金属材料学知识整理(经典版)
金属材料知识

金属材料知识
金属材料是工程领域中最常用的材料之一,它具有优良的导热、导电、强度和塑性等特性,被广泛应用于机械制造、建筑工程、电子设备等领域。
本文将介绍金属材料的基本知识,包括金属的分类、性能特点、加工工艺等内容。
首先,我们来了解一下金属材料的分类。
根据金属的化学性质和晶体结构,可以将金属分为有色金属和黑色金属两大类。
有色金属主要包括铜、铝、镁等,它们具有良好的导电性和导热性,常用于电气设备和建筑材料中。
而黑色金属则以铁、钢为代表,具有较高的强度和硬度,广泛用于机械制造和汽车制造领域。
其次,我们需要了解金属材料的性能特点。
金属材料具有良好的导热性和导电性,这使得它们成为制造电子设备和导热导电元件的理想材料。
此外,金属材料还具有良好的塑性和可加工性,可以通过锻造、压延、拉伸等加工工艺制成各种形状的零件,满足不同工程需求。
另外,金属材料还具有一定的耐腐蚀性能,但在特定环境下仍会发生腐蚀,因此需要采取防腐措施。
最后,我们来讨论一下金属材料的加工工艺。
金属材料的加工工艺包括锻造、铸造、焊接、切削等多种方法。
锻造是将金属加热至一定温度后进行塑性变形,可以得到各种形状的零件;铸造则是将熔化的金属注入到模具中,冷却后得到所需形状的零件;焊接是将两个金属件通过加热熔化焊条或焊丝,使它们连接在一起;切削则是通过刀具对金属进行切削加工,得到精确尺寸和表面质量良好的零件。
综上所述,金属材料是工程领域中不可或缺的材料,具有优良的导热、导电、强度和塑性等特性。
通过本文的介绍,相信读者对金属材料有了更深入的了解,希望本文能够为工程领域的从业人员提供一些帮助。
(完整版)金属材料知识大全

金属材料是指金属元素或以金属元素为主构成的具有金属特性的材料的统称。
包括纯金属、合金、金属材料金属间化合物和特种金属材料等。
(注:金属氧化物(如氧化铝)不属于金属材料)1.意义人类文明的发展和社会的进步同金属材料关系十分密切。
继石器时代之后出现的铜器时代、铁器时代,均以金属材料的应用为其时代的显著标志。
现代,种类繁多的金属材料已成为人类社会发展的重要物质基础。
2.种类金属材料通常分为黑色金属、有色金属和特种金属材料。
(1)黑色金属又称钢铁材料,包括含铁90%以上的工业纯铁,含碳2%~4%的铸铁,含碳小于 2%的碳钢,以及各种用途的结构钢、不锈钢、耐热钢、高温合金、不锈钢、精密合金等。
广义的黑色金属还包括铬、锰及其合金。
(2)有色金属是指除铁、铬、锰以外的所有金属及其合金,通常分为轻金属、重金属、贵金属、半金属、稀有金属和稀土金属等。
有色合金的强度和硬度一般比纯金属高,并且电阻大、电阻温度系数小。
(3)特种金属材料包括不同用途的结构金属材料和功能金属材料。
其中有通过快速冷凝工艺获得的非晶态金属材料,以及准晶、微晶、纳米晶金属材料等;还有隐身、抗氢、超导、形状记忆、耐磨、减振阻尼等特殊功能合金以及金属基复合材料等。
3.性能一般分为工艺性能和使用性能两类。
所谓工艺性能是指机械零件在加工制造过程中,金属材料在所定的冷、热加工条件下表现出来的性能。
金属材料工艺性能的好坏,决定了它在制造过程中加工成形的适应能力。
由于加工条件不同,要求的工艺性能也就不同,如铸造性能、可焊性、可锻性、热处理性能、切削加工性等。
所谓使用性能是指机械零件在使用条件下,金属材料表现出来的性能,它包括力学性能、物理性能、化学性能等。
金属材料使用性能的好坏,决定了它的使用范围与使用寿命。
在机械制造业中,一般机械零件都是在常温、常压和非常强烈腐蚀性介质中使用的,且在使用过程中各机械零件都将承受不同载荷的作用。
