2016年天津市高考数学试卷文科【Word版】

合集下载

真题-2016年天津市高考数学试卷文科

真题-2016年天津市高考数学试卷文科

2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1>|y|”的()5.(5分)设x>0,y∈R,则“x>y”是“xA.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为()A.﹣ B.C.D.﹣(ω>0),x∈R,若f(x)在区8.(5分)已知函数f(x)=sin2+sinωx间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.>|y|”的()5.(5分)设x>0,y∈R,则“x>y”是“xA.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”?“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则?的值为()A.﹣ B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴?========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.﹣(ω>0),x∈R,若f(x)在区8.(5分)已知函数f(x)=sin2+sinωx间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=?(π,2π),因此ω?∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=?(π,2π),∴ω?∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9.【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH?BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE?DE=AE?EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a 与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z 最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG?平面BED,OE?平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD?平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD?平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD?,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出b n,使用分项求和法和平方差公式计算.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.∴b n+1﹣b n=1.∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得y H=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1y H=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

【推荐】2016年天津市高考数学试卷(文科)

【推荐】2016年天津市高考数学试卷(文科)

2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2﹣1,∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.2﹣=1C.﹣=1 D.﹣=15.(5分)设>0,y∈R,则“>y”是“>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f()=sin2+sinω﹣(ω>0),∈R,若f()在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1)C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数满足(1+i)=2,则的实部为.10.(5分)已知函数f()=(2+1)e,f′()为f()的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在轴正半轴上,点(0,)圆C上,且圆心到直线2﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f()=(a>0,且a≠1)在R上单调递减,且关于的方程|f()|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且﹣=,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(﹣1)n b}的前2n 项和.19.(14分)设椭圆+=1(a >)的右焦点为F ,右顶点为A ,已知+=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于B (B 不在轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA=∠MAO ,求直线l 的斜率. 20.(14分)设函数f ()=3﹣a ﹣b ,∈R ,其中a ,b ∈R . (1)求f ()的单调区间;(2)若f ()存在极值点0,且f (1)=f (0),其中1≠0,求证:1+20=0; (3)设a >0,函数g ()=|f ()|,求证:g ()在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2﹣1,∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2﹣1,∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设>0,y∈R,则“>y”是“>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设>0,y∈R,当>0,y=﹣1时,满足>y但不满足>|y|,故由>0,y∈R,则“>y”推不出“>|y|”,而“>|y|”⇒“>y”,故“>y”是“>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f()在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f()在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D 、E 分别是边AB 、BC 的中点,且DE=2EF ,∴•========.故选:C .【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f ()=sin 2+sin ω﹣(ω>0),∈R ,若f ()在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,]B .(0,]∪[,1)C .(0,]D .(0,]∪[,]【分析】函数f ()=,由f ()=0,可得=0,解得=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f()=+sinω﹣=+sinω=,由f()=0,可得=0,解得=∉(π,2π),∴ω∉∪∪∪…=∪,∵f()在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数满足(1+i)=2,则的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)=2,得,∴的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f()=(2+1)e,f′()为f()的导函数,则f′(0)的值为 3 .