内蒙古自治区鄂尔多斯市第一中学机械能守恒定律检测题(WORD版含答案)
高一物理机械能守恒定律达标检测卷(Word版 含解析)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,竖直墙上固定有光滑的小滑轮D ,质量相等的物体A 和B 用轻弹簧连接,物体B 放在地面上,用一根不可伸长的轻绳一端与物体A 连接,另一端跨过定滑轮与小环C 连接,小环C 穿过竖直固定的光滑均匀细杆,小环C 位于位置R 时,绳与细杆的夹角为θ,此时物体B 与地面刚好无压力。
图中SD 水平,位置R 和Q 关于S 对称。
现让小环从R 处由静止释放,环下落过程中绳始终处于拉直状态,且环到达Q 时速度最大。
下列关于小环C 下落过程中的描述正确的是( )A .小环C 、物体A 和轻弹簧组成的系统机械能不守恒B .小环C 下落到位置S 时,小环C 的机械能一定最大C .小环C 从位置R 运动到位置Q 的过程中,弹簧的弹性势能一定先减小后增大D .小环C 到达Q 点时,物体A 与小环C 的动能之比为cos 2θ【答案】BD 【解析】 【分析】 【详解】A .在小环下滑过程中,只有重力势能与动能、弹性势能相互转换,所以小环C 、物体A 和轻弹簧组成的系统机械能守恒,选项A 错误;B .小环C 下落到位置S 过程中,绳的拉力一直对小环做正功,所以小环的机械能一直在增大,往下绳的拉力对小环做负功,机械能减小,所以在S 时,小环的机械能最大,选项B 正确;C .小环在R 、Q 处时弹簧均为拉伸状态,且弹力大小等于B 的重力,当环运动到S 处,物体A 的位置最低,但弹簧是否处于拉伸状态,不能确定,因此弹簧的弹性势能不一定先减小后增大,选项C 错误;D .在Q 位置,环受重力、支持力和拉力,此时速度最大,说明所受合力为零,则有cos C T m g θ=对A 、B 整体,根据平衡条件有2A T m g =故2cos C A m m θ=在Q 点将小环v速度分解可知cos A v v θ=根据动能212k E mv =可知,物体A 与小环C 的动能之比为 221cos 2122A A Ak kQC m v E E m v θ== 选项D 正确。
机械能守恒定律(篇)(Word版 含解析)

一、第八章机械能守恒定律易错题培优(难)1.如图所示,两个质量均为m的小滑块P、Q通过铰链用长为L的刚性轻杆连接,P套在固定的竖直光滑杆上,Q放在光滑水平地面上,轻杆与竖直方向夹角α=30°.原长为2L的轻弹簧水平放置,右端与Q相连,左端固定在竖直杆O点上。
P由静止释放,下降到最低点时α变为60°.整个运动过程中,P、Q始终在同一竖直平面内,弹簧在弹性限度内,忽略一切摩擦,重力加速度为g。
则P下降过程中()A.P、Q组成的系统机械能守恒B.P、Q的速度大小始终相等C31-mgLD.P达到最大动能时,Q受到地面的支持力大小为2mg【答案】CD【解析】【分析】【详解】A.根据能量守恒知,P、Q、弹簧组成的系统机械能守恒,而P、Q组成的系统机械能不守恒,选项A错误;B.在下滑过程中,根据速度的合成与分解可知cos sinP Qv vαα=解得tanPQvvα=由于α变化,故P、Q的速度大小不相同,选项B错误;C.根据系统机械能守恒可得(cos30cos60)PE mgL=︒-︒弹性势能的最大值为312PE mgL=选项C正确;D.P由静止释放,P开始向下做加速度逐渐减小的加速运动,当加速度为零时,P的速度达到最大,此时动能最大,对P、Q和弹簧组成的整体受力分析,在竖直方向,根据牛顿第二定律可得200N F mg m m -=⨯+⨯解得F N =2mg选项D 正确。
故选CD 。
2.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
高一下册物理 机械能守恒定律同步单元检测(Word版 含答案)

一、第八章机械能守恒定律易错题培优(难)1.一足够长的水平传送带上放置质量为m=2kg小物块(物块与传送带之间动摩擦因数为0.2μ=),现让传送带从静止开始以恒定的加速度a=4m/s2开始运动,当其速度达到v=12m/s后,立即以相同大小的加速度做匀减速运动,经过一段时间后,传送带和小物块均静止不动。
下列说法正确的是()A.小物块0到4s内做匀加速直线运动,后做匀减速直线运动直至静止B.小物块0到3s内做匀加速直线运动,之后做匀减速直线运动直至静止C.物块在传送带上留下划痕长度为12mD.整个过程中小物块和传送带间因摩擦产生的热量为80J【答案】ACD【解析】【分析】【详解】物块和传送带的运动过程如图所示。