金属材料在载荷作用下抵抗破坏的性能,称为力学性能(过去也称为机械性能)。
金属材料基础知识

金属材料基础知识1. 引言金属材料是人类使用最广泛的材料之一,应用于各种领域,如建筑、航空、汽车、电子等。
本文将介绍金属材料的基础知识,包括金属的特性、组织结构、合金等方面。
2. 金属的特性金属具有许多独特的特性,如良好的导热性、导电性、延展性和塑性。
这些特性使得金属成为制造各种器件和构件的理想选择。
此外,金属还具有良好的强度和硬度,能够承受较大的载荷。
3. 金属的组织结构金属的组织结构是由金属原子的排列方式和晶体结构决定的。
常见的金属组织结构包括等轴晶粒、柱状晶粒和层状晶粒。
这些结构对金属的性能有着重要影响,不同的结构具有不同的力学性能和导电性能。
4. 金属的力学性能金属的力学性能包括强度、硬度、韧性和延展性等。
强度是指金属抵抗外力破坏的能力,硬度是指金属表面抵抗变形和划伤的能力,韧性是指金属在断裂前能吸收外部能量的能力,而延展性是指金属的拉伸或扭曲变形能力。
5. 金属的热处理金属的热处理是通过控制金属的加热和冷却过程来改变金属的性能。
常见的热处理方法包括退火、淬火和回火。
退火可以提高金属的韧性和延展性,淬火可以提高金属的硬度和强度,回火可以降低金属的脆性。
6. 金属的腐蚀与保护金属容易遭受腐蚀,导致金属的性能下降甚至损坏。
为了保护金属材料,可以采取物理防护和化学防护措施。
物理防护包括涂层和电镀等,化学防护包括阳极保护和缓蚀剂等。
7. 合金的应用合金是由两种或更多种金属元素混合而成的材料。
通过改变合金的成分和比例,可以获得不同的性能。
合金常用于耐高温、耐磨损等特殊环境的应用,如航空发动机、汽车发动机等。
8. 小结金属材料是具有特殊特性和广泛应用的材料。
了解金属材料的基础知识对于正确选择和使用金属材料至关重要。
本文介绍了金属的特性、组织结构、力学性能、热处理、腐蚀与保护以及合金的应用等方面的知识,希望对读者有所帮助。
通过深入学习和研究金属材料,我们可以更好地利用金属的优势,推动技术和社会的发展。
2023年金属和金属材料知识点汇总

九年级化学第八单元金属和金属材料(知识点)第一课时金属材料一.金属1. 金属材料金属材料包括纯金属和它们旳合金。
①人类从石器时代进入青铜器时代, 继而进入铁器时代, 100数年前才开始使用铝。
②铁、铝、铜和它们旳合金是人类使用最多旳金属材料, 世界上年产量最多旳金属是铁, 另一方面是铝(铝旳密度小, 抗腐蚀性强, 在当今社会被广泛使用)2. 金属旳物理性质金属具有诸多共同旳物理性质: 常温下金属都是固体(汞除外), 有金属光泽, 大多数金属是电和热旳优良导体, 有延展性, 可以弯曲, 密度大, 熔点高。
①金属除具有某些共同旳物理性质外, 还具有各自旳特性, 不一样种金属旳颜色、硬度、熔点、导电性、导热性等物理性质差异较大。
②铁、铝、银、铂、镁等金属呈银白色, 铜却呈紫红色, 金呈黄色。
③常温下, 铁、铝、铜等大多数金属是固体, 但体温计中旳汞(俗称水银)却是液体。
..金属之最①地壳中含量最高旳金属元素是铝(另一方面是铁)。
②人体中含量最高旳金属元素是钙。
③目前世界上年产量最高旳金属是铁。
④导电, 导热性最佳旳金属是银(很好旳有铜、金、铝)。
⑤密度最大旳金属锇(密度较大旳金属有金、铅)。
⑥密度最小旳金属是锂(密度较小旳金属有铝、镁等)。
⑦熔点最高旳旳金属是钨, 熔点最低旳金属是汞。
为何?(熔点较低旳金属是锡)⑧硬度最大旳金属是铬, (硬度较小旳金属有铅Pb)。
4. 影响物质用途旳原因讨论:①为何菜刀、镰刀、锤子等用铁制而不用铅制?——铅硬度小, 铅有毒。
