实验一传感器性能测试
红外传感器的性能测试及应用实验报告

红外传感器的性能测试及应用实验报告学院:计算机与电子信息学院专业:电子信息与通信工程类班级学号:姓名:一、实验目的:1、掌握红外传感器的基本应用电路。
2、掌握收、发红外光的元件的基本特性。
3、掌握红外传感器在黑线检测应用上的性能特点。
二、实验设备:二、万用表,双路直流电压源。
实验基本元件:带有收发功能的一体化的红外传感器RPR220,100k电位器二个,100定值电阻R,2k电阻定值电阻R。
,12 三、实验原理:测试红外线传感的电路如图所示:第 1 页左边为发射管,通过的电流为;右边为接收管,通过的电流为。
IIFC传感器的基本特性是:发射管,通过的电流越大,发射的光的强度也越大;接收管,接收到的光越强,通过的电流就越大。
发射管把红外线发射出去,红外线经过反射平面反射回到接收管。
通过检测接收管的电流大小,就可以感知到反射平面的反射强度。
在白底平面上检测黑线的应用中,就是根据反射回来的光线在接收管中产生的电流大小,来判断是否存在黑线。
测量回路电流大小的方法,就是在回路中,串联阻值已知的电阻,通过测量电阻上的电压,换算出实际电流的大小。
实际应用中,将发射管回路中的电流源换成电压源,通过改变回路串联电阻的大小,来调节回路电流的大小。
本实验中,该串联电阻应由一固定数值的电阻和一电位器组成,其中固定电阻的作用,一是通过它来测量出电流大小,二是防止当电位器调节到0时,有可能会导致电流过大而烧毁发射管。
对于接收管回路,可采用这种方法来达到既能测量回路电流大小,又可以调节接收管上电压大小的目的。
四、实验主要任务:1、根据实验原理所述知识及后面任务的需要,设计并制作一个测试红外线传感器性能的电路。
2、若为传感器前端到反射平面(白纸)之间的距离大小,分别测量出当ddmm,10dmm,20和时的以下特性曲线。
(a) (b)测量(a)图特性时,必须确保流过发射管的电流不超过其极限值。
VImA,10ImA,20测量(b)图特性时,只测量当和的两条特性曲线。
传感器实验实验报告

传感器实验实验报告传感器实验实验报告引言:传感器是一种能够将各种物理量、化学量或生物量转换为可测量电信号的装置。
它在各个领域中都有着广泛的应用,如环境监测、医疗诊断、智能家居等。
本次实验旨在通过对不同类型传感器的测试和比较,深入了解传感器的原理和性能。
实验一:温度传感器温度传感器是一种常见的传感器类型,用于测量环境中的温度。
我们选择了一款热敏电阻温度传感器进行测试。
实验中,我们将传感器连接到一个电路板上,并使用示波器测量输出电压随温度的变化。
通过改变环境温度,我们观察到传感器输出电压与温度之间的线性关系。
这表明该传感器具有良好的灵敏度和稳定性。
实验二:光照传感器光照传感器是一种能够测量环境中光照强度的传感器。
我们选择了一款光敏电阻光照传感器进行测试。
实验中,我们将传感器暴露在不同光照条件下,并使用万用表测量输出电阻的变化。
结果显示,传感器输出电阻随光照强度的增加而减小。
这说明该传感器能够准确地感知光照强度,并将其转化为电信号输出。
实验三:湿度传感器湿度传感器是一种用于测量环境湿度的传感器。
我们选择了一款电容式湿度传感器进行测试。
实验中,我们将传感器放置在一个密封的容器中,并通过改变容器内的湿度来模拟不同湿度条件。
通过连接传感器到一个数据采集系统,我们能够实时监测到传感器的输出信号。
结果显示,传感器的输出电容随湿度的增加而增加。
这说明该传感器对湿度变化非常敏感,并能够准确地测量环境湿度。
实验四:气体传感器气体传感器是一种能够检测环境中气体浓度的传感器。
我们选择了一款气敏电阻气体传感器进行测试。
实验中,我们将传感器暴露在不同浓度的气体环境中,并使用示波器测量输出电阻的变化。
结果显示,传感器的输出电阻随气体浓度的增加而减小。
这表明该传感器能够准确地感知气体浓度,并将其转化为电信号输出。
结论:通过本次实验,我们深入了解了不同类型传感器的原理和性能。
温度传感器、光照传感器、湿度传感器和气体传感器在各自的应用领域中都具有重要的作用。
