线性相关的结论
2线性相关性的结论、极大线性无关组-文档资料

0 ( k l ) ( k l ) ( k l ) , 1 1 1 2 2 2 m m m
线性无关. , , , 1 2 m
( k l ) ( k l ) ( k l ) 0 , 1 1 2 2 m1 22 m m
可 由 , , , 唯 一 线 性 表 示 . 1 2 m
§2 线性相关性的结论、极大线性无关组
, , , 线性表示,则 推论1 若向量 可由 1 2 m , , , 表示式唯一的充要条件是 线性无关. 1 2 m
证明: (反证法) (必要性)
线性相关. 假 设 , , , 1 2 m 则存在不全为零的数
k k 0 .( 1 ) 使k 1 1 2 2 m m
k ,k , ,k 1 2 m
, , , 线性表示. 向量 可由 1 2 m
有 l l l , ( 2 ) 1 1 2 2 m m
§2 线性相关性的结论、极大线性无关组
( 1 ) ( 2 )
一、线性相关性的结论 二、极大线性无关组
三、向量组的线性表示与等价
一、线性相关性的结论
, , , 线性无关,而向量组 定理1 若向量组 1 2 m
, , , , 线性相关,则 1 2 m
12
可由向量组
, , , 唯一线性表示. 1 2 m
证明:
m
则 秩 ( , ,, ) = m ; , ,, 线 性 无 关 ,
这与已知相矛盾! 所以假设不成立.
线性无关. , , , 1 2 m
§2 线性相关性的结论、极大线性无关组
线性相关性的判定

机动
目录
上页
下页
返回
结束
例1 n 维向量组 T T T e1 1,0,,0 , e 2 0,1,,0 ,,e n 0,0,,1
称为n 维单位坐标向量组,讨论其线性相关性 .
解 n维单位坐标向量组构成的矩阵 E ( e1 , e2 , , en )
是n阶单位矩阵. 由 E 1 0,知R( E ) n.
思考题解答
证明 (1)、(2)略. (3)充分性 , 线性相关, 存在不全为零的数x , y , 使
y y 得x y 0, 不妨设x 0, 则 , 令k x x 即可. 必要性
不妨设 k , 则有1 ( k ) 0,由定义 知 , 线性相关.
由于此方程组的系数行列式 1 0 1 1 1 0 20 0 1 1
故方程组只有零解 x1 x 2 x 3 0,所以向量组 b1 , b2 , b3线性无关.
机动
目录
上页
下页
返回
结束
定理 5 (1) 若 向量组 A: 1 , 2 , , m 线性相关, 则 向量组 B : 1 , , m , m 1 也线性相关.反言之, 若向
A线性表示 , 且表示式是唯一的 .
机动 目录 上页 下页 返回 结束
证明 (1) A (a1 , , am ), B (a1 , , am , am 1 ),有 记
R( B ) R( A) 1.若向量组A线性相关, 则根据定理 2,有R( A) m ,从而R( B ) R( A) 1 m 1,因此, 根据定理2知向量组B线性相关.
由R( A) R( B ) m , 知方程组 ( 1 , 2 ,, m ) x b有唯一解,即向量b能由向量 组A线性表示,且表示式唯一.
线性相关性

定义给定向量组A: a1, a2, ···, am , 如果存在不全为零的数 k1, k2, ···,km , 使k1 a1 + k2 a2+ ··· + km am = 0则称向量组A是线性相关的, 否则称它是线性无关.注意1、对于任一向量组而言, 不是线性无关的就是线性相关的.2、若a1, a2, ···, am线性无关, 则只有当k1= k2 = ··· = km=0时, 才有 k1 a1 + k2 a2+ ··· + km am = 0成立.3、向量组A只包含一个向量a时,若a=0则说A线性相关; 若a≠0, 则说A线性无关.4、包含零向量的任何向量组是线性相关的.5、含有相同向量的向量组必线性相关.6、增加向量的个数,不改变向量的相关性.(注意,原本的向量组是线性相关的)【局部相关,整体相关】7、减少向量的个数,不改变向量的无关性.(注意,原本的向量组是线性无关的)【整体无关,局部无关】8、任意n+1个n维向量必线性相关.【个数大于维数必相关】9、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关.【无关组的加长组仍无关】10、一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关.【相关组的缩短组仍相关】定理1、向量a1,a2,···,an(n≧2)线性相关的充要条件是这n个向量中的(至少有一个)一个为其余(n-1)个向量的线性组合。
2、一个向量线性相关的充分条件是它是一个零向量。
3、两个向量a、b共线的充要条件是a、b线性相关。
4、三个向量a、b、c共面的充要条件是a、b、c线性相关。
5、空间中任意四个向量总是线性相关。
我以为同一个线性相关的向量组(n个向量)里的向量应该都能够用这个组里的其他n-1个向量表示而成,结果出乎我意料的是书上说至少有一个能由其他n-1个向量线性表示,注意是至少有一个,不是全部,结果不幸的是我成了其中的一个,所以我选择线性无关。
线性代数 向量组的线性相关性

