向量组的线性相关性与线性无关性

合集下载

向量组的线性相关与线性无关

向量组的线性相关与线性无关

向量组的线性相关与线性无关1. 线性组合设a<i, a2,…,a t匕R ,匕,k2,…,K匕R ,称匕耳十k a +…+ ka t为a^ a2,…,a t的—一个线性组合。

一k2【备注1】按分块矩阵的运算规则,匕印+k2a2+…+ k t a t=(a“ a2,…,q)亠。

这++占丿样的表示是有好处的。

2. 线性表示设aa, g R n,b R n,如果存在匕山,K R,使得b = Ka k2a2- ■■■■ k t a t则称b可由Q , a?, , a线性表示。

k2b = ki&+k2a2+■■■+k(at,写成矩阵形式,即b =(ai@, ■■■©) ■。

因此,b 可++<k t」由a,a2,…,a t线性表示即线性方程组(a i,a2,…,aj « =b有解,而该方程组有解++当且仅当r(q,a2, ,a t) ,a t,b)。

3. 向量组等价设^包,…,ad, b2,…,b s • R n,如果^总,…,耳中每一个向量都可以由匕,鸟,…,b s线性表示,则称向量组a「a2,…,a可以由向量组gp,…,b s线性表示。

如果向量组a,a2,…,a t和向量组b|,b2,…,b s可以相互线性表示,则称这两个向量组是等价的。

向量组等价的性质:(1) 自反性任何一个向量组都与自身等价。

⑵对称性若向量组I与II等价,则向量组II也与I等价。

⑶传递性若向量组I与II等价,向量组II与III等价,则向量组I与III 等价。

证明:自反性与对称性直接从定义得出。

至于传递性,简单计算即可得到。

设向量组I为矽总,…,a r ,向量组II为b,b,…,b s,向量组III为G,Q,…,G。

t向量组II可由III线性表示,假设b j八yqC k,j =12…,s。

向量组I可由向s量组II线性表示,假设a「v X ji b j,i =1,2,…,r。

因此, j 二s s t t sa = ' X jjb j = ' X ji y kjc k = ' (.一y kj X ji)C k,i = h2,…,rj 1j k a km j T因此,向量组I可由向量组III线性表示。

线性代数第四章第二节

线性代数第四章第二节
相关, 相关, 则向量组 B: a1 , a2 , , am , am+1 也线性相 关. 反言之, 若向量组 B 线性无关, 则向量组 A 也 反言之, 线性无关, 线性无关. 线性无关. (2) m 个 n 维向量组, 当维数 n 小于向量个 维向量组, 数 m 时一定线性相关. 时一定线性相关.
第 二 节 向量组的线性相关性
主要内容
线性相关与线性无关的定义 向量组线性相关的充要条件 向量组的线性相关性的判定定理
一 ,线性相关与线性无关的定义
1. 定义 定义 4 给定向量组 A: a1 , a2 , , am , 如果存
在不全为零的实数 k1 , k2 , , km , 使 k1a1 + k2a2 + + kmam = 0, 则称向量组 A 是线性相关的, 否则称它线性无
关.
2. 两个特殊向量组线性相关的充要条件
1) 由一个向量构成的向量组 A: a 线性相关 的充要条件是 a = 0. 2) 由两个向量构成的向量组 A : a1 , a2 线性 相关的充要条件是 a1 , a2 的分量对应成比例. 如 的分量对应成比例.
向量组 A:
1 3 a1 = 1 , a 2 = 3 , 2 6
图 4.3
从几何上讲, 从几何上讲 若 4 维向量组所对应的平面组 中至少有三个平面共线, 中至少有三个平面共线 即至少有三个平面交于 同一直线则该向量组一定线性相关. 同一直线则该向量组一定线性相关
二 ,向量组线性相关的充要条件
定理 向量组线性相关的充要条件是该向量
组中至少有一个向量可由其余向量线性表示. 组中至少有一个向量可由其余向量线性表示
图 4.1
(2) 由三个 3 维向量构成的向量组线性相关的 几何意义是这三个向量共面. 几何意义是这三个向量共面. 如给定平面 π : x+y+z 上取三点: =3. 在 π 上取三点 M1(1,1,1) , M2(2,0,1) , M3(0,2,1) , 作三个向量: 作三个向量 z R3 M3 O M1 M2 x 3 3