传感器实验报告1

传感器实验报告实验一Pt100铂电阻测温特性实验一、实验目的1.通过自行设计热电阻测温实验方案,加深对温度传感器工作原理的理解。
2.掌握测量温度的电路设计和误差分析方法。
二、实验内容1.设计PT100铂热电阻测温实验电路方案;2.测量PT100的温度与电压关系,要求测温范围为:室温~65℃;温度测量精度:±2℃;输出电压≤4V,输出以电压V方式记录。
3.通过测量值进行误差分析。
三、实验仪器、设备、材料主机箱、温度源、Pt100热电阻(2支)、温度传感器实验模板、万用表。
四、实验原理利用导体电阻随温度变化的特性,可以制成热电阻,要求其材料电阻温度系数大,稳定性好,电阻率高,电阻与温度之间最好有线性关系。
常用的热电阻有铂电阻(650℃以内)和铜电阻(150℃以内)。
铂电阻是将~mm的铂丝绕在线圈骨架上封装在玻璃或陶瓷管等保护管内构成。
在0-650℃以内,它的电阻Rt与温度t的关系为:Rt=Ro(1+At+Bt2),式中:Ro系温度为0℃时的电阻值(本实验的铂电阻Ro=100Ω)。
A=×10-3/℃,B=-×10-7/℃2。
铂电阻一般是三线制,其中一端接一根引线另一端接二根引线,主要为远距离测量消除引线电阻对桥臂的影响(近距离可用二线制,导线电阻忽略不计。
)。
实际测量时将铂电阻随温度变化的阻值通过电桥转换成电压的变化量输出,再经放大器放大后直接用电压表显示。
五、实验步骤1、用万用表欧姆档测出Pt100三根线中其中短接的二根线(同种颜色的线)设为1、2,另一根设为3,并测出它在室温时的大致电阻值。
2、在主机箱总电源、调节仪电源都关闭的状态下,再根据图1示意图接线,温度传感器实验模板中a、b(Rt)两端接传感器,这样传感器(Rt)与R3、R1、Rw1、R4组成直流电桥,是一种单臂电桥工作形式。
3、放大器调零:将图的温度传感器实验模板的放大器的两输入端引线(一根传感器引线、另一根桥路输出即Rw1活动触点输出)暂时不要引入,而用导线直接将放大器的两输入端相连(短接);将主机箱上的电压表量程(显示选择)切换开关打到2V档,合上主机箱电源开关,调节温度传感器实验模板中的RW2(逆时针转到底)增益电位器,使放大器增益最小;再调节RW3(调零电位器)使主机箱的电压表显示为0。
传感器技术实验报告

传感器技术实验报告
《传感器技术实验报告》
近年来,随着科技的不断发展,传感器技术在各个领域中得到了广泛的应用。
传感器作为一种能够感知环境并将感知到的信息转化为可用信号的装置,已经成为了现代科技发展中不可或缺的一部分。
在本次实验中,我们将对传感器技术进行一系列的实验,以探究其在不同领域中的应用和性能表现。
实验一:温度传感器性能测试
在这个实验中,我们使用了一款市场上常见的温度传感器,通过连接到实验仪器上并对其进行测试,我们得出了传感器在不同温度下的性能表现。
通过实验数据的分析,我们发现该温度传感器具有较高的精准度和稳定性,能够在不同温度条件下准确地反映出环境温度变化。
实验二:光敏传感器应用实验
在这个实验中,我们将光敏传感器应用于光控灯的设计中。
通过实验数据的采集和分析,我们发现光敏传感器能够准确感知环境光线的强弱,并将其转化为控制信号,从而实现了光控灯的自动开关。
这一实验结果表明了光敏传感器在节能环保领域中的重要应用价值。
实验三:压力传感器在工业领域中的应用
在这个实验中,我们将压力传感器应用于工业机械设备中,通过实验数据的采集和分析,我们发现压力传感器能够准确感知机械设备的工作压力,并将其转化为控制信号,从而实现了对机械设备的智能监控和控制。
这一实验结果表明了压力传感器在工业领域中的重要应用潜力。
通过以上一系列的实验,我们深入探究了传感器技术在不同领域中的应用和性
能表现,实验结果表明了传感器技术在现代科技发展中的重要作用和广阔前景。
我们相信,随着科技的不断进步,传感器技术将会在更多领域中得到广泛的应用,为人类社会的发展进步做出更大的贡献。
汽车传感器与测试技术实验指导书(2个实验)

