线性代数向量组线性相关性的判别定理
《线性代数》教学课件—第4章 向量线性相关 第二节 向量组的线性相关性

9 6
,
有 3 = 21 - 2 , 4 = 1 + 22 , 所以向量组 1,
2 , 3 , 4 线性相关, 其几何意义为: 该向量组所
对应的非齐次线性方程组中的四个方程所表示的
四个平面交于同一条直线. 如图 4.3 .
2x+3y+z=4 3x+8y-2z=13 x-2y+4z=-5 4x-y+9z=-6
x
O M1
图 4.2
M3 a3 RM3 (0,2,2) ,
3y
向量组 a1 , a2 , a3
线性相关,因为
2a1 - a2 - a3 = 0.
(3) 4 维向量组线性相关的几何意义 设有 4 维向量组
2
1
3
4
1T
3
1 4
, 2T
2
45
,
T 3
8
132
, 4T
1
在直线 y =2x 上取三点M1, M2 , M3 , 作三个向量:
6y
5
M3(3,6)
4 3
M2(2,4)
2 1
M1(1,2)
O 123456 x
图 4.1
a1 OM1 (1,2) ,
a2 OM2 (2,4) ,
a3 OM3 (3,6) ,
显然, 这三个向量中的 任意两个向量构成的向 量组都是线性相关的.
证明 向量证组明A 线向性量相组关A, 线等性价相于关齐,次等线价性于齐次线
方程组 方程组 x1a1 + x2a2 x+1a··1·+ x2maa2m+=··0·,+即xmAaxm = 0, 即 Ax = 0
线性代数 线性相关性与秩

将(r +1)阶行列式Dj按最后一列展开,有:
a1 j A1 + a2 j A2 +
α1 A1 + α 2 A2 +
+ arj Ar + ar +1, j Dr = 0
j = 1,2, ,n
按向量形式写,上式为:
+ α r Ar + α r +1 Dr = 0 ∵ Dr ≠ 0, ⇒ α1 , α 2 , , α r +1线性相关, 从而α1 , α 2 , , α m 线性相关。
若存在一组不全为零的数 k1 , km , 使向量组 α1 , k1α1 + kmα m ≠ 0, 则 α1 , α m线性无关
α m的线性组合
× √
向量组 α1 ,
α m (m ≥ 2) 线性无关 ⇔ 该向量组中任意t (1 ≤ t ≤ m)个线性无关
向量组 α1 ,
α m (m ≥ 2) 中任取两个向量线性无关 ⇒ 该向量组线性无关
称为向量组的秩,记为 r (α1 , α 2 , , α m ). r(0)=0 注:(1)线性无关的向量组的秩=向量的个数。 (2)向量组线性无关⇔秩=向量个数。
若α1 , α 2 , , α m 可由β1 , β 2 , , β s 线性表示,则 定理3: r (α1 , α 2 , , α m ) ≤ r ( β1 , β 2 , , βs )
注: 1.线性无关向量组的极大无关组就是其本身;
2.向量组与其极大无关组等价; 3.同一个向量组的极大无关组不惟一,但它们之间是 等价的.
例:求向量组的极大无关组. α1 = (1,2,−1), α 2 = ( 2,−3,1), α 3 ⎛1 2 ⎛ α1 ⎞ ⎛ 1 2 − 1⎞ ⎜ ⎟ ⎜ ⎟ ⎜ A = ⎜α 2 ⎟ = ⎜ 2 − 3 1 ⎟ → ⎜ 0 − 7 ⎜0 − 7 ⎜ α ⎟ ⎜ 4 1 − 1⎟ ⎝ ⎠ ⎝ 3⎠ ⎝
线性代数-向量组的线性相关性-文档资料

[1,2,1], [2,4,0]线性无关。
{PAGE}
21
性质 3 含有零向量的向量组一定线性相关。
证明: 设1,2 ,,m 是向量组, i 0 (i {1,2,, m})
则: 01 02 0i1 1i 0i1 m 0
]
3
1
,
2
,
线性无关.
3
{PAGE}
17
三、有关向量组线性相关性的若干性质
性质 1
只含一个向量的向量组线性相关的充分必要条 件是它为零向量,
即只含一个向量的向量组线性无关的充分必要 条件是它为非零向量。
{PAGE}
18
性质 2
仅含两个向量的向量组线性相关的 充分必要条件是其对应分量成比例。
{PAGE}
{PAGE}
5
【例 1】设 1 2 3 0T ,1 1 2 1 0T , 2 3 0 1 1T 。问 能否由1,2线性表示?
1 3 1
解:设
x11
x22,则 x1
2
1
x2
0 1
2 ,即 3
0
1
0
1 3
1
2
1
0 1
x1 x2
2
,此方程组无解,所以
3
不能由1 , 2
19
证明:
设 [a1,a2 ,,an ], [b1,b2 ,,bn ],则
, 线性相关
存在不全为零的常数k1, k2,使k1 k2 0
k1ai k2bi 0,i 1,2,,n,(不妨设k1 0)
ai
k2 k1
bi
,i
1,2 , , n
{PAGE}
20
例1
[1,2,0], [2,4,0]线性相关;
线性代数向量的线性相关性