AB.由于物块的加速度a1=µg=2m/s2小于传送带的加速度a2=4 m/s2,所以前面阶段两者相对滑动,时间12vta==3s,此时物块的速度v1=6 m/s,传送带的速度v2=12 m/s物块的位移x1=12a1t12=9m传送带的位移x2=12a2t12=18m两者相对位移为121x x x∆=-=9m此后传送带减速,但物块仍加速,B错误;当物块与传送带共速时,由匀变速直线运动规律得12- a2t2=6+ a1t2解得t 2=1s因此物块匀加速所用的时间为t 1+ t 2=4s两者相对位移为2x ∆= 3m ,所以A 正确。
C .物块开始减速的速度为v 3=6+ a 1t 2=8 m/s物块减速至静止所用时间为331v t a ==4s 传送带减速至静止所用时间为 342v t a ==2s 该过程物块的位移为x 3=12a 1t 32=16m 传送带的位移为x 2=12a 2t 42=8m 两者相对位移为 3x ∆=8m回滑不会增加划痕长度,所以划痕长为12x x x ∆=∆+∆=9m+3m=12mC 正确;D .全程相对路程为L =123x x x ∆+∆+∆=9m+3m+8m=20mQ =µmgL =80JD 正确;故选ACD 。
物理高一下册 机械能守恒定律同步单元检测(Word版 含答案)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,两质量都为m 的滑块a ,b (为质点)通过铰链用长度为L 的刚性轻杆相连接,a 套在竖直杆A 上,b 套在水平杆B 上两根足够长的细杆A 、B 两杆分离不接触,且两杆间的距离忽略不计。
将滑块a 从图示位置由静止释放(轻杆与B 杆夹角为30°),不计一切摩擦,已知重力加速度为g 。
在此后的运动过程中,下列说法中正确的是( )A .滑块a 和滑块b 所组成的系统机械能守恒B .滑块b 的速度为零时,滑块a 的加速度大小一定等于gC .滑块b 3gLD .滑块a 2gL【答案】AC 【解析】 【分析】 【详解】A .由于整个运动过程中没有摩擦阻力,因此机械能守恒,A 正确;B .初始位置时,滑块b 的速度为零时,而轻杆对滑块a 有斜向上的推力,因此滑块a 的加速度小于g ,B 错误;C .当滑块a 下降到最低点时,滑块a 的速度为零,滑块b 的速度最大,根据机械能守恒定律o 21(1sin 30)2b mgL mv +=解得3b v gL =C 正确;D .滑块a 最大速度的位置一定在两杆交叉点之下,设该位置杆与水平方向夹角为θ 根据机械能守恒定律o 2211(sin 30sin )22a b mgL mv mv θ+=+ 而两个物体沿杆方向速度相等cos sin b a v v θθ=两式联立,利用三角函数整理得212(sin )cos 2a v gL θθ=+利用特殊值,将o =30θ 代入上式可得.521a v gL gL =>因此最大值不是2gL ,D 错误。
故选AC 。
2.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A 点由静止释放,第二次让乙物块从斜面上的B 点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是( )A .甲物块的质量比乙物块的质量大B .甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C .乙物块动能最大的位置在甲物块动能最大的位置下方D .将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移 【答案】BC 【解析】 【分析】 【详解】A .由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A 错误;B .从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B 正确;C .动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C 正确;D .由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D 错误。
机械能守恒定律单元测试与练习(word解析版)

一、第八章机械能守恒定律易错题培优(难)1.如图所示,一根轻质弹簧放在光滑斜面上,其下端与斜面底端的固定挡板相连,弹簧处于自然伸长状态。