【分析】先求导,再带值计算.【解答】解:∵f()=(2+1)e,∴f′()=2e+(2+1)e,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在轴正半轴上,点(0,)圆C上,且圆心到直线2﹣y=0的距离为,则圆C的方程为(﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(﹣2)2+y2=9.故答案为:(﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f()=(a>0,且a≠1)在R上单调递减,且关于的方程|f()|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f()在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f()|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f()是R上的单调递减函数,(+1)+1在(0,+∴y=2+(4a﹣3)+3a在(﹣∞.,0)上单调递减,y=loga∞)上单调递减,且f()在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f()|和y=2﹣的函数草图如图所示:由图象可知|f()|=2﹣在[0,+∞)上有且只有一解,∵|f()|=2﹣恰有两个不相等的实数解,∴2+(4a﹣3)+3a=2﹣在(﹣∞,0)上只有1解,即2+(4a﹣)+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为万元,则目标函数为=2+3y,即y=﹣+,平移直线y=﹣+,由图象得当直线经过点M时,直线的截距最大,此时最大,由得,即M(20,24),此时=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且﹣=,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(﹣1)n b}的前2n 项和.【分析】(1)根据等比数列的通项公式列方程解出公比q ,利用求和公式解出a 1,得出通项公式;(2)利用对数的运算性质求出b n ,使用分项求和法和平方差公式计算. 【解答】解:(1)设{a n }的公比为q ,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S 6=0,与S 6=63矛盾,不符合题意.∴q=2, ∴S 6==63,∴a 1=1.∴a n =2n ﹣1.(2)∵b n 是log 2a n 和log 2a n+1的等差中项,∴b n =(log 2a n +log 2a n+1)=(log 22n ﹣1+log 22n )=n ﹣. ∴b n+1﹣b n =1.∴{b n }是以为首项,以1为公差的等差数列. 设{(﹣1)n b n 2}的前2n 项和为T n ,则T n =(﹣b 12+b 22)+(﹣b 32+b 42)+…+(﹣b 2n ﹣12+b 2n 2) =b 1+b 2+b 3+b 4…+b 2n ﹣1+b 2n ===2n 2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a >)的右焦点为F ,右顶点为A ,已知+=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于B (B 不在轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA=∠MAO ,求直线l 的斜率. 【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a 的方程,解方程求得a 值,则椭圆方程可求;(2)由已知设直线l 的方程为y=(﹣2),(≠0),联立直线方程和椭圆方程,化为关于的一元二次方程,利用根与系数的关系求得B 的坐标,再写出MH 所在直线方程,求出H的坐标,由BF ⊥HF ,得,整理得到M 的坐标与的关系,由∠MOA=∠MAO ,得到0=1,转化为关于的等式求得的值. 【解答】解:(1)由+=,得+=,即=,∴a[a 2﹣(a 2﹣3)]=3a (a 2﹣3),解得a=2. ∴椭圆方程为;(2)由已知设直线l 的方程为y=(﹣2),(≠0), 设B (1,y 1),M (0,(0﹣2)), ∵∠MOA=∠MAO ,∴0=1,再设H (0,y H ), 联立,得(3+42)2﹣162+162﹣12=0.△=(﹣162)2﹣4(3+42)(162﹣12)=144>0. 由根与系数的关系得, ∴,,MH 所在直线方程为y ﹣(0﹣2)=﹣(﹣0), 令=0,得y H =(+)0﹣2, ∵BF ⊥HF , ∴,即1﹣1+y 1y H =1﹣[(+)0﹣2]=0,整理得:=1,即82=3.∴=﹣或=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f ()=3﹣a ﹣b ,∈R ,其中a ,b ∈R . (1)求f ()的单调区间;(2)若f ()存在极值点0,且f (1)=f (0),其中1≠0,求证:1+20=0; (3)设a >0,函数g ()=|f ()|,求证:g ()在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f ()的导数,讨论a ≤0时f ′()≥0,f ()在R 上递增;当a >0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a >0,且0≠0,由f ′(0)=0求出0,分别代入解析式化简f (0),f (﹣20),化简整理后可得证;(3)设g ()在区间[﹣1,1]上的最大值M ,根据极值点与区间的关系对a 分三种情况讨论,运用f ()单调性和前两问的结论,求出g ()在区间上的取值范围,利用a 的范围化简整理后求出M ,再利用不等式的性质证明结论成立. 【解答】解:(1)若f ()=3﹣a ﹣b ,则f ′()=32﹣a , 分两种情况讨论:①、当a ≤0时,有f ′()=32﹣a ≥0恒成立, 此时f ()的单调递增区间为(﹣∞,+∞), ②、当a >0时,令f ′()=32﹣a=0,解得=或=,当>或<﹣时,f ′()=32﹣a >0,f ()为增函数, 当﹣<<时,f ′()=32﹣a <0,f ()为减函数,故f ()的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f ()存在极值点0,则必有a >0,且0≠0,由题意可得,f ′()=32﹣a ,则02=, 进而f (0)=03﹣a 0﹣b=﹣﹣b ,又f (﹣20)=﹣803+2a 0﹣b=﹣0+2a 0﹣b=f (0),由题意及(Ⅰ)可得:存在唯一的实数1,满足f (1)=f (0),其中1≠0, 则有1=﹣20,故有1+20=0;(Ⅲ)设g ()在区间[﹣1,1]上的最大值M ,ma{,y}表示、y 两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f()在区间[﹣1,1]上单调递减,所以f()在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=ma{|f(1)|,|f(﹣1)|}=ma{|1﹣a﹣b|,|﹣1+a﹣b|}=ma{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f()在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=ma{|f()|,|f(﹣)|}=ma{||,||}=ma{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f()在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=ma{|f(﹣1)|,|f(1)|}=ma{|﹣1+a﹣b|,|1﹣a﹣b|}=ma{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g()在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

