用基本不等式和绝对值不等式的性质,考查运算能力,属于中档题.。

2019届全国高考仿真试卷(四)数学理科卷

2019届全国高考仿真试卷(四)数学理科卷

2019届全国高考仿真试卷(四)数学理科本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则()A. B. C. D.【答案】D【解析】,又,,故选D.2. 若复数满足,则复数的共轭复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】因为复数满足,则,共轭复数所对应的点为,为第一象限点,故选A.3. 已知平面向量,的夹角为,且,,则()A. B. C. D.【答案】A【解析】由已知条件得:,故选A.4. 已知双曲线过点,渐近线方程为,则双曲线的标准方程是()A. B. C. D.【答案】C【解析】∵双曲线渐进线方程为,故可设双曲线方程为,∵双曲线过点,则,即,故双曲线的标准方程是,..................故选C.5. 我国古代名著《九章算术》中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤.”意思是:“现有一根金锤,头部的尺,重斤;尾部的尺,重斤;且从头到尾,每一尺的重量构成等差数列.”则下列说法错误的是()A. 该金锤中间一尺重斤B. 中间三尺的重量和是头尾两尺重量和的倍C. 该金锤的重量为斤D. 该金锤相邻两尺的重量之差的绝对值为斤【答案】B【解析】由题意可得金锤每一尺的重量构成等差数列中,,则,,正确,错误,正确,正确,故选B.6. 已知,则()A. B. C. D.【答案】D【解析】,故选D.7. 已知函数若关于的方程有且只有个不同的根,则实数的值为()A. B. C. D.【答案】C【解析】作出函数的图象,令,关于的方程等价于同号,只有同正时,方程才有根,假设,则,此时关于方程有个不同的根,只有,关于方程有且只有个不同的根,此时,故选C.8. 某几何体的三视图如图所示,则它的表面积是()A. B. C. D.【答案】B【解析】此三视图的几何体如图,,,,,,故选B.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.9. 已知实数,满足则的最大值为()A. B. C. D.【答案】A【解析】由题意作出其平面区域如图所示,由题意可得,,则,则,故的最大值为,当且仅当时,等号成立,故选A.10. 如图,正方体绕其体对角线旋转之后与其自身重合,则的值可以是()A. B. C. D.【答案】A【解析】在正方体中,连接,则对角线垂直于平面,且过的垂心,而为等边三角形,可知正方体绕对角线旋转与原正方体重合,故选A.11. 过抛物线的焦点的直线与抛物线交于,两点,与抛物线准线交于点,若是的中点,则()A. B. C. D.【答案】B【解析】如图,设在准线上的射影分别为,且设,直线的倾斜角为,则,,由抛物线焦点弦长公式可得,故选B.【方法点睛】本题主要考查抛物线的定义和几何性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题得到解决.12. 设,,且,若表中的对数值恰有两个是错误的,则的值为()A. B. C. D.【答案】B【解析】解析:由题设可知都是正确的,所以,即,应选答案B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019届全国高考仿真试卷(四)(文)数本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