定理3
设两向量组M、N满足MN,那么
(1) 若向量组M线性相关,则向量组N也线性相关 (2) 若向量组N线性无关,则向量组M也线性无关
可简述为: 子向量组相关,则向量组也相关; 向量组无关,则子向量组也无关。
推论1 含有零向量的向量组是线性相关的
定理4 两个向量构成的向量组线性相关的充分必要条件
故向量组线性相关
例2* 讨论向量组 1 1 2 0 , 2 0 2 1 , 3 0 0 1
的线性相关性 解:设有数 k1 , k2 , k3 使 k11 k22 k33 0 即方程
1 0 0 k1 2 2 0 k2 0 0 1 1 k 0
(*)
例 k1 0, k2 0,, km 0 ;
向量组M是线性相关时不只有 k1 0, k2 0,, km 0使 (*)成立
向量组M是线性无关时只有 k1 0, k2 0,, km 0 使 (*)成立 (2) 向量组线性相关当且仅当 零向量能被向量组用系数 不全为零线性组合表示。 (3) 若 k11 k22 kmm 0 (*) M 1,2 ,,m 线性无关当且仅当
0 0 1 1 例 向量组 M 1 , 4 , 1 , 1 2 3 4 0 1 4 2 1
k1 0, k2 0,, km 0 ;
则
(4) M 1,2 ,,m 线性相关当且仅当齐次方程组
k11 k22 kmm 0 (*) 有非零解;
M 1,2 ,,m 线性无关当且仅当齐次方程组
k11 k22 kmm 0 (*)
线性代数向量组线性相关性的判别定理

向量组B :1,,r ,r1 ,m 也线性相关 .
推论: 含有零向量的向量组是线性相关的向量组。
2
定理2
向量组A: j
a1 j , a2 j , anj
T
,
向量组B : j
a p1 j , a p2 j , a pn j
T
,
( j 1,2,, m),
a2 ,a3 ,a4 线性无关,证明
(1) a1 能由 a2 ,a3 线性表示;
(2) a4 不能由a1 ,a2 ,a3 线性表示 .
证 (1) 因 a2 ,a3 ,a4 线性无关 ,由定理1知a2 ,a3线性无关 ,
而a1 ,a2 ,a3线性相关,由上节定理 2 知 a1 能由 a2 ,a3 线性表示 .
ap1m
即(2)齐次方程组x1
a
p21
xm
a
p2m
0,
apn1
apnm
p1 pn 是自然数1,2,n的某个排列,
齐次方程组(1)与齐次方程组(2)同解,
则向量组A与向量组B相同的线性相关性
4
么么么么方面
• Sds绝对是假的
定理3向量组A : j a1 j a2 j arj T ,即 j添上一个分量得 j
则向量组必线性相关 .
7
例1 讨论下列向量组的线性相关性:
1.1 1,2T ,2 3,5T 2.1 1,0,0T ,2 0,1,0T ,3 0,0,1T ,4 1,2,4T
3.1 2,3,1,0T ,2 1,2,5,7T ,3 5,8,7,7T , 4.1 1,0,0,2T ,2 0,1,0,1T ,3 0,0,1,4T
浅谈向量组的线性相关性及判别方法