②银旳导电性比铜好, 但电线一般用铜制而不用银制, 原因是银旳价格昂贵,资源稀少。
③为何灯泡里旳灯丝用钨制而不用锡制?假如用锡旳话, 也许会出现什么状况?(钨旳熔点高, 锡旳熔点低, 用锡做灯丝会熔化。
)④为何有旳铁制品如水龙头等要镀铬?假如镀金怎么样?(铬旳硬度大, 不生锈, 金虽然美观但价格高。
)⑤在制造保险丝时, 则要选用熔点较低旳金属。
(为何?)⑥在制造硬币时, 要选用光泽好、耐磨、耐腐蚀易加工旳金属。
金属和金属材料知识点总结及经典习题(含答案)

金属和金属材料知识点总结及经典习题(含答案)一、金属和金属材料选择题1.人们常把金、银、铜、铁、锡等五种金属统称为“五金”。
下列相关叙述错误的是( ) A.铁锅应用了铁的导热性B.金属银可与硝酸铜溶液发生置换反应C.金的化学性质最不活泼D.焊锡(锡铅合金)比锡熔点要低【答案】B【解析】【详解】A、铁具有优良的导热性,所以铁锅应用了铁的导热性煮熟食物,故A正确;B、通过金属活动性顺序分析可知,银的活泼性比铜弱,所以金属银不可与硝酸铜溶液发生置换反应,故B错误;C、在金属活动性顺序中金排在最后面,金的化学性质最不活泼故,C正确;D、合金的熔点比组成它的纯金属的熔点低,所以焊锡(锡铅合金)比锡熔点低,故D正确。
故选:B。
【点睛】金属活动顺序表:K Ca Na Mg Al Zn Fe Sn Pb H Cu Hg Ag Pt Au,在金属活动顺序表中,排在氢前边的金属能和酸发生置换反应生成盐和氢气。
金属的位置越靠前,金属的活动性越强。
位置靠前的金属能将位于其后的金属从它的盐溶液中置换出来。
2.以下实验能比较出铜和银的金属活动性强弱的是()A.测定两金属的密度B.铜片放入硝酸银溶液中C.将两种金属相互刻画D.铜片、银片分别放入稀硫酸中【答案】B【解析】试题分析:比较金属活动性强弱要通过化学变化且出明显现象才能表现出来,A.测定两金属的密度,不能比较出铜和银的金属活动性强弱;B.铜片放入硝酸银溶液中能比较出铜和银的金属活动性强弱,因为金属铜能置换出金属银;C.将两种金属相互刻画不能比较出铜和银的金属活动性强弱;D.铜片、银片分别放入稀硫酸中,二者多无明显现象,不能比较出铜和银的金属活动性强弱;故答案选择B考点:金属活动性顺序3.将一定量的锌粉加入到Mg(NO3)2、Cu(NO3)2、AgNO3三种物质的混合溶液中充分反应后过滤,将滤渣放入稀盐酸溶液里,有气泡产生.则下列情况不可能存在的是()A.滤渣是Ag、Cu、Zn B.滤渣是Ag、Cu、MgC.滤液中含有Zn2+、Mg2+、NO3﹣D.金属活动性顺序是Ag<Cu<Zn<Mg【答案】B【解析】【详解】A、将滤渣放入稀盐酸溶液里,有气泡产生,说明锌过量,滤渣中含有锌,同时含有锌和硝酸铜、硝酸银反应生成的铜和银,该选项说法正确;B、镁比锌活泼,因此锌不能和硝酸镁反应,滤渣中不含有镁,该选项说法不正确;C、滤液中含有反应生成的锌离子和没有反应的镁离子,同时含有硝酸根离子,该选项说法正确;D、金属活动性顺序是Ag<Cu<Zn<Mg,该选项说法正确.故选B.4.向一定质量FeCl2和CuCl2的混合溶液中加入锌粉。
金属材料性能知识大汇总(超全)

金属材料性能知识大汇总1、关于拉伸力-伸长曲线和应力-应变曲线的问题低碳钢的应力-应变曲线a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。
b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σ;屈服点σS;抗拉强度σb;断裂强度σk。