第一次让甲物块从斜面上的A点由静止释放,第二次让乙物块从斜面上的B点由静止释放,两物块压缩弹簧使弹簧获得的最大弹性势能相同,两物块均可看作质点,则下列说法正确的是()A.甲物块的质量比乙物块的质量大B.甲物块与弹簧刚接触时的动能大于乙物块与弹簧刚接触时的动能C.乙物块动能最大的位置在甲物块动能最大的位置下方D.将两物块释放的位置上移,两物块向下运动的过程中,动能最大的位置会下移【答案】BC【解析】【分析】【详解】A.由于两物块使弹簧获得的最大弹性势能相同,即两物块向下运动最低点的位置相同,根据机械能守恒可知,两物块减少的最大重力势能相同,由此可以判断甲物块的质量比乙物块的质量小,选项A错误;B.从两物块与弹簧相接触到弹簧被压缩到最短的过程中,乙物块的质量大,则乙物块减小的重力势能大,所以其动能减小的少,选项B正确;C.动能最大的位置是合外力为零的时候,由力的平衡可知,乙物块动能最大的位置在甲物块动能最大位置的下方,选项C正确;D.由力的平衡可知,改变两物块释放的位置,两物块向下运动的过程中,动能最大的位置不会变,选项D错误。
故选BC。
2.在一水平向右匀速传输的传送带的左端A点,每隔T的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x,下列判断正确的有A.传送带的速度为x TB.传送带的速度为22gxC .每个工件与传送带间因摩擦而产生的热量为12mgx μ D .在一段较长的时间内,传送带因为传送工件而将多消耗的能量为23mtx T【答案】AD 【解析】 【分析】 【详解】A .工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x =vT ,解得传送带的速度v =xT.故A 正确; B .设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度2v gx μ=s 与x 的关系.故B 错误; C .工件与传送带相对滑动的路程为22222v v x x v g g gT μμμ∆=-=则摩擦产生的热量为Q =μmg △x =222mx T故C 错误;D .根据能量守恒得,传送带因传送一个工件多消耗的能量22212mx E mv mg x Tμ=+∆=在时间t 内,传送工件的个数fW E η=则多消耗的能量23mtx E nE T'==故D 正确。
高一机械能守恒定律单元测试卷 (word版,含解析)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,ABC 为一弹性轻绳,一端固定于A 点,一端连接质量为m 的小球,小球穿在竖直的杆上。
轻杆OB 一端固定在墙上,一端为定滑轮。
若绳自然长度等于AB ,初始时ABC 在一条水平线上,小球从C 点由静止释放滑到E 点时速度恰好为零。
已知C 、E两点间距离为h ,D 为CE 的中点,小球在C 点时弹性绳的拉力为2mg,小球与杆之间的动摩擦因数为0.5,弹性绳始终处在弹性限度内。
下列说法正确的是( )A .小球在D 点时速度最大B .若在E 点给小球一个向上的速度v ,小球恰好能回到C 点,则2v gh = C .小球在CD 阶段损失的机械能等于小球在DE 阶段损失的机械能D .若O 点没有固定,杆OB 在绳的作用下以O 为轴转动,在绳与B 点分离之前,B 的线速度等于小球的速度沿绳方向分量 【答案】AD 【解析】 【详解】A .设当小球运动到某点P 时,弹性绳的伸长量是BP x ,小球受到如图所示的四个力作用:其中T BP F kx =将T F 正交分解,则N T sin sin 2BP BC mgF F kx kx θθ⋅====f N 14F F mg μ==T F 的竖直分量T T cos cos y BP CP F F kx kx θθ===据牛顿第二定律得f T y mg F F ma --=解得T 3344y CP F kx a g g m m=-=- 即小球的加速度先随下降的距离增大而减小到零,再随下降的距离增大而反向增大,据运动的对称性(竖直方向可以看作单程的弹簧振子模型)可知,小球运动到CE 的中点D 时,加速度为零,速度最大,A 正确;B .对小球从C 运动到E 的过程,应用动能定理得T F 0104mgh W mgh ⎛⎫-+-=- ⎪⎝⎭若在E 点给小球一个向上的速度v ,小球恰能从E 点回到C 点,应用动能定理得T 2F 11()042mgh W mgh mv ⎛⎫-++-=- ⎪⎝⎭联立解得T F 34W mgh =,v gh = B 错误;C .除重力之外的合力做功等于小球机械能的变化,小球在CD 段所受绳子拉力竖直分量较小,则小球在CD 段时摩擦力和弹力做的负功比小球在DE 段时摩擦力和弹力做的负功少,小球在CD 阶段损失的机械能小于小球在DE 阶段损失的机械能,C 错误; D .绳与B 点分离之前B 点做圆周运动,线速度(始终垂直于杆)大小等于小球的速度沿绳方向的分量,D 正确。
机械能守恒定律(篇)(Word版 含解析)

一、第八章 机械能守恒定律易错题培优(难)1.某实验研究小组为探究物体冲上粗糙斜面能达到的最大位移x 与斜面倾角θ的关系,使某一物体每次以不变的初速率v 0沿足够长的斜面向上运动,如图甲所示,调节斜面与水平面的夹角θ,实验测得x 与θ的关系如图乙所示,取g =10m/s 2。