2016年普通高等学校招生统一考试文科数学(天津卷)Word版 含解析

2016年普通高等学校招生统一考试文科数学(天津卷)Word版 含解析

2016年普通高等学校招生全国统一考试(天津卷)数 学(文史类)本试卷分为第Ⅰ卷(选择题)和第Ⅱ(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至5页.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上,并在规定位置粘贴考试用条形码.答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效.考试结束后,将本试卷和答题卡一并交回. 祝各位考生考试顺利!第I 卷注意事项:1、每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.2.本卷共8小题,每小题5分,共40分 参考公式:如果事件 A ,B 互斥,那么 ·如果事件 A ,B 相互独立, P(A ∪B)=P(A)+P(B). P(AB)=P(A) P(B). 柱体的体积公式V 柱体=Sh , 圆锥的体积公式V =31Sh 其中 S 表示柱体的底面积其中 其中S 表示锥体的底面积,h 表示圆锥的高. h 表示棱柱的高.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. (1)已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B =( )(A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A 【解析】试题分析:{1,3,5},{1,3}B A B == ,选A. 考点:集合运算(2)甲、乙两人下棋,两人下成和棋的概率是21,甲获胜的概率是31,则甲不输的概率为( )(A )65 (B )52 (C )61 (D )31【答案】A考点:概率(3)将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B 【解析】试题分析:由题意得截去的是长方体前右上方顶点,故选B 考点:三视图(4)已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( ) (A )1422=-y x(B )1422=-y x(C )15320322=-y x (D )12035322=-y x【答案】A考点:双曲线渐近线(5)设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件【答案】C 【解析】试题分析:34,3|4|>-<-,所以充分性不成立;||x y y x y >≥⇒>,必要性成立,故选C 考点:充要关系(6)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是( )(A ))21,(-∞(B )),23()21,(+∞-∞ (C ))23,21( (D )),23(+∞【答案】C 【解析】试题分析:由题意得。

2016年天津市高考数学试题及答案(文科)(精编版)

2016年天津市高考数学试题及答案(文科)(精编版)