实验一位移传感器性能实验一、实验目的:1、、了解电涡流传感器原理;2、掌握电涡流传感器的应用方法;二、基本原理:电涡流传感器的基本原理通以高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
三、需用器件与单元:电涡流传感器、电涡流传感器实验模块、测微头、直流电源、数显单元(主控台电压表)、测微头、铁圆片。
四、实验步骤:测微头的组成与使用测微头组成和读数如图8-2测微头读数图图8-2 测位头组成与读数测微头组成:测微头由不可动部分安装套、轴套和可动部分测杆、微分筒、微调钮组成。
测微头读数与使用:测微头的安装套便于在支架座上固定安装,轴套上的主尺有两排刻度线,标有数字的是整毫米刻线(1mm/格),另一排是半毫米刻线(0.5mm/格);微分筒前部圆周表面上刻有50等分的刻线(0.01mm/格)。
用手旋转微分筒或微调钮时,测杆就沿轴线方向进退。
微分筒每转过1格,测杆沿轴方向移动微小位移0.01毫米,这也叫测微头的分度值。
测微头的读数方法是先读轴套主尺上露出的刻度数值,注意半毫米刻线;再读与主尺横线对准微分筒上的数值、可以估读1/10分度,如图8-2甲读数为3.678mm,不是 3.178mm;遇到微分筒边缘前端与主尺上某条刻线重合时,应看微分筒的示值是否过零,如图6-2乙已过零则读2.514mm;如图8-2丙未过零,则不应读为2mm,读数应为1.980mm。
测微头使用:测微头在实验中是用来产生位移并指示出位移量的工具。
一般测微头在使用前,首先转动微分筒到10mm处(为了保留测杆轴向前、后位移的余量),再将测微头轴套上的主尺横线面向自己安装到专用支架座上,移动测微头的安装套(测微头整体移动)使测杆与被测体连接并使被测体处于合适位置(视具体实验而定)时再拧紧支架座上的紧固螺钉。
当转动测微头的微分筒时,被测体就会随测杆而位移。
电涡流传感器测位移1)电涡流传感器和测微头的安装、使用参阅图8-5。
传感器实验报告实验总结(3篇)

第1篇一、实验背景随着科技的不断发展,传感器技术已成为现代工业、医疗、环保等领域不可或缺的重要组成部分。
为了深入了解传感器的工作原理和应用,我们开展了本次传感器实验,通过实际操作和数据分析,加深对传感器性能的理解。
二、实验目的1. 熟悉各类传感器的结构、原理和应用。
2. 掌握传感器的测试方法及数据分析技巧。
3. 培养实验操作能力和团队协作精神。
三、实验内容本次实验主要包括以下几部分:1. 压电式传感器测振动实验- 实验目的:了解压电式传感器测量振动的原理和方法。
- 实验步骤:1. 将压电传感器安装在振动台上。
2. 连接低频振荡器,输入振动信号。
3. 通过示波器观察振动波形,分析传感器输出。
2. 光纤式传感器测量振动实验- 实验目的:了解光纤传感器动态位移性能。
- 实验步骤:1. 将光纤位移传感器安装在振动台上。
2. 连接低频振荡器,输入振动信号。
3. 通过示波器观察振动波形,分析传感器输出。
3. 传感器设计实验- 实验目的:认识传感器,了解其设计原理和调试方法。
- 实验步骤:1. 根据实验要求,设计传感器电路。
2. 连接实验设备,进行电路调试。
3. 分析测试数据,评估传感器性能。
四、实验结果与分析1. 压电式传感器测振动实验- 实验结果显示,压电式传感器能够有效地测量振动信号,输出波形与输入信号一致。
- 分析原因:压电式传感器利用压电效应将振动信号转换为电信号,具有较高的灵敏度和抗干扰能力。
2. 光纤式传感器测量振动实验- 实验结果显示,光纤式传感器能够准确地测量振动位移,输出波形与输入信号一致。
- 分析原因:光纤式传感器采用光导纤维传输信号,具有抗电磁干扰、高抗拉性能等特点。
3. 传感器设计实验- 实验结果显示,所设计的传感器电路能够正常工作,输出信号稳定。
- 分析原因:在电路设计和调试过程中,充分考虑了传感器性能、信号传输和抗干扰等因素。
五、实验结论1. 压电式传感器和光纤式传感器在振动测量方面具有较好的性能,能够满足实际应用需求。
传感器实验实验报告总结(3篇)

第1篇一、实验背景随着科学技术的不断发展,传感器在各个领域得到了广泛应用。