向量组的线性相关与线性无关向量组的线性无关

向量组的线性相关与线性无关向量组的线性无关

向量组的线性相关与线性无关1、线性组合设12,,,n t a a a R ⋅⋅⋅∈,12,,,t k k k R ⋅⋅⋅∈,称1122t t k a k a k a ++⋅⋅⋅+为12,,,t a a a ⋅⋅⋅的一个线性组合。

【备注1】按分块矩阵的运算规则,12112212(,,,)t t t t k kk a k a k a a a a k ⎛⎫ ⎪ ⎪++⋅⋅⋅+=⋅⋅⋅ ⎪ ⎪⎝⎭。

这样的表示就是有好处的。

2.线性表示设12,,,n t a a a R ⋅⋅⋅∈,n b R ∈,如果存在12,,,t k k k R ⋅⋅⋅∈,使得1122t t b k a k a k a =++⋅⋅⋅+则称b 可由12,,,t a a a ⋅⋅⋅线性表示。

1122t t b k a k a k a =++⋅⋅⋅+,写成矩阵形式,即1212(,,,)t t k kb a a a k ⎛⎫ ⎪ ⎪=⋅⋅⋅ ⎪ ⎪⎝⎭。

因此,b 可由12,,,t a a a ⋅⋅⋅线性表示即线性方程组1212(,,,)t t k ka a ab k ⎛⎫ ⎪ ⎪⋅⋅⋅= ⎪ ⎪⎝⎭有解,而该方程组有解当且仅当1212(,,,)(,,,,)t t r a a a r a a a b ⋅⋅⋅=⋅⋅⋅。

3、向量组等价设1212,,,,,,,n t s a a a b b b R ⋅⋅⋅⋅⋅⋅∈,如果12,,,t a a a ⋅⋅⋅中每一个向量都可以由12,,,s b b b ⋅⋅⋅线性表示,则称向量组12,,,t a a a ⋅⋅⋅可以由向量组12,,,s b b b ⋅⋅⋅线性表示。

如果向量组12,,,t a a a ⋅⋅⋅与向量组12,,,s b b b ⋅⋅⋅可以相互线性表示,则称这两个向量组就是等价的。

向量组等价的性质:(1) 自反性 任何一个向量组都与自身等价。

(2) 对称性 若向量组I 与II 等价,则向量组II 也与I 等价。

线性相关与无关的判断方法

线性相关与无关的判断方法

线性相关与无关的判断方法
1、定义法
令向量组的线性组合为零(零向量),研究系数的取值情况,线性组合为零当且仅当系数皆为零,则该向量组线性无关;若存在不全为零的系数,使得线性组合为零,则该向量组线性相关。

2、向量组的相关性质
(1)当向量组所含向量的个数与向量的维数相等时,该向量组构成的行列式不为零的充分必要条件是该向量组线性无关;
(2)当向量组所含向量的个数多于向量的维数时,该向量组一定线性相关;
(3)通过向量组的正交性研究向量组的相关性;
(4)通过向量组构成的齐次线性方程组解的情况判断向量组的线性相关性;线性方程组有非零解向量组就线性相关,反之,线性无关。

(5)通过向量组的秩研究向量组的相关性。

若向量组的秩等于向量的个数,则该向量组是线性无关的;若向量组的秩小于向量的个数,则该向量组是线性相关的。

3、线性重要性质
(1)向量组B=(β1,β2,……,βm)能由向量组A=(α1,
α2,……,αm)线性表示的充要条件是矩阵A=(α1,α2,……,αm)的秩等于矩阵(α1,α2,……,αm,B)的秩。