绝密★启封前2016年天津市高考数学试卷(文科)一、选择题(本大题8小题,每题5分,共40分)1.已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}2.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1 C.﹣=1 D.﹣=15.设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题(本大题6小题,每题5分,共30分)9.i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.11.阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题(本大题共6小题,80分)15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化工厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1扯皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如表所示:A B C甲 4 8 3乙 5 5 10现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车品乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(1)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(2)问分别生产甲、乙两种肥料,求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(本大题8小题,每题5分,共40分)1.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.2.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.3.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选B.4.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.5.【解答】解:设x>0,y∈R,当x=0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.6.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.7.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:B.8.【解答】解:函数f(x)=+sinωx﹣= +sinωx =,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.二、填空题(本大题6小题,每题5分,共30分)9.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.10.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.11.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.12.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.13.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.14.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:∵|f(x)|=2﹣恰有两个不相等的实数解,∴3a<2,即a.综上,.故答案为[,).三、解答题(本大题共6小题,80分)15.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.16.【解答】解:(1)x,y满足的条件关系式为:.作出平面区域如图所示:(2)设利润为z万元,则z=2x+3y.∴y=﹣x+.∴当直线y=﹣x+经过点B时,截距最大,即z最大.解方程组得B(20,24).∴z的最大值为2×20+3×24=112.答:当生产甲种肥料20吨,乙种肥料24吨时,利润最大,最大利润为112万元.17.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=0G,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DH于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值18.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.∴b n+1﹣b n=1.∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.19.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得y H=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1y H=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.20.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(1)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(3)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||}=max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.。

2016年高考真题 天津卷 文科数学 (含答案)

2016年高考真题 天津卷 文科数学 (含答案)

2016年高考真题文科数学(天津卷)文科数学考试时间:____分钟单选题(本大题共8小题,每小题____分,共____分。

)1.已知集合,,则=()A.B.C.D.2.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.已知双曲线的焦距为,且双曲线的一条渐近线与直线垂直,则双曲线的方程为()A.B.C.D.5.设,,则“”是“”的()A. 充要条件B. 充分而不必要条件C. 必要而不充分条件D. 既不充分也不必要条件6.已知是定义在上的偶函数,且在区间上单调递增,若实数满足,则的取值范围是()A.B.C.D.7.已知△ABC是边长为1的等边三角形,点分别是边的中点,连接并延长到点,使得,则的值为()A.B.C.D.8.已知函数,.若在区间内没有零点,则的取值范围是()A.B.C.D.填空题(本大题共6小题,每小题____分,共____分。

)9.i是虚数单位,复数满足,则的实部为______.10.已知函数为的导函数,则的值为__________.11.阅读右边的程序框图,运行相应的程序,则输出的值为_______.12.已知圆C的圆心在x轴的正半轴上,点在圆C上,且圆心到直线的距离为,则圆C的方程为__________.13.如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.14. 已知函数在R上单调递减,且关于x的方程恰有两个不相等的实数解,则的取值范围是_________.简答题(综合题)(本大题共6小题,每小题____分,共____分。

)在中,内角所对应的边分别为a,b,c,已知.15.求B;16.若,求sinC的值.某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.17.用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;18.问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF||AB,AB=2,BC=EF=1,AE=,DE=3,∠BAD=60º,G为BC的中点.19.求证:平面BED;20.求证:平面BED⊥平面AED;21.求直线EF与平面BED所成角的正弦值.已知是等比数列,前n项和为,且.22.求的通项公式;23.若对任意的是和的等差中项,求数列的前2n项和.设椭圆()的右焦点为,右顶点为,已知,其中为原点,为椭圆的离心率.24.求椭圆的方程;25.设过点的直线与椭圆交于点(不在轴上),垂直于的直线与交于点,与轴交于点,若,且,求直线的斜率.设函数,,其中26.求的单调区间;27.若存在极值点,且,其中,求证:;28.设,函数,求证:在区间上的最大值不小于.答案单选题1. A2. A3. B4. A5. C6. C7. B8. D 填空题9.110.311.412.13.14.简答题15.(Ⅰ)16.(Ⅱ)17.(Ⅰ)解:由已知满足的数学关系式为,该二元一次不等式组所表示的区域为图1中的阴影部分.18.(Ⅱ)生产甲种肥料车皮,乙种肥料车皮时利润最大,且最大利润为万元19.(Ⅰ)证明:取的中点为,连接,在中,因为是的中点,所以且,又因为,所以且,即四边形是平行四边形,所以,又平面,平面,所以平面.20.(Ⅱ)证明:在中,,由余弦定理可,进而可得,即,又因为平面平面平面;平面平面,所以平面.又因为平面,所以平面平面.21.(Ⅲ)22.(Ⅰ)23.(Ⅱ)24.(Ⅰ)25.(Ⅱ)26.(Ⅰ)递减区间为,递增区间为,.27.(Ⅱ)证明:因为存在极值点,所以由(1)知且.由题意得,即,进而,又,且,由题意及(1)知,存在唯一实数满足,且,因此,所以.28.(3)证明:设在区间上的最大值为,表示,两数的最大值,下面分三种情况讨论:①当时,,由(1)知在区间上单调递减,所以在区间上的取值范围为,因此,所以.②当时,,由(1)和(2)知,,所以在区间上的取值范围为,所以③当时,,由(1)和(2)知,,,所以在区间上的取值范围为,因此。