分布图示★ 线性相关与线性无关★ 例1★ 例2★ 证明线性无关的一种方法线性相关性的判定★ 定理1 ★ 定理2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 定理3 ★ 定理4 ★ 定理5★ 例7★ 内容小结 ★ 课堂练习★ 习题3-3内容要点一、线性相关性概念定义1 给定向量组,,,,:21s A αααΛ 如果存在不全为零的数,,,,21s k k k Λ 使,02211=+++s s k k k αααΛ (1)则称向量组A 线性相关, 否则称为线性无关.注: ① 当且仅当021====s k k k Λ时,(1)式成立, 向量组s ααα,,,21Λ线性无关; ② 包含零向量的任何向量组是线性相关的;③ 向量组只含有一个向量α时,则(1)0≠α的充分必要条件是α是线性无关的; (2)0=α的充分必要条件是α是线性相关的;④ 仅含两个向量的向量组线性相关的充分必要条件是这两个向量的对应分量成比例;反之,仅含两个向量的向量组线性无关的充分必要条件是这两个向量的对应分量不成比例. ⑤ 两个向量线性相关的几何意义是这两个向量共线, 三个向量线性相关的几何意义是这三个向量共面.二、线性相关性的判定定理1 向量组)2(,,,21≥s s αααΛ线性相关的充必要条件是向量组中至少有一个向量可由其余1-s 个向量线性表示.定理 2 设有列向量组),,,2,1(,21s j a a a nj j j j ΛM =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=α 则向量组s ααα,,,21Λ线性相关的充要条件是: 是矩阵),,,(21s A αααΛ=的秩小于向量的个数s .推论 1 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是: 矩阵),,,(21n A αααΛ= 的秩等于(小于)向量的个数n .推论2 n 个n 维列向量组n ααα,,,21Λ线性无关(线性相关)的充要条件是:矩阵),,,(21n A αααΛ= 的行列式不等于(等于)零.注: 上述结论对于矩阵的行向量组也同样成立.推论3 当向量组中所含向量的个数大于向量的维数时, 此向量组必线性相关. 定理3 如果向量组中有一部分向量(部分组)线性相关,则整个向量组线性相关. 推论4 线性无关的向量组中的任何一部分组皆线性无关.定理4 若向量组βαα,,,1s Λ线性相关, 而向量组s ααα,,,21Λ线性无关, 则向量β可由s ααα,,,21Λ线性表示且表示法唯一.定理5 设有两向量组,,,,:;,,,:2121t s B A βββαααΛΛ向量组B 能由向量组A 线性表示, 若t s <, 则向量组B 线性相关.推论5 向量组B 能由向量组A 线性表示, 若向量组B 线性无关, 则.t s ≥推论6 设向量组A 与B 可以相互线性表示, 若A 与B 都是线性无关的, 则.t s =例题选讲例1 设有3个向量(列向量):,421,221,101221⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=ααα不难验证,02321=-+ααα 因此321,,ααα是3个线性相关的3维向量.例2 设有二个2维向量:,10,0121⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=e e 如果他们线性相关, 那么存在不全为零的数,,21λλ 使,02211=+e e λλ也就是 ,0100121=⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛λλ 即 .0002121=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛λλλλ于是,0,021==λλ 这同21,λλ不全为零的假定是矛盾的. 因此1e ,2e 是线性无关的二个向量.例3 (E01) n 维向量组T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21ΛΛΛΛ===εεε称为n 维单位坐标向量组, 讨论其线性相关性.解 n 维单位坐标向量组构成的矩阵)(21n E εεε,,,Λ=⎪⎪⎪⎪⎪⎭⎫⎝⎛=100010001ΛΛΛΛΛΛΛ 是n 阶单位矩阵.由,01≠=E 知.n E r =即E r 等于向量组中向量的个数, 故由推论2知此向量是线性无关的.例 4 (E02) 已知,1111⎪⎪⎪⎭⎫ ⎝⎛=a ,5202⎪⎪⎪⎭⎫ ⎝⎛=a ⎪⎪⎪⎭⎫⎝⎛=7423a , 试讨论向量组321,,a a a 及21,a a 的线性相关性.解 对矩阵)(321a a a A ,,=施行初等行变换成行阶梯形矩,可同时看出矩阵A 及),(21αα=B 的秩,利用定理2即可得出结论.),,,321(ααα=⎪⎪⎪⎭⎫ ⎝⎛7514212011213r r r r --→⎪⎪⎪⎭⎫ ⎝⎛550220201−−→−-2125r r ,000220201⎪⎪⎪⎭⎫⎝⎛ 易见,,2)(=A r ,2)(=B r 故向量组,,,321ααα线性相关. 向量组21a a ,线性无关.例5 判断下列向量组是否线性相关:.11134,1112,5121321⎪⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=ααα解 对矩阵)(321ααα,,施以初等行变换化为阶梯形矩阵:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---1115111312421 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----990330550421⎪⎪⎪⎪⎪⎭⎫⎝⎛000000110421秩,,,32)(321<=ααα所以向量组321ααα,,线性相关.例6 证明:若向量组γβα,,线性无关, 则向量组,βα+,γβ+αγ+亦线性无关. 证 设有一组数,,,321k k k 使0)()()(321=+++++αγγββαk k k (1)成立,整理得0)()()(322131=+++++γβαk k k k k k 由γβα,,线性无关,故⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k (2) 因为110011101,02≠=故方程组(2)仅有零解.即只有0321===k k k 时(1)式才成立.因而向量组,βα+,γβ+αγ+线性无关.例7 (E03) 设向量组321,,a a a 线性相关, 向量组432,,a a a 线性无关, 证明 (1) 1a 能由32,a a 线性表示; (2) 4a 不能由321,,a a a 线性表示.证明(1)因432ααα,,线性无关,故32,αα线性无关,而321ααα,,线性相关,从而1α能由32αα,线性表示;(2)用反证法. 假设4α能由321ααα,,线性表示,而由(1)知1α能由32αα,线性表示,因此4α能由32αα,表示,这与432ααα,,线性无关矛盾.证毕.课堂练习1. 试证明:(1) 一个向量α线性相关的充要条件是0=α; (2) 一个向量α线性无关的充分条件是0≠α;(3) 两个向量βα,线性相关的充要条件是βαk =或者αβk =(两式不一定同时成立)。
《线性代数》向量组的线性相关与线性无关