(2)向量组B能由向量组A线性表示,则向量组B的秩不大于向量A的秩。

反之不一定成立。

(3)零向量可由任一组向量线性表示。

(4)向量组α1,α2,……,αm中每个向量都可由向量组本身线性表示。

(5)设α1,α2,……,αm线性无关,而α1,α2,……,αm,ß线性相关,则β可由α1,α2,……,αm线性表示,且表示是唯一的。

第二节向量组的线性相关性与线性无关性

第二节向量组的线性相关性与线性无关性

注意: 对线性无关这个概念的理解,要多多思 考。或许有同学这样认为:α1,α2,…,αm线性无 关是指当系数k1,k2,…,km全为0时,有k1α1 + k2 α2 + …+ km αm = 0。实际上,这种看法是错误的。 大家想一想,当系数k1 ,k2 ,…,km全为0时 , k1α1 + k2 α2 + …+ km αm 当然是零向量, 这与α1, α2,…,αm线性相关或线性无关没有任何联系。
写成向量的形式就是
a11 a12 a a 21 22 k1 k2 a a m,1 m,2 a1n a 2n kn 0 a m,n
写成分量的形式就是 a11k1 a12 k 2 a1n k n 0 a k a k a k 0 21 1 22 2 2n n a m 1,1k1 a m 1,2 k 2 a m 1,n k n 0 取其前面m个方程,即 a11k1 a12 k 2 a1n k n 0 a k a k a k 0 21 1 22 2 2n n a m,1k1 a m,2 k 2 a m,n k n 0
定义2 设α 1 ,α 2 ,…,α m是一组n维向量, 如果存在m个不全为0的常数k1,k2,…,km使得 k1 α 1 + k2 α 2 + … + km α m = 0,则称向量组 α 1 ,α 2 ,…,α m线性相关(linearly dependent);否则,称向量组α 1,α 2,…,α m 线性无关。
注: 类似可以证明,若一个向量组仅由α ,β , γ 三个向量构成,则 α , β , γ 线性相关的充要条件 是α ,β ,γ 共面。 上述定义2是通过否定线性相关来给出线性无关的 定义,下面我们将用肯定的表述来说明线性无关这个 概念。为此,我们先检查线性相关的定义。称 α 1 , α 2 ,…, α m 线性相关是指存在不全为 0 的 m 个常数 k1 , k2 ,…, km 使得 k1 α 1 + k2 α 2 + … + km α m = 0 , 这即是说:以k1,k2,…,km为未知数的方程(实际上, 若按向量的分量来看,这是一个方程组): k1 α 1 + k2 α 2 + … +km α m = 0 有非零解( k1 , k2 ,…,km)。

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。

而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。

一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。

换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。

举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。

实际上,这两个向量是共线的,它们的方向相同,只是长度不同。

二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。

换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。

继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。

实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。

因此,这三个向量是线性相关的。

三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。

如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。

换句话说,线性相关性与线性无关性是两个互斥的概念。

在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。

这对于解方程组、求解特征值等问题都有着重要的意义。

四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。

向量组的线性相关与线性无关

向量组的线性相关与线性无关

1 2 4 0 5 5 0 3 3 0 9 9
1 0 0 0
2 1 0 0
4 1 , 0 0
r(A) =(a1 a2 am)秩2<3 (向量的个数) ,
所以向量组 a1,a 2,a 3 线性相关。
判定定理 首页 上页 返回 下页 结束 铃
例2.判断向量组 A: a1(1, 2, 0, 1),a 2(1, 3, 0, 1), a 3(1, 1, 1, 0)是否线性相关。
∴此向量组 线性相关
首页 上页 返回 下页 结束 铃
判定向量组线性相关与线性无关的步骤:
a11 a12 a 设n个m维向量组 A: a1 , 2 a 1m
a21 a22 a , , n a2m
an1 an2 anm
(1)比较向量组 A的个数n与向量的维数m
①当n>m时,向量组 A线性相关(如例6)
试讨论向量组 a1, a2, a3 及向量组a1, a2 的线性相关性.
解:
可见 R(a1, a2, a3 ) = 2,故向量组 a1, a2, a3 线性相关; 同时,R(a1, a2 ) = 2,故向量组 a1, a2 线性无关.
11
首页
上页
返回
下页
结束