【推荐】2016年天津市高考数学试卷(文科)

【推荐】2016年天津市高考数学试卷(文科)

2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2﹣1,∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.2﹣=1C.﹣=1 D.﹣=15.(5分)设>0,y∈R,则“>y”是“>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.8.(5分)已知函数f()=sin2+sinω﹣(ω>0),∈R,若f()在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,] B.(0,]∪[,1)C.(0,] D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数满足(1+i)=2,则的实部为.10.(5分)已知函数f()=(2+1)e,f′()为f()的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在轴正半轴上,点(0,)圆C上,且圆心到直线2﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f()=(a>0,且a≠1)在R上单调递减,且关于的方程|f()|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且﹣=,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(﹣1)n b}的前2n 项和.19.(14分)设椭圆+=1(a >)的右焦点为F ,右顶点为A ,已知+=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于B (B 不在轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA=∠MAO ,求直线l 的斜率. 20.(14分)设函数f ()=3﹣a ﹣b ,∈R ,其中a ,b ∈R . (1)求f ()的单调区间;(2)若f ()存在极值点0,且f (1)=f (0),其中1≠0,求证:1+20=0; (3)设a >0,函数g ()=|f ()|,求证:g ()在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2﹣1,∈A},则A∩B=()A.{1,3} B.{1,2} C.{2,3} D.{1,2,3}【分析】根据题意,将集合B用列举法表示出,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2﹣1,∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设>0,y∈R,则“>y”是“>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设>0,y∈R,当>0,y=﹣1时,满足>y但不满足>|y|,故由>0,y∈R,则“>y”推不出“>|y|”,而“>|y|”⇒“>y”,故“>y”是“>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,)B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f()在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f()是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f()在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC 的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D 、E 分别是边AB 、BC 的中点,且DE=2EF ,∴•========.故选:C .【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f ()=sin 2+sin ω﹣(ω>0),∈R ,若f ()在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,]B .(0,]∪[,1)C .(0,]D .(0,]∪[,]【分析】函数f ()=,由f ()=0,可得=0,解得=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f()=+sinω﹣=+sinω=,由f()=0,可得=0,解得=∉(π,2π),∴ω∉∪∪∪…=∪,∵f()在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数满足(1+i)=2,则的实部为 1 .【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)=2,得,∴的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f()=(2+1)e,f′()为f()的导函数,则f′(0)的值为 3 .【分析】先求导,再带值计算.【解答】解:∵f()=(2+1)e,∴f′()=2e+(2+1)e,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为 4 .