a11 a21
an1
即行列式 D = a12 a22
an2 = 0 ?
核心问题!
a1n a2n
ann
④若方程组(2)有非零解,则a1,a2,,an线性相关;否则,线性无关.
特殊方法(举例)
亦即
例7. 证明下列单位向量组线性无关.
1
0
0
0
α1
=
0
,
0
α2
=
1
,
0
α3
=
0 1
,
α4
=
k1,k2, ,kn,使
k1a1+k2a2+ + knan=o 成立 .
由向量的运算性质可得
k1a1+k2a2+ +kn an=o,即
a11 a21
an1 0
k1
a12 ...
+
k2
a22 ...
+
...
+
kn
an2 ...
=
0 ...
a1n a2n
故
β
=
(-
l1 l
)α 1
+
(-
l2 l
)α 2
+
+
(-
lm l
)α m
,
即b可由向量组a1,a2, ,am线性表示.
定理2 设向量组 a1,a2, ,am ,b 线性相关,而a1,a2, ,am线性无关,则b 可由a1,a2, ,am线性表示,且表
示式是惟一的.
证明: 再证表示法惟一.
设b可表示成以下两种形式,
结论: 1.含有零向量的向量组一定线性相关.
数学公式知识:空间向量间的线性相关性判定

数学公式知识:空间向量间的线性相关性判定在空间向量中,我们可以通过线性相关性的判定来确定向量组是否存在不必要的向量。
这对于数学学习和应用来说都是非常有用的,因此本文将介绍空间向量间的线性相关性判定的基本概念和推导过程。
一、向量的线性组合首先我们需要了解向量的线性组合是什么。
向量的线性组合是指通过给定的若干个向量,分别乘以相应的标量,然后将它们相加而得到的新向量,例如:设有向量a=(a1,a2,a3)、b=(b1,b2,b3)和c=(c1,c2,c3),则它们的线性组合可以表示为:λ1a + λ2b + λ3c = (λ1a1 + λ2b1 + λ3c1, λ1a2 +λ2b2 + λ3c2, λ1a3 + λ2b3 + λ3c3)其中λ1、λ2和λ3是实数,称为向量a、b和c的系数。
二、向量的线性相关与线性无关在了解了向量的线性组合之后,我们来看什么是向量的线性相关和线性无关。
如果存在一组不全为0的实数λ1、λ2、……、λn使得向量组V1,V2,……,Vn的线性组合为0,即:λ1V1 + λ2V2 + …… + λnVn = 0那么我们称向量组V1,V2,……,Vn是线性相关的;否则,如果只有λ1=λ2=……=λn=0时向量组的线性组合才为0,我们就称向量组V1,V2,……,Vn是线性无关的。
换句话说,如果存在不全为0的系数使得线性组合为0,那么向量组就是线性相关的;如果要使得线性组合等于0,必须每一项的系数都为0,那么向量组就是线性无关的。
三、判断向量组的线性相关性现在让我们来看如何判断向量组的线性相关性。
在三维空间中,设有向量组V1,V2,……,Vn,我们想要判断它们是否线性相关。
如果存在不全为0的实数λ1、λ2、……、λn使得:λ1V1 + λ2V2 + …… + λnVn = 0那么向量组V1,V2,……,Vn就是线性相关的。
反之,如果只有λ1=λ2=……=λn=0时使得:λ1V1 + λ2V2 + …… + λnVn = 0那么向量组V1,V2,……,Vn就是线性无关的。
3.2线性相关与线性无关