浅谈向量组的线性相关性及判别方法作者:杨付贵来源:《科学导报·学术》2020年第27期摘要:向量组的线性相关性是线性代数中十分重要的概念之一,有着极其广泛的应用。
然而,在学习线性代数中发现,在学生学习向量组的线性相关性时,感觉很抽象,学习有些吃力。
尤其是对于一般高校文科的学生以及民办高校的本专科的学生,对于向量组的线性相关性的概念很模糊,更不知如何去判别向量组的线性相关性。
本文主要根据自己多年来,在教学和学习过程中的一些经验和体会,对向量组的线性相关性及其性质,以及判别向量组的线性相关性都有那些常见的方法,进行梳理,归纳和总结。
为同学们在学习向量组的线性相关性时提供一些思路。
关键词:向量组;线性相关;线性无关;初等变换一.向量组的线性相关性及其性质和判别定理1. 向量组的线性相关性的定义定义1:如果向量组中,至少有一个向量可以被其余向量线性表示,则称向量组线性相关,否则,向量组线性无关。
定义2:如果存在一组不全为零的数,使得,则称向量组线性相关,否则,向量组线性无关。
注:定义1表明,所谓向量组线性相关,是指向量组中至少有一个向量可以用其余向量线性表示,也即存在着线性关系。
而线性无关是说向量组中的向量之间没有线性关系。
而定义2主要是用来判别向量组的线性相关性。
显然,定义1与定义2是对向量组的线性相关性的不同叙述方式,彼此之间是等价的。
2. 向量组的线性相关性的性质(1)如果向量组中只有一个向量,则当时,线性相关,当时,线性无关。
(2)如果向量组中有两个向量,则线性相关的充分必要条件是对应分量成比例。
(3)如果向量组中含有零向量,则向量组一定线性相关。
(4)维基本单位向量组线性无关。
3.向量组的线性相关性的判别定理(1)向量组线性相(无)关的充分必要条件是齐次线性方程组有非零解(只有零解)(其中)。
(2)。
(3)如果线性相关,而线性无关,则可以由线性表示,且表示式是唯一的。
(4)如果向量组中的部分向量组成的新的向量组线性相关,则原来的向量组也线性相关。
线性代数_第三章

这与1,2, . . .,s与线性无关矛盾.
推论1 两个等价的且线性无关的向量组,含有相 同个数的向量。
推论2 等价的向量组有相同的秩。
推论3 向量组(I)的秩为r1,向量组(II)的秩为r2,且
组(I)可由组(II)线性表出,则r1≤r2。
lts ks 0
于是
1 , 2 ,
k1 k2 b1 , b 2 , , s ks
l11 l12 l21 l22 , bt lt1 lt 2
l1s k1 0 l2 s k 2 0
第三章 向量组与线性方程组
§3.1 向量组的线性相关性
2 x1 3 x2 3 x3 5 x1 2 x2 x3 2 7 x2 x3 1
2 3 3 5 1 2 1 2 0 7 1 1
显然第三行是前两行的代数和; 也就是说,第三个方程能由前两 个方程“表示”;
4, (III) 1, 2, 3, 5, 且向量组的秩分别
为R(I)=R(II)=3, R(III)=4. 证明:向量组1, 2, 3, 5-4的秩为4.
证明: 由R(I)=R(II)=3得知向量组(I)线性无关,向
量组(II)线性相关,且4可由1, 2, 3,线性表出,
lm m 0
定理3 设m≤n,则m个n维向量1 ,2 ,
,m 线性无关的充
分必要条件是,其组成的矩阵的秩R(A)=m.即A为列满秩。
证:必要性. 因为Q可逆,必有l1,l2,…,lm不全为零, 这与1,2,…,m线性无关矛盾。 因此,R(A)=m。
线性代数42-向量组的线性相关性