为了提高学生对传感器原理和应用的了解,我们开展了传感器实验课程。
通过本次实验,使学生掌握传感器的原理、设计、制作和测试方法,提高学生的动手能力和创新思维。
二、实验目的1. 了解传感器的基本原理和分类;2. 掌握传感器的设计、制作和测试方法;3. 培养学生的动手能力和团队协作精神;4. 提高学生对传感器在实际工程中的应用的认识。
三、实验内容本次实验主要分为以下几个部分:1. 传感器基本原理实验:通过实验,使学生了解传感器的工作原理,掌握传感器的分类和应用。
2. 传感器设计实验:根据传感器的基本原理,设计并制作一个简单的传感器。
3. 传感器测试实验:对制作的传感器进行测试,分析其性能指标。
4. 传感器应用实验:将传感器应用于实际工程中,解决实际问题。
四、实验过程1. 传感器基本原理实验:通过实验,我们了解了传感器的分类、工作原理和应用。
实验过程中,我们学习了不同类型传感器的原理,如光电传感器、热敏传感器、压力传感器等。
2. 传感器设计实验:在老师的指导下,我们设计并制作了一个简单的压力传感器。
我们首先确定了传感器的结构,然后选择了合适的材料和元器件,最后进行了组装和调试。
3. 传感器测试实验:我们对制作的压力传感器进行了测试,测试内容包括灵敏度、线性度、响应时间等。
通过实验,我们分析了传感器的性能指标,并与理论值进行了比较。
4. 传感器应用实验:我们将制作的压力传感器应用于实际工程中,解决了一个简单的实际问题。
通过实验,我们了解了传感器在实际工程中的应用价值。
五、实验结果与分析1. 传感器基本原理实验:通过实验,我们掌握了不同类型传感器的原理和应用,为后续实验奠定了基础。
2. 传感器设计实验:我们成功设计并制作了一个简单的压力传感器,其灵敏度、线性度等性能指标符合预期。
3. 传感器测试实验:测试结果表明,我们制作的压力传感器性能稳定,能够满足实际应用需求。
传感器的小实验实验报告(3篇)

第1篇一、实验目的1. 了解传感器的基本原理和结构。
2. 掌握传感器的信号处理方法。
3. 通过实验验证传感器的性能和特点。
4. 提高动手实践能力和实验技能。
二、实验原理传感器是一种能够感受被测物理量并将其转换成可用信号的装置。
本实验中,我们以温度传感器为例,探讨其工作原理和信号处理方法。
温度传感器利用温度变化引起物理参数(如电阻、热电势等)的变化,将其转换为电信号输出。
本实验中,我们采用热敏电阻作为温度传感器,其电阻值随温度变化而变化。
三、实验设备1. 温度传感器(热敏电阻)2. 信号发生器3. 数据采集器4. 示波器5. 温度计6. 电源7. 连接线四、实验步骤1. 搭建电路:将热敏电阻、信号发生器、数据采集器和示波器连接成一个完整的电路。
确保连接正确,无短路或断路现象。
2. 设置参数:将信号发生器设置为正弦波输出,频率为1kHz,幅度为1V。
3. 采集数据:打开数据采集器,设置采样频率和时长,开始采集数据。
4. 观察现象:观察示波器上输出的波形,记录波形变化情况。
5. 测试温度:使用温度计测量热敏电阻周围的温度,记录温度值。
6. 分析结果:分析数据采集器采集到的数据,绘制电阻-温度曲线,观察电阻值随温度变化的情况。
五、实验结果与分析1. 实验现象:随着温度的升高,热敏电阻的电阻值逐渐减小,波形幅度也随之减小。
2. 数据分析:通过实验数据绘制电阻-温度曲线,可以看出热敏电阻的电阻值随温度升高而减小,符合热敏电阻的特性。
3. 结果验证:将实验结果与理论值进行对比,验证实验的正确性。
六、实验总结1. 本实验成功验证了热敏电阻作为温度传感器的可行性,掌握了传感器的信号处理方法。
2. 通过实验,加深了对传感器原理和特性的理解,提高了动手实践能力和实验技能。
3. 在实验过程中,发现了一些问题,如信号干扰、测量误差等,为今后的实验提供了借鉴。
七、实验反思1. 在实验过程中,应注意电路连接的正确性,避免短路或断路现象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