P;弹性极限σε真应变 e=ln(L/L0)=ln(1+ε) ;真应力 s=σ(1+ε)= σ*eε指数e 为真应变。
c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。
弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。
2、关于弹性变形的问题a、相关概念弹性:表征材料弹性变形的能力刚度:表征材料弹性变形的抗力弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。
弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。
包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。
弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。
金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗b、相关理论:弹性变形都是可逆的。
理想弹性变形具有单值性、可逆性,瞬时性。
但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。
弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映单晶体和多晶体金属的弹性模量,主要取决于金属原子本性和晶体类型。
包申格效应;滞弹性;伪弹性;粘弹性。
包申格效应消除方法:预先大塑性变形,回复或再结晶温度下退火。
循环韧性表示材料的消震能力。
金属材料性能知识大汇总(超全)

金属材料性能知识大汇总1、关于拉伸力-伸长曲线和应力-应变曲线的问题低碳钢的应力-应变曲线a、拉伸过程的变形:弹性变形,屈服变形,加工硬化(均匀塑性变形),不均匀集中塑性变形。
b、相关公式:工程应力σ=F/A0;工程应变ε=ΔL/L0;比例极限σP;弹性极限σε;屈服点σS;抗拉强度σb;断裂强度σk。
真应变e=ln(L/L0)=ln(1+ε) ;真应力s=σ(1+ε)= σ*eε指数e为真应变。
c、相关理论:真应变总是小于工程应变,且变形量越大,二者差距越大;真应力大于工程应力。
弹性变形阶段,真应力—真应变曲线和应力—应变曲线基本吻合;塑性变形阶段两者出线显著差异。
2、关于弹性变形的问题a、相关概念弹性:表征材料弹性变形的能力刚度:表征材料弹性变形的抗力弹性模量:反映弹性变形应力和应变关系的常数,E=σ/ε;工程上也称刚度,表征材料对弹性变形的抗力。
弹性比功:称弹性比能或应变比能,是材料在弹性变形过程中吸收变形功的能力,评价材料弹性的好坏。
包申格效应:金属材料经预先加载产生少量塑性变形,再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
滞弹性:(弹性后效)是指材料在快速加载或卸载后,随时间的延长而产生的附加弹性应变的性能。
弹性滞后环:非理想弹性的情况下,由于应力和应变不同步,使加载线与卸载线不重合而形成一封闭回线。
金属材料在交变载荷作用下吸收不可逆变形功的能力,称为金属的循环韧性,也叫内耗b、相关理论:弹性变形都是可逆的。
理想弹性变形具有单值性、可逆性,瞬时性。
但由于实际金属为多晶体并存在各种缺陷,弹性变形时,并不是完整的。
弹性变形本质是构成材料的原子或离子或分子自平衡位置产生可逆变形的反映单晶体和多晶体金属的弹性模量,主要取决于金属原子本性和晶体类型。
包申格效应;滞弹性;伪弹性;粘弹性。