推论1:设n个n维向量为 a11 a12 a21 a22 a1 a a , 2 , , n an1 an2
1 0 0 k1 0 若 k1e1 k2 e2 k3 e3 k1 0 k2 1 k3 0 k2 0 0 0 1 k 0 3
=0,线性相关 (2)当n=m时,计算行列式|A| =| a1 a2 an | ≠0,线性无关 (如例4,例5) < n ,线性相关 (3)当n<m时,计算r(A)=秩( a1 a2 an ) = n ,线性无关 (如例1,例2,例3 )

向量组的线性相关与线性无关

向量组的线性相关与线性无关
一、线性组合的概念
定义1 给定向量组A :1,2 , ,m,对于任何一
组实数k1,k2, , km,向量
k11 k2 2 km m
称为向量组的一个线性组合,k1,k2, , km称为这 个线性组合的系数.
线性方程组的向量表示
a11 x1 a12 x2 a1n xn b1,
a21 x1 a22 x2 a2n xn b2 ,
容易验证 x=1, y=1, z= -1是上述方程的一组非零解 即存在一组不全为零的数 1,1,-1使
1 1 (1) 0
所以 , , 线性相关
例3 已知向量组1,2 ,3 线性无关, b1 1 2 ,
b2 2 3 , b3 3 1, 试证b1, b2 , b3线性无关.
证 设有x1, x2 , x3使
若向量组A线性无关,则向量组B也线性无关。 说明 增加方程个数相当于向量 j ( j 1, 2,L m)
增加分量,但向量组所含向量的个数不变
由于线性方程组的解与方程组中方程的次 序无关,由此我们得到如下命题
命题2 设有两个向量组
A : j (a1 j , a2 j ,L anj )T ( j 1, 2,L m), B : j (ap1 j , ap2 j ,L , apn j )T ( j 1, 2,L m),
4.包含零向量的任何向量 组是线性相关的.
5.对 于 含 有 两 个 向 量 的 向量 组, 它 线 性 相 关 的 充要条件是两向量的分量对应成比例,几何意义 是两向量共线;三个向量相关的几何意义是三向 量共面.
线性相关性在线性方程组中的应用
若方程组中有某个方程是其余方程的线性组 合时,这个方程就是多余的,这时称方程组(各 个方程)是线性相关的;当方程组中没有多余方 程,就称该方程组(各个方程)线性无关(或线 性独立).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