★祝考试顺利★注意事项:1、考试范围:高考范围。

2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。

第Ⅰ卷(选择题,共60分)一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1.已知集合,,则()A. B. C. D.【答案】B【解析】【分析】首先求得集合A,B,然后进行集合的混合运算即可.【详解】求解函数的定义域可得:,则,求解不等式可得,结合交集的定义可知:.本题选择B选项.【点睛】本题主要考查集合的表示方法,集合的交并补运算等知识,意在考查学生的转化能力和计算求解能力.2.2.复数满足(为虚数单位),则复数在复平面内位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】【分析】利用复数的运算法则求得复数z,然后确定其所在的象限即可.【详解】由题意可得:,则复数z对应点的坐标为,据此可知复数在复平面内位于第二象限.本题选择B选项.【点睛】本题主要考查复数的运算法则,复平面内各个象限内复数的特征等知识,意在考查学生的转化能力和计算求解能力.3.3.执行如图的程序框图,则输出的()A. 21B. 34C. 55D. 89【答案】C【解析】【分析】由题意结合流程图的运行过程,确定程序的功能即可求得输出的结果.【详解】模拟程序流程图运行过程如下:首先初始化数据:,满足,执行;满足,执行;满足,执行;满足,执行;满足,执行;满足,执行;满足,执行;满足,执行;此时不满足,输出.事实上,该流程图的功能为计算斐波那契数列中的数的算法.本题选择C选项.【点睛】识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.4.4.函数的部分图象如图所示,则的值为()A. B. C. D. -1【答案】D【解析】【分析】首先求得函数的解析式,然后求解的值即可.【详解】由函数的最小值可知:,函数的周期:,则,当时,,据此可得:,令可得:,则函数的解析式为:,.本题选择D选项.【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.5.5.某中学有3个社团,每位同学参加各个社团的可能性相同,甲、乙两位同学均参加其中一个社团,则这两位同学参加不同社团的概率为()A. B. C. D.【答案】C【解析】【分析】首先求得两位同学参加相同社团的概率,然后利用对立事件公式求解两位同学参加不同社团的概率即可.【详解】由题意可知两位同学参加相同社团的概率为,则两位同学参加不同社团的概率为.本题选择C选项.【点睛】本题主要考查对立事件概率公式及其应用,意在考查学生的转化能力和计算求解能力.6.6.下列表格所示的五个散点,原本数据完整,且利用最小二乘法求得这五个散点的线性回归直线方程为,后因某未知原因使第5组数据的值模糊不清,此位置数据记为(如下表所示),则利用回归方程可求得实数的值为()A. 8.3B. 8.2C. 8.1D. 8【答案】D【解析】【分析】首先求得样本中心点,然后利用回归方程的性质整理计算即可求得最终结果.【详解】由题意可得:,,回归方程过样本中心点,则:,解得:.本题选择D选项.【点睛】(1)正确理解计算的公式和准确的计算是求线性回归方程的关键.(2)回归直线方程必过样本点中心.(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测.7.7.已知实数,满足,如果目标函数的最小值为-1,则实数()A. 6B. 5C. 4D. 3【答案】B【解析】【分析】首先绘制出可行域,然后结合目标函数的几何意义得到关于m的方程,解方程即可求得实数m 的值.【详解】绘制不等式组表示的平面区域如图所示,由可得,目标函数取得最小值,即值在轴上的截距取得最大值,易知目标函数在点A处满足题意,则:,解得:.本题选择B选项.【点睛】简单的线性规划有很强的实用性,线性规划问题常有以下几种类型:(1)平面区域的确定问题;(2)区域面积问题;(3)最值问题;(4)逆向求参数问题.而逆向求参数问题,是线性规划中的难点,其主要是依据目标函数的最值或可行域的情况决定参数取值.约束条件中含参数由于约束条件中存在参数,所以可行域无法确定,此时一般是依据所提供的可行域的面积或目标函数的最值,来确定含有参数的某不等式所表示的坐标系中的某区域,从而确定参数的值.8.8.在四棱锥中,底面,底面为正方形,,该四棱锥被一平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为()A. B. C. D.【答案】B【解析】【分析】首先由题意结合三视图确定几何体的空间结构特征,然后求解其体积比即可.【详解】由三视图知,剩余部分的几何体是四棱锥被平面QBD截去三棱锥Q-BCD(Q 为PC中点)后的部分,连接AC交BD于O,连楼OQ,则,且,设,则,,剩余部分的体积为:,则所求的体积比值为:.本题选择B选项.【点睛】(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.9.9.设函数,,若实数,满足,则()A. B. C. D.【答案】B【解析】【分析】首先确定函数和的单调性,然后结合函数的性质整理计算即可求得最终结果.