向量组的线性相关性

合集下载

4-2 向量的线性相关性

4-2 向量的线性相关性
第 二 节 向量组的线性相关性
主要内容
线性相关与线性无关的定义 向量组线性相关的充要条件 向量组的线性相关性的判定定理
1
一 、线性相关与线性无关的定义
1. 定义 给定向量组 A: a1, a2, ... ,am , ,a
如果存在不全为零的实数 如果存在不全为零的实数 k1, k2, ..., km , 使
因为 λ1, ... , λm − 1, −1 这 m 个数不全为 0 (至少 −1 ≠ 0),所以向量组线性相关 证毕 至少 ,所以向量组线性相关.
6
向量组的线性相关与线性无关的概念也 可移用于线性方程组. 可移用于线性方程组 当方程组中有某个方程是其余方程的线性组合时, 当方程组中有某个方程是其余方程的线性组合时 这个方程就是多余的, 方程组(各个方程)是线性相关的; 这个方程就是多余的 称方程组(各个方程)是线性相关的 当方程组中没有多余的方程, 当方程组中没有多余的方程 称该方程组 (各个方程)线性无关(或线性独立). 各个方程)线性无关(或线性独立)
12
证法二 利用方程组有解的条件
把已知的三个向量等式写成一个矩阵等式
1 0 1 (b1 , b2 , b3 ) = (a1 , a 2 , a 3 ) 1 1 0 , 记作 B = AK . 0 1 1 设 Bx = 0,以 B = AK 代入得 A(Kx) = 0 . ,
8
1 0 0 0 1 0 例 4 n 维向量组 e1 = , e2 = , L, en = M M M 0 0 1
称为n维单位坐标向量组,试讨论它的线性相关性 试讨论它的线性相关性. 称为n维单位坐标向量组 试讨论它的线性相关性

4.3 向量组的线性相关性

4.3 向量组的线性相关性

证 (方法1) 设 B 1, 2,L n , 且
有数x1,x2,…,xn,使得 x11 x22 L xnn 0,

x1
1, 2,L
,
n
x2
M
0,
xn
右边等式两边同时左乘矩阵A,得
ABx 0, 即 Ex 0, 所以 x 0, 即 x1 x2 L xn 0, 故由定义可知,
0
0
1
证 令 A (1,2,L ,n ),
则A恰为单位矩阵E,故R(A)=n。 根据判定定理,单位向量组线性无关。
例8
已知向量组 , ,
1
2
3
线性无关, 1
1
2
, ,
2
2
3
3
3
1
证明向量组 , ,
1
2
3
也线性无关.(典型考题,典型方法)
证明:(方法 1: 根据定义) 设有数k1,k2,k3,使得
则称向量组A 线性相关,否则称它线性无关。
当且仅当k1 k2 L ks =0时,
表达式 k11 k22 L kss 0成立。
定理2
线性相关和无关的判定定理
1,2 ,L ,s 线性无关
x11 x22 L xss 0 仅有零解
对矩阵 A=(1,2,L ,s ), R( A) 向量的个数s.
例2 零向量是任何一个同维向量组的线性组合
Q 0 01 02 L 0m
线性表示的表示系数可以是零
例3 向量组中的任何一个向量都是该向量组的线性组合。
i 01 02 L 1i L 0m
例4 对如下向量
(0,1,2)T ,1 (1,1,0)T ,2 (0,1,1)T ,3 (3, 4,0)T ,