定理3 即是说,如果已知一个向量组线性相关, 则在此基础上增加一些同维数的向量,得到的 新的向量组一定线性相关。 推论1 若某向量组含有零向量,则此向量组一定 线性相关。 定理4 设两个向量组T1:α1, α2,α3,…,αn 和T2:β1 ,β 2 ,…,β n,其中 αj = (a1j, a2j, …,a mj)T, βj = (a1j, a2j, …,a mj, a m+1,j) T, j = 1,2,…,n. 若向量组T1:α1, α2,α3,…,αn线性无关, 则向量组T2:β1 ,β 2 ,…,β n线性无关。
定理2 设 (1) 向量组α1, α2,α3,…,αm,β线性相 关; (2) 向量组α1, α2 ,α3 ,…,αm 线性无 关, 则向量β可以由α1, α2,α3,…,αm线 性表示,且表示式唯一。
证 由α1, α2,α3,…,αm,β线性相关知存 在m+1个不全为0的常数k1,k2,k3,…,km, km+1使得 k1α1 + k2α2 + k3 α3 + … +km αm + km+1 β = 0, 要证明β可由α1 ,α2 ,…,αm 线性表示,只 须证明km+1≠0即可。因为若km+1≠0,则
⎛ k1 ⎞ ⎛ 0 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ k2 ⎟ = ⎜ 0 ⎟ ⎜ k ⎟ ⎜0⎟ ⎝ 3⎠ ⎝ ⎠
所以 k1= k2 = k3 =0 。 因此,e1, e2 , e3 线性无关。 定理1 向量组α1,α2,…,αm ( m 2 ) 线 性相关的充分必要条件是其中至少有一个向量 可以由其余m-1个向量线性表示。 证明:先证必要性。 因为 α1,α2,…,αm线性相关,所以存 在不全为0的m个常数k1 , k2 , … ,km使得k1α1 + k2 α2 + … + km αm = 0。不妨设 k1≠0, 则
取其前面m个方程,即
⎧ a11k1 + a12 k 2 + ⎪ a k +a k + ⎪ 21 1 22 2 ⎨ ⎪ ⎪a m,1k1 + a m,2 k 2 + ⎩
+ a1n k n = 0 + a 2n k n = 0 + a m,n k n = 0
写成向量的形式就是
⎛ a11 ⎞ ⎛ a12 ⎞ ⎜ ⎟ ⎜ ⎟ a 21 ⎟ a 22 ⎟ k1 ⎜ + k2 ⎜ + ⎜ ⎟ ⎜ ⎟ ⎜ ⎜ ⎜a ⎟ ⎟ ⎜a ⎟ ⎟ m,1 ⎠ m,2 ⎠ ⎝ ⎝ ⎛ a1n ⎞ ⎜ ⎟ a 2n ⎟ kn ⎜ =0 ⎜ ⎟ ⎜ ⎜a ⎟ ⎟ m,n ⎠ ⎝
k1 k2 β =− α1 − α2 − km +1 km +1 km − αm km +1
下面用反证法证明 km+1≠0. 假设km+1= 0,则有不全为0的m个数k1, k2,…,km 使得k1α1 + k2 α2 + …+ km αm = 0, 这与α1,α2,…,αm线性无关矛盾!
下面再证明表示式唯一。设有两个表示式: β = k1α1 + k2 α2 + … + km αm 及 β = l1α1 + l2 α2 + … + lm αm 则两式相减就有 0 = (k1-l1)α1+ (k2-l2)α2 + (k3-l3 )α3 + … + (km-lm )αm, 由α1,α2,…,αm 线性无关, 知 (k1-l1 ) = (k2-l2 ) = … = (km- lm ) = 0, 即 k1= l1, k2= l2 , … , km= lm 故表示式唯一。
因此,我们有下述几种等价说法: α1,α2,…,αm线性无关 以k1 ,k2 ,…,km 为未知数的方程k1α1 + k2 α2 + … + km αm = 0没有非零解 k1α1 + k2 α2 + … + km αm = 0只有零解:k1 = k2 = … = k m = 0 由k1α1 + k2 α2 + … + km αm = 0一定可以推 出 k1 = k2 = … = km = 0 若k1,k2,…,km不全为0,则必有k1α1 + k2 α2 + … + km αm ≠ 0。
这即是说对于上述不全为0的数k1,k2,…,kn 有 k1α1 + k2α2 + …+ knα n = 0, 即α1, α2,α3,…,αn线性相关。
定理4是说,如果已知某向量组(向量个 数为n)线性无关,则此向量组中的每个向量 增加一个分量而得到的多一维的向量组(向量 个数还是n)一定仍然线性无关。增加一维分 量如此,增加任意k维分量显然也是如此。
ห้องสมุดไป่ตู้
定理3 若向量组α1, α2,α3,…,αm线性相 关,则向量组α1, α2,α3,…,αm, αm+1,…,αn也线性相关。 证: 设α1, α2,α3,…,αm线性相关,则有不 全为0的m个数k1,k2,…,km 使得 k1α1 + k2 α2 + …+ km αm = 0, 从 而 k1α1 + k2 α2 + …+ km αm+0·αm+1 +…+0·αn = 0. 因为k1,k2,…,km,0, …,0这n个数不全为0 (因为k1,k2,…,km不全为0),故α1, α2, α3,…,αm,αm+1,…,αn线性相关。