包申格效应消除方法:预先大塑性变形,回复或再结晶温度下退火。
循环韧性表示材料的消震能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 合金化原理主要内容:概念:⑴合金元素:特别添加到钢中为了保证获得所要求的组织结构、物理、化学和机械性能的化学元素。
⑵杂质:冶炼时由原材料以及冶炼方法、工艺操作而带入的化学元素。
⑶碳钢:含碳量在0.0218-2.11%范围内的铁碳合金。
⑷合金钢:在碳钢基础上加入一定量合金元素的钢。
①低合金钢:一般指合金元素总含量小于或等于5%的钢。
②中合金钢:一般指合金元素总含量在5~10%范围内的钢。
③高合金钢:一般指合金元素总含量超过10%的钢。
④微合金钢:合金元素(如V,Nb,Ti,Zr,B)含量小于或等于0.1%,而能显著影响组织和性能的钢。
1.1 碳钢概论一、碳钢中的常存杂质1.锰( Mn )和硅( Si )⑴Mn :W Mn %<0.8% ①固溶强化 ②形成高熔点MnS 夹杂物(塑性夹杂物),减少钢的热脆(高温晶界熔化,脆性↑);⑵Si :W Si %<0.5% ①固溶强化 ②形成SiO2脆性夹杂物;⑶Mn 和Si 是有益杂质,但夹杂物MnS 、SiO2将使钢的疲劳强度和塑、韧性下降。
2.硫(S )和磷(P )⑴S :在固态铁中的溶解度极小, S 和Fe 能形成FeS ,并易于形成低熔点共晶。
发生热脆 (裂)。
⑵P :可固溶于α-铁,但剧烈地降低钢的韧性,特别是低温韧性,称为冷脆。
磷可以提高钢在大气中的抗腐蚀性能。
⑶S 和P 是有害杂质,但可以改善钢的切削加工性能。
3.氮(N )、氢(H )、氧(O )⑴N :在α-铁中可溶解,含过饱和N 的钢析出氮化物—机械时效或应变时效(经变形,沉淀强化,强度↑,塑性韧性↓,使其力学性能改变)。
N 可以与钒、钛、铌等形成稳定的氮化物,有细化晶粒和沉淀强化。
⑵H :在钢中和应力的联合作用将引起金属材料产生氢脆。
⑶O :在钢中形成硅酸盐(2MnO•SiO2、MnO•SiO2)或复合氧化物(MgO•Al2O3、碳钢中的常存杂质 碳钢的分类 碳钢的用途 1.1 碳钢概论 主要内容 1.2 钢的合金化原理: ①Me 在钢中的存在形式 ②Me 与铁和碳的相互作用 ③Me 对Fe-Fe3C 相图的影响 ④Me 对钢的热处理的影响 ⑤Me 对钢的性能的影响 1.3合金钢的分类MnO•Al2O3)。
⑷N、H、O是有害杂质。
二、碳钢的分类1.按钢中的碳含量⑴按Fe-Fe3C相图分类:亚共析钢,共析钢(Wc=0.77% );过共析钢⑵※按钢中碳含量的多少分类:低碳钢:Wc ≤0.25% ;中碳钢:0.25%<Wc≤0.6% ;高碳钢:Wc>0.6%2.按钢的质量(品质),碳钢可分为①普通碳素钢②优质碳素钢③高级优质碳素钢④特级优质碳素钢3.按钢的用途分类,碳钢可分为※⑴碳素结构钢:主要用于各种工程构件,如桥梁、船舶、建筑构件等。
也可用于不太重要的机件。
⑵优质碳素结构钢:主要用于制造各种机器零件,如轴、齿轮、弹簧、连杆等。
⑶碳素工具钢:主要用于制造各种工具,如刃具、模具、量具等。
⑷一般工程用铸造碳素钢:主要用于制造形状复杂且需一定强度、塑性和韧性零件。
4.按钢冶炼时的脱氧程度分类,可分为⑴沸腾钢(脱氧不彻底)代号为F。
⑵镇静钢(脱氧彻底)代号为Z。
⑶半镇静钢(脱氧程度介于F与Z之间),代号为b。
⑷特殊镇静钢:指进行特殊脱氧的钢,代号为TZ。