高中数学《向量组的线性相关性》课件

高中数学《向量组的线性相关性》课件
等价的向量组等秩
35
例2 设 1 1 2 , 2 2 3, 3 3 1.
若向量组1, 2 , 3线性无关,证明
向量组1, 2, 3也线性无关.
证 由已知可以解得用1, 2,3来表示
1, 2 , 3的表达式:
2
1 2
(1
2
3),
3
1
1 2
1 2
(1
(1
2
2
3 3)
)
故两向量组等价,等秩, r(1, 2 , 3)=3
证 由1,2,…,m, 线性相关
存在不全为零的数k1,k2,…,km,l使得
k11 k2 2 km m l 0
下面证明只有l0, 反证法.
25
如果 l =0, 则有k1, k2,…,km不全为零,使
k11 k2 2 km m 0
于是1, 2, … , m 线性相关,与已知矛盾.
则称向量组 1, 2 ,为,向 r量组S的一个
极大线性无关组(简称极大无关组). 数 r 称为该向量组的秩,记为
r(1, 2, … , s)= r 或秩(1, 2, … , s)= r
24
线性表示唯一性定理
定理4.2 设n维向量1,2,…,m线性无关, 而1,2,…,m , 线性相关, 则 可由 1,2,…,m 线性表示, 且表法唯一.
1 k111 k21 2 kr1 r
2 k121 k22 2 kr 2 r
s k1s1 k2
即 (1, 2,,
s 2
s)
( 1,2 ,kr,s rr)
k11
k21
k12
k22
k1s k2s
kr1 kr2 krs
存在r×s矩阵K,使得 Bn×s =An×r Krs

2 向量组的线性相关性

2 向量组的线性相关性
b 11 2 2 m m
则向量b是向量组A的线性组合,这时称向量 b 能 由向量组 A 线性表示.
注意
也可用矩阵形式表示: 1若所给向量均为行向量, 则有
2若所给向量均为列向量, 则有
返回
上一页 下一页
二、线性相关性的概念
定义3 给定向量组A :1,2 , ,m ,如果存在不
全为零的数k1, k2 , , km使
所以
线性无关。
返回
上一页 下一页
定理1 向量组
(s≥2)线性相关的充要条件
是其中至少有一个向量能由其他向量线性表出。
证 充分性:设
中有一个向量能由其他向
量线性表出,不妨设
所以
线性相关。
必要性:如果
线性相关,就有不全为零的
数k1,k2,…,ks,使 设k1≠0,那么
即 能由
线性表出。
返回
上一页 下一页
k11 k2 2 km m 0
则称向量组A是线性相关的,否则称它线性无关.
注意
1. 若 1 , 2 , , n线性无关,则只有当
1 n 0时,才有
11 2 2 n n 0成立 .
2. 对于任一向量组,不是线性无关就是
线性相关 .
3.向量组只包含一个向量 时,若 0则说 线性相关,若 0,则说 线性无关 .
如果

向量组
中每一个向量都可以经向量组
线性表出。因而,向量组
可以经向量组
线性表出。
返回
上一页 下一页
向量组的等价具有下述性质:
(1)反身性:向量组
(2)对称性:如果向量组
那么
也与
与它自己等价;
与 等价。
等价,

3章3节 向量组的线性相关性

3章3节  向量组的线性相关性

即:部份相关, 则全组相关; ?全组无关, 则部份无关。 ?
定理4 若向量组1 ,2 ,, s, 线性相关,而向量组
则向量 可由1 ,2 ,, s线性表示, 1 ,2 ,, s线性无关,
且表示法唯一。
无关组加一个后相关, 则后加者由原组表出法唯一。
定理5 设有两向量组 A:1 , 2 ,, s ; B:1 , 2 ,, t ;
定义1 给定向量组A : 1 , 2 ,, s , 如果存在不全为零的数
k1 , k2 ,, ks , 使k11 k22 ks s 0, 则称向量组
线性相关 ,否则称为线性无关 。
与上一节对应,本定义相当于零向量由一组向量线性表出
(线性组合), 但这里要求k1 , k2 ,, ks不全为零。
§ 3.3 向量组的线性相关性
上一节分析了某向量与一组向量的线性组合关系,
以及线性组合的表示, 这一内容对应非齐次线性方程组
的有解判断以及求解的内容。为下一步学习向量之间的
相关性做好了理论准备,
本节将分析一组向量内各向量之间的线性相关性。 这一内容则对应齐次线性方程组的有解判断以及求解的
内容。
一、线性相关性概念
秩小于向量的个数s。
即为齐次线性方程组系数矩阵的秩小于未知数个数 ——有非零解。
推论1 s个n维列向量1 ,2 ,, s线性无关(线性相关)的
充要条件是: 矩阵A (1 ,2 , s )的秩(等于)小于向量的个数s。
齐次线性方程组系数矩阵的秩等于未知数个数 ——仅有零解;
推论2 n个n维列向量1 ,2 ,, s线性无关(线性相关)的
1 0 2 r r = 1 2 4 2 1 r3 r1 1 5 7