【详解】易知f(x)是增函数,g(x)在上也是增函数,由于,,所以0<a<1;又,,所以1<b<2,所以,,据此可知g(a)<0<f(b).本题选择B选项.【点睛】本题主要考查函数的单调性,函数零点存在定理及其应用等知识,意在考查学生的转化能力和计算求解能力.10.10.已知球的半径为,,,三点在球的球面上,球心到平面的距离为,,,则球的表面积为()A. B. C. D.【答案】D【解析】【分析】由题意首先求得球的半径,然后求解其表面积即可.【详解】由余弦定理得:,设三角ABC外接圆半径为r,由正弦定理可得:,则,又,解得:,则球的表面积.本题选择D选项.【点睛】本题主要考查余弦定理的应用,球与多面体的切接问题等知识,意在考查学生的转化能力和计算求解能力.11.11.已知双曲线:的一个焦点与抛物线:的焦点相同,它们交于,两点,且直线过点,则双曲线的离心率为()A. B. C. D. 2【答案】C【解析】【分析】由题意结合双曲线的定义得到关于a,c的关系式,然后确定双曲线的离心率即可.【详解】设双曲线的左焦点坐标为,由题意可得:,,则:,即,又:,,据此有:,即,则双曲线的离心率:.本题选择C选项.【点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围).12.12.已知函数,若关于的方程有8个不等的实数根,则的取值范围是()A. B. C. D.【答案】D【解析】【分析】由题意结合函数的图形将原问题转化为二次方程根的分布的问题,据此得到关于a的不等式组,求解不等式组即可.【详解】绘制函数的图象如图所示,令,由题意可知,方程在区间上有两个不同的实数根,令,由题意可知:,据此可得:.即的取值范围是.本题选择D选项.【点睛】本题主要考查复合函数的应用,二次函数的性质,二次方程根的分布等知识,意在考查学生的转化能力和计算求解能力.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题纸上)13.13.已知向量,的夹角为,,,则__________.【答案】【解析】∵向量,的夹角为,,,∴∴故答案为:14.14.设曲线在点处的切线方程为,则.【答案】【解析】试题分析:函数的定义域为,,由题意知考点:导数的几何意义15.15.已知椭圆的左、右焦点为、,点关于直线的对称点仍在椭圆上,则的周长为__________.【答案】【解析】【分析】由题意首先求得点P的坐标,然后结合椭圆的定义求解焦点三角形的周长即可.【详解】设,F1关于直线的对称点P坐标为(0,c),点P在椭圆上,则:,则c=b=1,,则,故的周长为:.【点睛】椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF1|+|PF2|=2a,得到a,c的关系.16.16.如图,在中,,,分别是,上一点,满足,.若,则的面积为__________.【答案】【解析】【分析】过点E作EF⊥AC于F,然后结合相似三角形的性质和余弦定理求得EF的长度,最后结合面积公式求解的面积即可.【详解】如图所示,过点E作EF⊥AC于F.由∠A=90°,知EF//AB,由BE=4CE,得EF=AB.设EF=x,则AB=5x.又∠ADB=∠CDE=30°,得BD=10x,AD=,∠BDE=120°.由勾股定理,得.又由余弦定理,得,又,所以,则.解得:或(不合题意,舍去).故.【点睛】本题主要考查余弦定理的应用,三角形的面积公式,相似三角形的应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.17.正项等差数列中,已知,,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)求数列的前项和.【答案】(1),.(2).【解析】【分析】(1)由题意结合数列的性质可得数列的公差,则,结合的通项公式可得.(2)结合(1)中取得的结果错位相减可得数列的前项和.【详解】(1)设等差数列的公差为,则由已知得:,即,又,解得或(舍去),,所以,又,,所以,所以.(2)因为,,两式相减得,则.【点睛】一般地,如果数列{a n}是等差数列,{b n}是等比数列,求数列{a n·b n}的前n项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n}的公比,然后作差求解.18.18.为了整顿道路交通秩序,某地考虑对行人闯红灯进行处罚.为了更好地了解市民的态度,在普通人中随机抽取200人进行调查,当不处罚时,有80人会闯红灯,处罚时,得到如下数据:处罚金额会闯红灯的人数若用表中数据所得频率代替概率.(1)当处罚金定为10元时,行人闯红灯的概率会比不进行处罚降低多少?(2)将选取的200人中会闯红灯的市民分为两类:类市民在罚金不超过10元时就会改正行为;类是其它市民.现对类与类市民按分层抽样的方法抽取4人依次进行深度问卷,则前两位均为类市民的概率是多少?【答案】(1);(2).【解析】【分析】(1)用频率近似概率计算可得行人闯红灯的概率会降低.(2)由题意可知类市民和类市民各抽出两人,列出所有可能的事件,结合古典概型计算公式可得抽取4人中前两位均为类市民的概率是.【详解】(1)设“当罚金定为10元时,闯红灯的市民改正行为”为事件,则.