三、碳钢的用途1.普通碳素结构钢(※不经热处理)⑴主要用于一般工程结构和普通零件⑵热轧后空冷是这类钢通常的供货状态⑶普通碳素结构钢的牌号表示方法:由代表屈服点的字母(Q)、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z、TZ)等四个部分组成例:※Q235A、Q235B、Q255(三位数字)2.优质碳素结构钢(亚共析钢或共析钢,一般经热处理)⑴用于较为重要的机械零件⑵供货状态可以是热轧后空冷,也可以是退火、正火等状态,⑶牌号一般用两位数字表示:※20钢、45钢、08F、10F、15F、20q、16MnR、①优质碳素结构钢中有三个钢号是沸腾钢,它们是08F、10F、15F。
半镇静钢标“b”,镇静钢一般不标符号。
②高级优质碳素结构钢在牌号后加符号“A”,特级碳素结构钢加符号“E”。
③专用优质碳素结构钢:※20g⑷按含锰量的不同,分为普通含锰量和较高含锰量两组。
※如15Mn 、45Mn等。
(Mn为加进去的合金元素,但含量处于杂质与低合金钢中的合金元素之间)注意:这类钢仍属于优质碳素结构钢,不要和低合金高强度结构钢混淆。
3.碳素工具钢(经热处理)⑴主要用于制作各种小型工具。
可进行淬火、低温回火处理获得高的硬度和高耐磨性。
⑵牌号一般用标志性符号“T”※例T12,T8含C量分别为1.2%与0.8%;读法:碳12,碳8;⑶含锰碳素工具钢中锰的质量分数可扩大到0.6%,这时,在牌号的尾部标以Mn,如T8Mn,T8MnA。
⑷T7,T8,T9……T13(※随C↑,硬度↑耐磨性↑,韧性↓):T7,T8承受一定冲击韧性,如木工用斧、钳工用凿子等;而T12,T13硬度及耐磨性最高,但韧性最差不承受冲击韧性,如锉刀、铲刮刀等,4.一般工程用铸造碳素钢⑴其碳含量一般小于0.65%。
⑵牌号用符号“ZG”如ZG340-640表示其屈服强度不小于340MPa,抗拉强度不低于640MPa的铸钢。
1.2 钢的合金化原理一、合金元素的存在形式※1.形成铁基固溶体⑴形成铁基置换固溶体:①Ni、Co、Mn、Cr、V等元素可与Fe形成无限固溶体。
其中Ni、Co和Mn形成以γ-Fe为基的无限固溶体,Cr和V形成以α-Fe为基的无限固溶体。
②Mo和W只能形成较宽溶解度的有限固溶体。
如α-Fe(Mo)和α-Fe(W)等。
③Nb、Ti只能形成具有较窄溶解度的有限固溶体;⑵形成铁基间隙固溶体:间隙原子的溶解度随间隙原子尺寸的减小而增加,即按B、C、N、O、H的顺序而增加:对α-Fe,间隙原子优先占据的位置是八面体间隙;对γ-Fe,间隙原子优先占据的位置是八面体或四面体间隙。
2.形成合金渗碳体或碳化物⑴合金渗碳体(碳化物):(Fe,Mn)3C 、 TiN、TiC、 Ti(C、N)等;⑵过渡族金属与碳、氮的亲和力、碳化物和氮化物的强度(或稳定性)按下列规律递减:①强(氮化物、碳化物):具有简单的点阵结构NbC、NbN、Nb(C、N)②中(合金渗碳体、碳化物):具有复杂的点阵结构Cr7C3、(Fe、Cr)3C③弱(合金渗碳体)在钢中,铁的碳化物与合金碳化物相比,是最不稳定的。
渗碳体中Fe的原子可以被若干合金元素的原子所取代。
如(Fe,Mn)3C、(Fe,Cr)23C 等。
3.形成金属间化合物金属化合物的类型通常分为正常价化合物、电子化合物及间隙化合物三类。
金属间化合物通常仅指电子化合物。
例:σ(Cr46Fe54)、η(TiFe2)、χ(Cr21Mo17Fe62)、4.形成非金属相(非碳化合物)及非晶体相⑴钢中的非金属相有:FeO、MnO、TiO2、SiO2、Al2O3、Cr2O3、MnS、FeS等。
非金属夹杂物一般都是有害的。
⑵※AlN和一些稀土氧化物弥散质点可用来强化钢或其它有色金属合金。
⑶在特殊条件下(如快速冷却凝固),可使某些金属或合金形成非晶体相结构。