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性

向量组的线性相关性与线性无关性在线性代数中,向量组是指由一组向量所组成的集合。

而向量组的线性相关性与线性无关性则是研究向量组内向量之间的关系,是线性代数中的重要概念之一。

一、线性相关性线性相关性是指存在一组不全为零的实数或复数使得向量组中的向量可以通过线性组合得到零向量。

换句话说,如果存在不全为零的实数或复数c1,c2,...,cn,使得c1v1 + c2v2 + ... + cnvn = 0,则称向量组v1,v2,...,vn是线性相关的。

举个例子来说,考虑一个二维向量组{(1, 2), (2, 4)},我们可以发现这两个向量是线性相关的,因为存在一个实数c,使得c(1, 2) + (2, 4) = (0, 0)。

实际上,这两个向量是共线的,它们的方向相同,只是长度不同。

二、线性无关性线性无关性是指向量组中的任意向量不能由其他向量线性表示出来。

换句话说,如果对于向量组v1,v2,...,vn中的任意一个向量vi,都不存在一组实数或复数c1,c2,...,cn(其中ci≠0),使得c1v1 + c2v2 + ... + cnvn = vi,则称向量组v1,v2,...,vn是线性无关的。

继续以上面的例子来说,考虑一个三维向量组{(1, 2), (2, 4), (3, 6)},我们可以发现这三个向量是线性相关的。

实际上,第三个向量可以由前两个向量线性表示出来:(3, 6) = 3(1, 2) + 0(2, 4)。

因此,这三个向量是线性相关的。

三、线性相关性与线性无关性的关系线性相关性与线性无关性是相互对立的概念。

如果一个向量组是线性相关的,那么它就不是线性无关的;反之亦然。

换句话说,线性相关性与线性无关性是两个互斥的概念。

在实际应用中,我们经常需要判断一个向量组的线性相关性或线性无关性。

这对于解方程组、求解特征值等问题都有着重要的意义。

四、判断线性相关性与线性无关性的方法判断一个向量组的线性相关性或线性无关性有多种方法,其中最常用的方法是通过求解线性方程组来判断。

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性总结

第四章 向量组的线性相关性§1 n 维向量概念一、向量的概念定义1 n 个有次序的数12,,,n a a a 所组成的数组称为n 维向量,这n 个数称为该向量的n 个分量,第i 个数i a 称为第i 个分量.注1分量全为实数的向量称为实向量.分量不全为实数的向量称为复向量. 注2 n 维向量可以写成一行的形式()12,,,n a a a a =,出可以写成一列的形式12n a a a a ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭,前者称为行向量,而后者称为列向量.行向量可看作是一个1n ⨯矩阵,故又称行矩阵;而列向量可看作一个1n ⨯矩阵,故又称作列矩阵.因此它们之间的运算就是矩阵之间的运算,从而符合矩阵运算的一切性质.向量之间的运算只涉及到线性运算和转置运算.为叙述方便,特别约定:在不特别声明时说到的向量均为列向量,行向量视为列向量的转置.注3 用小写黑体字母,,,a b αβ 等表示列向量,用,,,T T T T a b αβ表示行向量. 例1 设123(1,1,0),(0,1,1),(3,4,0)T T T v v v ===,求12v v -及12332v v v +-.解 12v v -(1,1,0)(0,1,1)T T =-(10,11,01)T =---(1,0,1)T =-12332v v v +-3(1,1,0)2(0,1,1)(3,4,0)T T T =+-(31203,31214,30210)T =⨯+⨯-⨯+⨯-⨯+⨯-(0,1,2)T =定义 设v 为n 维向量的集合,如果集合v 非空,且集合v 对于加法与数乘两种运算封闭(即若α∈v,β∈v ,有α+β∈v ;若α∈v, k ∈R ,有k α∈v ),称v 为向量空间。