∴当罚金定为10元时,比不制定处罚,行人闯红灯的概率会降低.(2)由题可知类市民和类市民各有40人,故分别从类市民和类市民各抽出两人,设从类市民抽出的两人分别为、,设从类市民抽出的两人分别为、.设从“类与类市民按分层抽样的方法抽取4人依次进行深度问卷”为事件,则事件中首先抽出的事件有,,,,,,共6种.同理首先抽出、、的事件也各有6种.故事件共有种.设从“抽取4人中前两位均为类市民”为事件,则事件有,,,.∴.∴抽取4人中前两位均为类市民的概率是.【点睛】本题主要考查频率与概率的应用,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力.19.19.如图,在四棱锥中,平面平面,,是等边三角形,已知,.(1)设是上的一点,证明:平面平面;(2)求四棱锥的体积.【答案】(1)证明见解析;(2).【解析】【分析】(1)由题意结合几何关系可证得平面,结合面面垂直的判断定理可得平面平面.(2)过作交于,易知为四棱锥的高,计算可得,四边形的面积为,则棱锥的体积.【详解】(1)在中,由于,,,∴.故.又平面平面,平面平面,平面,∴平面.又平面,故平面平面.(2)如图,过作交于,由于平面平面,∴平面.∴为四棱锥的高.又是边长为2的等边三角形,∴.在底面四边形中,,,所以四边形是梯形.在中,斜边边上的高为,∴四边形的面积为.故.【点睛】本题主要考查面面垂直的判断定理,棱锥的体积公式等知识,意在考查学生的转化能力和计算求解能力.20.20.设直线与抛物线交于,两点,与椭圆交于,两点,直线,,,(为坐标原点)的斜率分别为,,,,若.(1)是否存在实数,满足,并说明理由;(2)求面积的最大值.【答案】(1)答案见解析;(2).【解析】【分析】设直线方程为,,,,,联立直线方程与抛物线方程可得,,由直线垂直的充分必要条件可得.联立直线方程与椭圆方程可得,.(1)由斜率公式计算可得.(2)由弦长公式可得.且点到直线的距离,故,换元后结合均值不等式的结论可知面积的最大值为.【详解】设直线方程为,,,,,联立和,得,则,,.由,所以,得.联立和,得,所以,.由,得.(1)因为,,所以.(2)根据弦长公式,得:.根据点到直线的距离公式,得,所以,设,则,所以当,即时,有最大值.【点睛】(1)解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(或y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.(2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.21.21.已知函数.(1)当时,求曲线在点处的切线方程;(2)若(是自然对数的底数)时,不等式恒成立,求实数的取值范围.【答案】(1)(2)【解析】试题分析:(1)直接运用导数的几何意义求解;(2)借助题设条件运用等价转化的数学思想先进行转化,再构造运用导数的知识求其值域求解.试题解析:(1)当时,,,,又,∴所求切线方程为.(2)由题意知,,恒成立,即恒成立,∵,∴,则恒成立.令,则,,∵,∴,即在上是减函数.∴当时,.∴的取值范围是.考点:导数的有关知识和综合运用.【易错点晴】导数是研究函数的单调性和极值最值问题的重要而有效的工具.本题就是以含参数的函数解析式为背景,考查的是导数知识的综合运用和分析问题解决问题的能力.解答本题的第一问时,这时,求解时先对已知函数进行求导,再将切点横坐标代入求得切线的斜率为,就可以求出切线的方程为;第二问中的求的取值范围问题则可直接从不等式中分离出参数,再运用导数求其最小值从而使得问题获解.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.作答时请写清题号.22.22.在直角坐标系的原点为极点,轴的正半轴为极轴,且两个坐标系取相等的长度单位.已知直线的参数方程为(为参数,),曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设直线与曲线相交于,两点,当变化时,求的最小值.【答案】(1);(2)4.【解析】【分析】(1)将极坐标方程化为直角坐标方程可得曲线的直角坐标方程为.(2)联立直线的参数方程与C的直角坐标方程可得,则,结合三角函数的性质可知.【详解】(1)由,得,∴曲线的直角坐标方程为.(2)将直线的参数方程代入得到.设,两点对应的参数分别为,,则,.∴,当时取到等号.∴.【点睛】本题主要考查参数方程与普通方程的转化,直线参数方程的几何意义及其应用等知识,意在考查学生的转化能力和计算求解能力.23.23.已知函数.(1)求不等式的解集;(2)若存在实数满足,求实数的取值范围.【答案】(1);(2).【解析】【分析】(1)由题意可得,零点分段求解不等式可得不等式的解集为.(2)结合(1)的结论求得函数的值域为.据此可得,解得.【详解】(1),则不等式等价于或或.解得或.故该不等式的解集是.(2)若存在实数满足,即关于的方程在实数集上有解,则的取值范围是函数的值域.由(1)可得函数的值域是,∴,解得.【点睛】绝对值不等式的解法:法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.。

相关文档
最新文档