证 反证法。(假设T2线性相关,证明T1线性 相 关 。 ) 若 T2 线 性 相 关 , 则 有 不全为0的数 k1,k2,…,kn使得 k1β1 + k2β 2 + …+ knβ n = 0, 即
⎛ a11 ⎞ ⎛ a12 ⎞ ⎜ ⎟ ⎜ ⎟ ⎜ a 21 ⎟ + k ⎜ a 22 ⎟ + k1 ⎜ ⎟ 2⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜a ⎟ ⎜a ⎟ m +1,1 ⎠ m +1,2 ⎠ ⎝ ⎝
例 设e1 = (1, 0, 0 )T, e2 = (0, 1, 0 ) T, e3 = (0, 0, 1) T, 证明:e1, e2 , e3线性无关。 证明:如果存在数k1 ,k2 ,k3使得 k1 e1 + k2 e2 + k3 e3 = 0,即 ⎛1 ⎞ ⎛0⎞ ⎛ 0⎞ ⎛ 0⎞ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ k1 ⎜ 0 ⎟ + k2 ⎜ 1 ⎟ + k3 ⎜ 0 ⎟ = ⎜ 0 ⎟ ⎜0⎟ ⎜0⎟ ⎜1 ⎟ ⎜ 0 ⎟ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ 通过左边的数乘和加法,上述等式即是
注意: 对线性无关这个概念的理解,要多多思 考。或许有同学这样认为:α1,α2,…,αm 线性无关是指当系数k1,k2,…,km全为0 时,有k1α1 + k2 α2 + …+ km αm = 0。实际 上,这种看法是错误的。大家想一想,当系数 k1 ,k2 ,…,km全为0时 ,k1α1 + k2 α2 + …+ km αm 当然是零向量, 这与α1, α2,…,αm线性相关或线性无关没有任何联 系。
第二节 向量组的线性相关性与 线性无关性
定义1 设α1 ,α2 ,…,αm ,β是一组n维 向量,若存在m个实数 k1 ,k2 ,…,km使得 β = k1α1 + k2 α2 + … + km αm ,则称β可以 由α1 ,α2 ,…,αm线性表示( linear representation )。或称α1 ,α2 ,…,αm线性 表示(linear generate)β。 例如:α1 = (1, 2, 0) T,α2 = (1, 0, 3) T, α3 = (3, 4, 3)T,则α3 = 2α1 + α2 ,即存在实数k1 =2,k2=1使得α3 = k1α1 + k2α2,故α3可以 由α1 ,α2线性表示。(大家想一想,这里的常 数k1 =2,k2=1是怎么求出来的?)
定义2 设α1 ,α2 ,…,αm是一组n维向量, 如果存在m个不全为0的常数k1,k2,…,km使得 k1 α1 + k2 α2 + … + km αm = 0,则称向量组 α1 ,α2 ,…,αm线性相关(linearly dependent);否则,称向量组α1,α2,…,αm 线性无关。
例1 若一个向量组仅由一个向量α组成, 则 由定义2 易知它线性相关的充要条件是α = 0。 例2 若一个向量组仅由α,β两个向量组成, 则α,β线性相关是指α,β这两个向量的分 量对应成比例,换句话说,即是指α与β平行 或α,β共线。 证明: α,β线性相关 存在不全为0的 两个数k1,k2使得k1α + k2β = 0 ,不妨假设 k1≠ 0,则由k1 α + k2 β = 0 知α = β, 此即 说明α ,β的分量对应成比例。
⎛ a1n ⎞ ⎜ ⎟ ⎜ a 2n ⎟ = 0 + kn ⎜ ⎟ ⎜ ⎟ ⎜a ⎟ m +1,n ⎠ ⎝
写成分量的形式就是
⎧ a11k1 + a12 k 2 + + a1n k n = 0 ⎪ a k +a k + +a k = 0 ⎪ 21 1 22 2 2n n ⎨ ⎪ ⎪a m +1,1k1 + a m +1,2 k 2 + + a m +1,n k n = 0 ⎩
从上述关于线性无关的几种等价说法可以看 出:α1,α2,…,αm线性无关是指,只有当 k1= k2 = … = km = 0时才有k1α1 + k2 α2 + … + km αm = 0。或者换句话说,在k1α1 + k2 α2 + …+ km αm = 0这个条件 下,一定可 以推出k1= k2 = … = km = 0。实际上,以后我 们证明一个向量组线性无关时,一般均采用此 观点,即先假设k1α1 + k2 α2 + …+ km αm = 0,然后在此假设条件下去证明k1= k2 = … = km = 0.
相关文档
最新文档