§2 向量组的线性相关性一、向量组的线性组合 定义3 给定向量组A :12,,,m a a a ,对于任何一组实数12,,,m k k k ,称向量1122m m a a a k k k +++ 为向量组A 的一个线性组合,12,,,m k k k 称为这个线性组合的系数.定义4 给定向量组A :12,,,m a a a 和向量b ,若存在一组实数12,,,m λλλ,使得1122m m a a a b λλλ=+++则称向量b 是向量组A 的一个线性组合,或称向量b 可由向量组A 线性表示.注1任一个n 维向量12n a a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭都可由n 维单位向量组12,,,n e e e 线性表示:1122n n a a a a e e e =+++ .注2向量b 可由向量组A :12,,,n a a a 线性表示(充要条件)⇔方程组1122n n a a a x x x b +++=有解m n A x b ⨯⇔=有解()(,)R A R A b ⇔=注3 由于线性方程组的解分为:无解,有唯一解,有无穷多解三种情况,所以向量β由向量12,,,n a a a 线性表示的情形也分为三种:不能线性表示,唯一线性表示,无穷多种线性表示,且线性表示式中的系数就是对应线性方程组的解。

向量组线性相关性

向量组线性相关性

向量组线性相关性向量组线性相关性是数学中一个重要的概念,它可以在许多应用中使用,包括统计和线性代数。

它表明了两个变量是如何相互影响的,并且可以用来解释不同情况下变量之间的线性关系。

因此,了解这个概念对推断变量之间的关系非常重要。

在这篇文章中,我们将详细讨论向量组线性相关性的定义、特性和应用。

首先,我们将介绍什么是向量组,包括它的结构、特性和如何表示。

接下来,我们将讨论线性相关性的定义,它的两个重要特性,即相关系数和回归线。

最后,我们将讨论向量组线性相关性的应用,特别是在统计学中,它可以用来推断和预测数据集之间的关系。

首先,让我们来看看什么是向量组。

它是一组由单位矢量组成的数值,它们被称为标量。

向量组由坐标轴上的点组成,这些点的特性取决于它们的大小和关系。

例如,在二维空间中,每一个矢量都可以用它的横坐标和纵坐标来表示,这两个坐标是矢量的分量。

此外,矢量的大小是按照它们两个坐标的积来表示的,这个大小可以用简单的乘法计算,也可以用更复杂的三角函数计算。

其次,我们来讨论线性相关性。

线性相关性是指在两个变量之间存在线性关系的能力。

它可以用相关系数来表示。

相关系数是一个指标,表示两个变量的相关性。

它的值介于-1和1之间,-1表示完全负相关,1表示完全正相关,0表示无关。

因此,通过计算相关系数,可以了解两个变量之间的线性关系。

此外,另一个重要的线性相关性特性是回归线。

回归线是一条拟合两个变量之间线性关系的直线,它可以用来推测两个变量之间的关系。

通过画出回归线,可以更清楚地了解两个变量之间的关系,例如它们之间是线性相关还是非线性相关。

最后,我们来看看向量组线性相关性的应用。

它主要应用于统计学,用来推断和预测数据集之间的关系。

它也可以用来了解变量之间的线性依赖性,以及变量的趋势及其变化。

此外,它还可以用来帮助预测未来,因为它可以用来推断不同数据集之间的相关性。

总之,向量组线性相关性是一个非常重要的概念,它可以帮助我们了解变量之间的关系,推断不同数据集之间的关系,以及预测未来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档