实验一 传感器性能测试
一、实验目的
1. 了解涡流传感器的测量变换原理及其测量电路的工作原理。
2. 了解CSY —998型综合传感器实验台的基本组成及工作原理,掌握其使用方法。
3. 学会测试装置特性的测试方法及静态标定方法。
4. 了解被测件材料对涡流传感器性能的影响。
二、实验装置
CSY —998型传感器系统试验仪。
三、实验原理
电涡流传感器的核心部分是一个扁平线圈。
如图1.1所示,当线圈中通以高频电流(频率为 1~3MHz 左右)时,线圈中间产生一高频交变磁场1H (设其方向如图所示),若在其附近放入一金属导体,则该磁场的磁力线将有一部分穿入导体中,从而在导体表面产生涡电流。
该涡电流同时又要产生一个磁场2H ,根据楞次定律,其方向与原磁场方向相反,从而减小了线圈中的磁通量,改变了线圈的等效阻抗,相当于改变了线圈的自感量L 。
线圈的等效阻抗Z 可表示为 ),,,,,,(δρμωW R I f Z = 其中 I —— 激励电流的幅值 ω —— 激励电流的频率 R —— 线圈半径 W —— 线圈匝数
μ —— 金属导体的磁导率 ρ —— 金属导体的电阻率
δ —— 线圈与金属导体间的距离 在其它参数不变的情况下,线圈的等效阻抗可以看成是线圈与金属导体间距离δ的单值函
数。
把传感器线圈接入相应的测量电路中,则输出也是距离δ的单值函数。
涡流传感器
图1.2
图1.2
为本实验的测量示意图。
涡流传感器的测量电路(涡流变换器)有调幅电路和调
频电路两种。
图1.3为本仪器的涡流变换器的电原理图。
这是一个调频电路,被测位移δ的变化转换成线圈等效自感量的变化,继而导致振荡电路振荡频率的变化。
测量电路最后将此变化又转换成输出电压的变化,在电压表上显示出与δ相对应的电压值。
V
图1.3
四、实验内容及步骤
1. 在CSY—998型综合传感器实验台上装好涡流传感器、测微百分表、铝测片。
2. 观察涡流传感器的结构,它是一个平绕的线圈。
3. 用连接导线将传感器接入涡流变换器的输入端,将示波器也接在涡流变换器的输入端,电压表接在涡流变换器的输出端,并置于20V档。
4. 将示波器时基打到1sμ档,观察涡流变换器输入端的波形。
如发现波形不正确,应调整测微百分尺,改变涡流传感器到铝测片的距离,直到示波器上出现正确的波形为止。
5. 一边调整测微百分尺,一边观察电压表的输出,找出传感器大致的线性工作范围(输出变化与输入变化近似成比例)的起始点。
6. 从起始点开始,以一定的步长不断改变涡流传感器到铝测片的距离δ,同时记录下相应的输出电压值
e,填入表1.1中,直到传感器的线性严重变坏为止。
o
7. 用铁测片换下铝测片重复上述步骤,将测得的输出电压值填入表1.2。
8. 整理实验现场。
9. 对实验数据进行分析,找出连续12点范围内线性最好的一段,用最小二乘法分别计算两种材料下传感器的静态灵敏度及非线性误差,画出定度曲线和最小二乘拟合直线,回答思考题,完成实验报告。
五、思考题
1. 涡流传感器属于哪一类传感器?提高传感器的零敏度可以从哪些方面入手?影响其非线性误差,限制其测量范围的主要因素有哪些?
2. 涡流传感器有哪两种测量电路?简述它们的工作原理。
3. 若在涡流传感器与金属导体之间加入纸、塑料等非金属类物质,对输出电压有无影
2
3
响?为什么?加入金属导电片呢?
附:用最小二乘法计算静态灵敏度及非线性误差的公式
拟合直线方程 b ax y
+=ˆ 静态灵敏度 a S =
非线性误差 ..ˆm ax S F y
y i i -=ε
其中 2
1
1
2111)
()
)(()(∑∑∑∑∑=====--=
n
i i n
i i n
i i n
i i n
i i i x x n y x y x n a 2
1
1
21
1121
)
()
()())((∑∑∑∑∑∑======--=
n
i i n i i n
i i i n i i n i i
n i i x x n y x x x y b
n —— 标定点数 i x —— 各标定点对应的距离i δ
i y —— 各标定点对应的输出电压oi e。