则由图可知( )A .物体的初速率v 0=3m/sB .物体与斜面间的动摩擦因数µ=0.8C .图乙中x min =0.36mD .取初始位置所在水平面为重力势能参考平面,当θ=37°,物体上滑过程中动能与重力势能相等时,物体上滑的位移为0.1875m 【答案】AC 【解析】 【分析】 【详解】 A .当2πθ=时,物体做竖直上抛运动,不受摩擦力作用,根据202v gh =可得03m/s v =A 正确;B .当0θ=时,物体沿水平面做减速运动,根据动能定理2012mv mgx μ= 代入数据解得=0.75μB 错误;C .根据动能定理201cos sin 2mv mgx mgx μθθ=+ 整理得920(0.75cos sin )x θθ=+因此位移最小值min 20.36m 200.751x ==+C 正确;D .动能与重力势能相等的位置o 2o o 01sin 37(sin 37cos37)2mgx mv mgx mgx μ=-+ 整理得0.25m x =D 错误。
故选AC 。
2.在机场和火车站对行李进行安全检查用的水平传送带如图所示,当行李放在匀速运动的传送带上后,传送带和行李之间的滑动摩擦力使行李开始运动,随后它们保持相对静止,行李随传送带一起匀速通过检测仪检查,设某机场的传送带匀速前进的速度为0.4 m/s ,某行李箱的质量为5 kg ,行李箱与传送带之间的动摩擦因数为0.2,当旅客把这个行李箱小心地放在传送带上的A 点,已知传送带AB 两点的距离为1.2 m ,那么在通过安全检查的过程中,g 取10 m/s 2,则 ( ).A .开始时行李箱的加速度为0.2 m/s 2B .行李箱从A 点到达B 点时间为3.1 sC .传送带对行李箱做的功为0.4 JD .传送带上将留下一段摩擦痕迹,该痕迹的长度是0.04 m 【答案】BCD 【解析】 【分析】 【详解】行李开始运动时由牛顿第二定律有:μmg=ma ,所以得:a="2" m/s 2,故A 错误;物体加速到与传送带共速的时间10.40.22v t s s a ===,此时物体的位移:110.042x vt m ==,则物体在剩下的x 2=1.2m-0.04m=1.96m 内做匀速运动,用时间22 2.9x t s v==,则行李箱从A 点到达B 点时间为t=t 1+t 2="3.1" s ,选项B 正确;行李最后和传送带最终一起匀速运动,根据动能定理知,传送带对行李做的功为:W=12mv 2="0.4" J ,故C 正确;在传送带上留下的痕迹长度为:0.04?22vt vts vt m=-==,故D正确.故选BCD.3.如图,滑块a、b的质量均为m,a套在固定竖直杆上,与光滑水平地面相距,b放在地面上.a、b通过铰链用刚性轻杆连接,由静止开始运动,不计摩擦,a、b可视为质点,重力加速度大小为,则A.a减少的重力势能等于b增加的动能B.轻杆对b一直做正功,b的速度一直增大C.当a运动到与竖直墙面夹角为θ时,a、b的瞬时速度之比为tanθD.a落地前,当a的机械能最小时,b对地面的压力大小为mg【答案】CD【解析】【分析】【详解】ab构成的系统机械能守恒,a减少的重力势能大于b增加的动能.当a落到地面时,b的速度为零,故b先加速后减速.轻杆对b先做正功,后做负功.由于沿杆方向的速度大小相等,则cos sina bv vθθ=故tanabvvθ=当a的机械能最小时,b动能最大,此时杆对b作用力为零,故b对地面的压力大小为mg.综上分析,CD正确,AB错误;故选CD.4.如图所示,轻质弹簧一端固定在水平面上O点的转轴上,另一端与一质量为m、套在粗糙固定直杆A处的小球(可视为质点)相连,直杆的倾角为30°,OA=OC,B为AC的中点,OB等于弹簧原长.小球从A处由静止开始下滑,初始加速度大小为a A,第一次经过B 处的速度为v,运动到C处速度为0,后又以大小为a C的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是A .小球可以返回到出发点A 处B .弹簧具有的最大弹性势能为22mvC .撤去弹簧,小球可以静止在直杆上任意位置D .a A -a C =g 【答案】BD 【解析】 【分析】 【详解】AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量为m ,弹簧具有的最大弹性势能为p E .