若干个同维数的列向量(或同维数的行向量)
所组成的集合叫做向量组.
例如 矩 a 1 A 阵 a 2(ai)jm n有 a j n个 m 维 a n 列向量
a11 a12 a1j a1n
A
a21
a22 a2j a2n
am1 am2 amj amn
向量 a 1,a 2 ,组 ,a n 称为 A 的 矩列 阵 .向
b j k 1 j1 k 2 j2 k m m j
k1 j
( 1 , 2 ,
, m
)
k2 j
,
kmj
从而
k11 k12
( b1,b2,,bs) (1,2,,m)
k21
k22
km1 km2
k1s k2s kms
矩阵 Kms (kij)称为这一线性 数表 矩.示 阵的
1T 2T mT
a11
a21
am1
a12 a22 am2
a1s a2s
12TT
a ms sT
设矩阵A经初等行变换变 B,成则B的每个行 向量都是 A的行向量组的线性,组即合B的行向量 组能由A的行向量组线性.表由示初等变换可逆性 可知,A的行向量组能B的 由行向量组线性表示 于是A的行向量组B与 的行向量组等. 价
1 k k 1 2 2 k k 1 3 3 k k m 1 m .
即 1 能由其余向量线性表示.
证毕.
线性相关性在线性方程组中的应用
若方程组中有某个是方其程余方程的线性组 合时,这个方程就余是的多,这时称方程各组( 个方程)是线性相;关当的方程组中没有方多余 程,就称该方程组个(方各程)线性无关线(或 性独立. )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
1.1
,
构成矩阵
2
A,
1 A
2
3
0,1,
线性无关
2
5
2.1,
2
,
3
,
构成
4
4个3维向量组,1
,
2
,
3
,
线性相关
4
3.1 2,3,1,0T ,2 1,2,5,7T ,3 5,8,7,7T ,
2 1 5
解
1,
2
,
构成
3
矩阵A
3 1 0
2 5 7
8 7 7
,
可求得r(A) 2 3,
(2) 用反证法 假设 a4 能由 a1 , a2 , a3 表示 ,
而由 (1) 知 a1 能由 a2 , a3 表示 , 因此 a4 能由 a2 , a3 线性表示 , 这与 a2 , a3 , a4 线性无关矛盾 .
k1, k2, , kr ,0 0为m个不全为零的数
向量组B :1, ,r ,r1 ,m 也线性相关 .
推论: 含有零向量的向量组是线性相关的向量组。
定理2
向量组A: j
a1 j , a2 j , anj
T
,
向量组B : j
a p1 j , a p2 j , a pn j
T
,
( j 1,2, , m),
1
,
2
,
线性相关
3
4.1 1,0,0,2T ,2 0,1,0,1T ,3 0,0,1,4T
解. e1 1,0,0T , e2 0,1,0T , e3 0,0,1T 线性无关
1 1,0,0,2T ,2 0,1,0,1T ,3 0,0,1,4T 线性无关
例2
设向量组 a1 ,a2 ,a3 线性相关,向量组
则向量组必线性相关 .
例1 讨论下列向量组的线性相关性:
1.1 1,2T ,2 3,5T 2.1 1,0,0T ,2 0,1,0T ,3 0,0,1T ,4 1,2,4T
3.1 2,3,1,0T ,2 1,2,5,7T ,3 5,8,7,7T , 4.1 1,0,0,2T ,2 0,1,0,1T ,3 0,0,1,4T
ap11
ap1m
即(2)齐次方程组x1
a
p21
xm
a
p2m
0,
apn1
apnm
p1 pn 是自然数1,2, n的某个排列,
齐次方程组(1)与齐次方程组(2)同解,
则向量组A与向量组B相同的线性相关性
定理3向量组A : j a1 j a2 j arj T ,即 j添上一个分量得 j
向量组B : j a1 j
a2 j
arj
T
ar1, j ,
( j 1,2, , m),
若向量组
A:1,2 ,
,
线性无关
m
,
则向量组
B:1
,
2
,
,
也线性无关
m
.
(逆否命题,若向量组 B线性相关,则向量组A也线性相关 .)
推论: r维向量组的每个向量添上n-r个分量,成为n维向量组 若r维向量组线性无关, 则n维向量组也线性无关。
p1 pn是自然数1 n某个排列,则向量组A与B有相同的线性相关性
证明
向量组1
线性相关
m
齐次方程组 x11 xmm 0有非零解
a11
a1m
即(1)齐次方程组x1
a21 an1
xm
a2m
anm
0,
向量组B : 1
线性相关
m齐次方程组 x11 x源自m 0有非零解3.3线性相关性的判别定理
内容:4个定理
定理1 若向量组 A:1,2, ,r 线性相关,则向量组
B :1, ,r ,r1 ,m 也线性相关.(部分相关,则整体相关)
反言之,若向量组B 线性无关,则向量组A也线性无关.
证明 向量组 A:1,2, ,r 线性相关,
不全为零的数 k1, k2, , kr ,使得k11 k22 krr 0 即为 k11 k22 krr 0r1 0m 0
a2 ,a3 ,a4 线性无关,证明
(1) a1 能由 a2 ,a3 线性表示;
(2) a4 不能由a1 ,a2 ,a3 线性表示 .
证 (1) 因 a2 ,a3 ,a4 线性无关 ,由定理1知a2 ,a3线性无关 ,
而a1 ,a2 ,a3线性相关,由上节定理 2 知 a1 能由 a2 ,a3 线性表示 .
定理4 向量组 A:1,2, ,m 线性相关 r( A) m, 其中A (1,2, ,m )
向量组 A:1,2, ,m 线性无关 r( A) m
推论1: n个n维向量组成的向量组A线性相关 A 0 . (n个n维向量组成的向量组A线性无关 A 0 .)
推论2: m个n维向量组成的向量组,当维数 n 向量个数m时,