定理3.2.4可以简述为“相关组的截短向量组必为相关 组”.它的等价说法是“无关组的接长向量组必为无关 组”.
注意: “扩充或子组”与“接长或截短”的区别,前者 是维数不变,向量个数增减;后者是向量个数不变, 维数增减.
不妨设km 0, 则有
如果m k11
m
k1mk(mk111
m1 ,
k
则
m
1
m
1
).
k11 km1 m1 1 • m 0.
ቤተ መጻሕፍቲ ባይዱ
由于k个数k1 ,, km1 , km 1不全为零,故
1
,
2
,,
线性
m
相
关
。
例11设1 ,2 ,,m线 性 相 关 ,m 1且1 0.
证 明 : 存 在 某 个t
这 就 是 说 , 若 方 阵 的 行列 式 等 于 零 , 则 它 的 行向 量 组
和 列 向 量 组 都 线 性 相 关; 若 方 阵 的 行 列 式 不 为零 , 则
它 的 行 向 量 组 和 列 向 量组 都 线 性 无 关 。
定 理3.2.1m个n维 向 量1,2 ,,m (m 2)线 性 相 关
定理3.2.3可以简述为“相关组的扩充向量组必为相 关组”,或者“部分相关,整体必相关”.它的等价 说法是“无关组的子向量组必为无关组”或者“整 体无关,部分必无关”.
定理3.2.4 设有两个向量组,它们的前n个分量对应 相等: i (ai1, ai2 ,, ain ),i 1,2,, m;
i (ai1, ai2 ,, ain , ai,n1 ),i 1,2,, m.
§3.3 向量组的线性相关性

证明 记A (1,2 , ,m ), B (1,2 , ,m ,b),
则有R( A) R(B). 因A组线性无关,有R( A) m; 因B组线性相关,有R(B) < m 1.
所以m R(B) < m 1, 即有R(B) m.
由R( A) R(B) m,知方程组(1,2 , ,m )x b
因 1,2,3 线性无关,
故有:
x1 x3 0 x1 x2 0,
1 01
x2 x3 0
1 1 0 2 0 , 故方程组只有零解 x1 = x2 = x3 = 0 , 011
所以向量组 1, 2, 3 线性无关.
二、几个简单结论
定理3.10 设向量组A:1,2, ,m 线性相关,则 向量组B :1, ,m ,m1 也线性相关.
则向量 a, b, c 线性相关, 但 c 不可由 a,b 线性表示.
3. 线性相关性在线性方程组中的应用
当方程组中有某个方程是其他方程的线性组 合时,这个方程就是多余的, 这时称方程组(各个方 程)是线性相关的;当方程组中没有多余方程, 就称 该方程组(各个方程)线性无关.
பைடு நூலகம் 定理3.9 向量组 1,2,,m 线性相关的充要条件是 它所构成的矩阵A=(1, 2,,m )的秩小于向量的
向量组 A:a1, a2, …, am
线性相关
m 元齐次线性方程组 Ax = 0
有非零解
R(A) < m
说明
(1) 含有零向量的向量组必线性相关.
(2) 向量组只含一个向量 时: 若 =0, 则向量组线性相关; 若 0, 则向量组线性无关.
(3) 两个向量 1,2 线性相关的充分必要条件是 存在常数k, 使得 1= k2 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性相关的结论
线性相关是指两个变量之间存在线性关系。
当且仅当它们之间存在一个线性方程,使得至少一组解。
这可以通过称为线性相关系数的统计量来衡量。
当相关系数的绝对值为1时,这两个变量是完全相关的;当相关系数的绝对值小于1时,它们是不完全相关的。
当相关系数的绝对值为0时,这两个变量没有线性相关性。
此外,在线性相关的情况下,一个变量的变化会导致另一个变量的变化,并且它们之间存在线性关系。
这意味着,如果两个变量是线性相关的,那么它们的散点图将呈现出一条直线。
在统计学中,线性回归分析是一种常用的方法来检验两个变量之间的线性相关性并预测一个变量的值。
总之,线性相关是指两个变量之间存在线性关系,可以通过相关系数来衡量,并且可以使用线性回归分析来研究和预测这种关系。