根据能量守恒定律,对于小球A 到B 的过程有: 212p f mgh E mv W +=+A 到C 的过程有:22p f p mgh E W E +=+解得:212f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得:22p f p E W mgh E =++该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确. C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:f W mgh =得:sin 30f s mgs =解得:sin 30f mg =在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:cos30f mg μ>可得:sin 30cos30mg mg μ>因此撤去弹簧,小球不能在直杆上处于静止.故C 错误. D.根据牛顿第二定律得,在A 点有:cos30sin 30A F mg f ma +-=在C 点有:cos30sin 30C F f mg ma --=两式相减得:A C a a g -=故D 正确.5.如图所示,劲度数为k 的轻弹簧的一端固定在墙上,另一端与置于水平面上质量为m 的物体接触(未连接),弹簧水平且无形变.用水平力F 缓慢推动物体,在弹性限度内弹簧长度被压缩了0x ,此时物体静止.撤去F 后,物体开始向左运动,运动的最大距离为40x .物体与水平面间的动摩擦因数为μ,重力加速度为g .则( )A .撤去F 后,物体先做匀加速运动,再做匀减速运动B .撤去F 后,物体刚运动时的加速度大小为0kx g mμ- C .物体做匀减速运动的时间为02x gμD .物体开始向左运动到速度最大的过程中克服摩擦力做的功为0()mgmg x kμμ-【答案】BD 【解析】 【分析】 【详解】A .撤去F 后,物体水平方向上受到弹簧的弹力和滑动摩擦力,滑动摩擦力不变,而弹簧的弹力随着压缩量的减小而减小,弹力先大于滑动摩擦力,后小于滑动摩擦力,则物体向左先做加速运动后做减速运动,随着弹力的减小,合外力先减小后增大,则加速度先减小后增大,故物体先做变加速运动,再做变减速运动,最后物体离开弹簧后做匀减速运动,A 错误;B .刚开始时,由牛顿第二定律有:0kx mg ma μ-=解得:0kx a g mμ=- B 正确;C .由题意知,物体离开弹簧后通过的最大距离为3x 0,由牛顿第二定律得:1a g μ=将此运动看成向右的初速度为零的匀加速运动,则:201123x a t =联立解得:t =C 错误;D .当弹簧的弹力与滑动摩擦力大小相等、方向相反时,速度速度最大时合力为零,则有F mg kx μ==解得mgx kμ=,所以物体开始向左运动到速度最大的过程中克服摩擦力做的功为:()f 00(mg W mg x x mg x k μμμ=⎛⎫=- ⎪⎝⎭- D 正确。
高一物理下册 机械能守恒定律达标检测卷(Word版 含解析)

一、第八章 机械能守恒定律易错题培优(难)1.如图所示,轻质弹簧一端固定在水平面上O 点的转轴上,另一端与一质量为m 、套在粗糙固定直杆A 处的小球(可视为质点)相连,直杆的倾角为30°,OA =OC ,B 为AC 的中点,OB 等于弹簧原长.小球从A 处由静止开始下滑,初始加速度大小为a A ,第一次经过B 处的速度为v ,运动到C 处速度为0,后又以大小为a C 的初始加速度由静止开始向上滑行.设最大静摩擦力等于滑动摩擦力.下列说法正确的是A .小球可以返回到出发点A 处B .弹簧具有的最大弹性势能为22mv C .撤去弹簧,小球可以静止在直杆上任意位置D .a A -a C =g【答案】BD【解析】【分析】【详解】AB.设小球从A 运动到B 的过程克服摩擦力做功为f W ,AB 间的竖直高度为h ,小球的质量为m ,弹簧具有的最大弹性势能为p E .根据能量守恒定律,对于小球A 到B 的过程有: 212p f mgh E mv W +=+ A 到C 的过程有:22p f p mgh E W E +=+ 解得:212f p W mgh E mv ==, 小球从C 点向上运动时,假设能返回到A 点,由能量守恒定律得: 22p f p E W mgh E =++该式违反了能量守恒定律,可知小球不能返回到出发点A 处.故A 错误,B 正确.C.设从A 运动到C 摩擦力的平均值为f ,AB =s ,由:f W mgh =得:sin 30f s mgs =解得:sin 30f mg =在B 点,摩擦力cos30f mg μ=,由于弹簧对小球有拉力(除B 点外),小球对杆的压力大于cos30mg μ,所以:cos30f mg μ>可得:sin 30cos30mg mg μ>因此撤去弹簧,小球不能在直杆上处于静止.故C 错误.D.根据牛顿第二定律得,在A 点有:cos30sin 30A F mg f ma +-=在C 点有:cos30sin 30C F f mg ma --=两式相减得:A C a a g -=故D 正确.2.如图所示,物块套在固定竖直杆上,用轻绳连接后跨过定滑轮与小球相连。