二、合金元素与铁和碳的相互作用及其对γ层错能的影响1.合金元素与铁的相互作用⑴γ相稳定化元素(奥氏体形成元素):使A3(912℃)降低,A4(1393℃)升高,在较宽的成分范围内,促使奥氏体形成,即扩大了γ相区。
①开启γ相区(无限扩大γ相区):这类合金元素主要有Mn、Ni、Co等。
②扩展γ相区(有限扩大γ相区):由于合金元素与α-Fe和γ-Fe均形成有限固溶体,最终不能使γ相区完全开启。
这类合金元素主要有C、N、Cu、等。
⑵α相稳定化元素(铁素体形成元素)合金元素使A4降低,A3升高,在较宽的成分范围内,促使铁素体形成,即缩小了γ相区。
一般为强碳化物形成元素①封闭γ相区(无限扩大α相区);②缩小γ相区(不能使γ相区封闭)。
※例:加Cr得到铁素体不锈钢(不发生相变,α区变大)加Mn、Ni、Co得奥氏体不锈钢。
2.合金元素与碳的相互作用⑴形成碳化物①碳化物形成元素:Fe、Mn、Cr、W、Mo、V、Nb、Ti等。
碳化物是钢中主要的强化相。
碳化物形成元素均位于Fe的左侧。
②非碳化物形成元素:Ni、Si、Co、Al、Cu、N、P、S等,与碳不能形成碳化物,但可固溶于Fe形成固溶体,或形成其它化合物,如氮化物等。
非碳化物形成元素均处于周期表Fe的右侧。
③碳化物的特性:ⅰ硬度大、熔点高(可高达3000℃),分解温度高(可达1200℃);ⅱ具有明显的金属特性;ⅲ可以溶入各类金属原子,呈缺位溶入固溶体形式,如:Fe3W3C、Fe4W2C、Fe3Mo3C 等。
⑵Me对固溶体中碳活度及扩散系数的影响①活度:ⅰ碳化物形成元素增加固溶体中碳与合金元素之间的结合力,降低其活度。
ⅱ非碳化物形成元素,相反将“推开”碳原子,提高其活动性,即增加碳的活度ⅲ应用:在研究碳化物、氮化物和碳、氮化合物在奥氏体中的溶解和冷却时它们从固溶体中的析出,以及热处理过程中元素在各相间的再分配这些问题时,具重要意义②扩散激活能和扩散系数:ⅰ碳化物形成元素:提高了C在A中结合力,因而使扩散激活能升高扩散系数下降。
(如Cr、Mo和W等)ⅱ非碳化物形成元素:降低了C在A中的结合力,因而使扩散激活能下降,扩散系数升高。
(如Ni、Co)ⅲ需要指出的是Si是个例外(Si虽提高C的活度,但同时降低了Fe原子的活动性)ⅳ总之,合金元素与碳的相互作用具有重大的实际意义: 它关系到所形成的碳化物的种类、性质和在钢中的分布。
同时对钢的热处理亦有较大的影响,如奥氏体化温度和时间,奥氏体晶粒的长大等。
3.合金元素对奥氏体层错能的影响⑴层错能:晶体中形成层错时增加的能量。
⑵层错能越低,越有利于位错扩展和形成层错,使滑移困难,导致钢的加工硬化趋势增大。
层错能越高,位错的宽度越小,越易于发生交滑移与攀移。
⑶举例:高Mn钢和高Ni钢都是奥氏体型钢,但加工硬化趋势相差很大。
①※高Ni钢易于变形加工,Ni、Cu和C等元素使奥氏体层错能提高。
②※高Mn钢则难于变形加工,Mn、Cr则降低奥氏体的层错能。
三、合金元素对Fe-Fe3C相图的影响1.合金元素对奥氏体、铁素体区存在范围的影响⑴扩大γ相区的合金元素(如Ni、Co、Mn等)均扩大铁碳相图中奥氏体存在的区域。
⑵缩小γ相区的合金元素(如Cr、W、Mo、V、Ti、Si等)均缩小铁碳相图中奥氏体存在的区域。
2.合金元素对Fe-Fe3C相图共析点S的影响:⑴Me对共析转变温度的影响①扩大γ相区的元素使铁碳合金相图的共析转变温度下降;②缩小γ相区的元素使铁碳合金相图的共析转变温度上升。
⑵Me对共析点(S)成分的影响①几乎所有合金元素都使S点(图1-9)碳含量降低,尤其以强碳化物形成元素的作用最为强烈。