【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在轴正半轴上,点(0,)圆C上,且圆心到直线2﹣y=0的距离为,则圆C的方程为(﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(﹣2)2+y2=9.故答案为:(﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f()=(a>0,且a≠1)在R上单调递减,且关于的方程|f()|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f()在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f()|和y=2﹣的图象,根据交点个数判断3a与2的大小关系,列出不等式组解出.【解答】解:∵f()是R上的单调递减函数,(+1)+1在(0,+∴y=2+(4a﹣3)+3a在(﹣∞.,0)上单调递减,y=loga∞)上单调递减,且f()在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f()|和y=2﹣的函数草图如图所示:由图象可知|f()|=2﹣在[0,+∞)上有且只有一解,∵|f()|=2﹣恰有两个不相等的实数解,∴2+(4a﹣3)+3a=2﹣在(﹣∞,0)上只有1解,即2+(4a﹣)+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为万元,则目标函数为=2+3y,即y=﹣+,平移直线y=﹣+,由图象得当直线经过点M时,直线的截距最大,此时最大,由得,即M(20,24),此时=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{a n }是等比数列,前n 项和为S n (n ∈N *),且﹣=,S 6=63.(1)求{a n }的通项公式;(2)若对任意的n ∈N *,b n 是log 2a n 和log 2a n+1的等差中项,求数列{(﹣1)n b}的前2n 项和.【分析】(1)根据等比数列的通项公式列方程解出公比q ,利用求和公式解出a 1,得出通项公式;(2)利用对数的运算性质求出b n ,使用分项求和法和平方差公式计算. 【解答】解:(1)设{a n }的公比为q ,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S 6=0,与S 6=63矛盾,不符合题意.∴q=2, ∴S 6==63,∴a 1=1.∴a n =2n ﹣1.(2)∵b n 是log 2a n 和log 2a n+1的等差中项,∴b n =(log 2a n +log 2a n+1)=(log 22n ﹣1+log 22n )=n ﹣. ∴b n+1﹣b n =1.∴{b n }是以为首项,以1为公差的等差数列. 设{(﹣1)n b n 2}的前2n 项和为T n ,则T n =(﹣b 12+b 22)+(﹣b 32+b 42)+…+(﹣b 2n ﹣12+b 2n 2) =b 1+b 2+b 3+b 4…+b 2n ﹣1+b 2n ===2n 2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a >)的右焦点为F ,右顶点为A ,已知+=,其中O 为原点,e 为椭圆的离心率.(1)求椭圆的方程;(2)设过点A 的直线l 与椭圆交于B (B 不在轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若BF ⊥HF ,且∠MOA=∠MAO ,求直线l 的斜率. 【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a 的方程,解方程求得a 值,则椭圆方程可求;(2)由已知设直线l 的方程为y=(﹣2),(≠0),联立直线方程和椭圆方程,化为关于的一元二次方程,利用根与系数的关系求得B 的坐标,再写出MH 所在直线方程,求出H的坐标,由BF ⊥HF ,得,整理得到M 的坐标与的关系,由∠MOA=∠MAO ,得到0=1,转化为关于的等式求得的值. 【解答】解:(1)由+=,得+=,即=,∴a[a 2﹣(a 2﹣3)]=3a (a 2﹣3),解得a=2. ∴椭圆方程为;(2)由已知设直线l 的方程为y=(﹣2),(≠0), 设B (1,y 1),M (0,(0﹣2)), ∵∠MOA=∠MAO ,∴0=1,再设H (0,y H ), 联立,得(3+42)2﹣162+162﹣12=0.△=(﹣162)2﹣4(3+42)(162﹣12)=144>0. 由根与系数的关系得, ∴,,MH 所在直线方程为y ﹣(0﹣2)=﹣(﹣0), 令=0,得y H =(+)0﹣2, ∵BF ⊥HF , ∴,即1﹣1+y 1y H =1﹣[(+)0﹣2]=0,整理得:=1,即82=3.∴=﹣或=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f ()=3﹣a ﹣b ,∈R ,其中a ,b ∈R . (1)求f ()的单调区间;(2)若f ()存在极值点0,且f (1)=f (0),其中1≠0,求证:1+20=0; (3)设a >0,函数g ()=|f ()|,求证:g ()在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f ()的导数,讨论a ≤0时f ′()≥0,f ()在R 上递增;当a >0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a >0,且0≠0,由f ′(0)=0求出0,分别代入解析式化简f (0),f (﹣20),化简整理后可得证;(3)设g ()在区间[﹣1,1]上的最大值M ,根据极值点与区间的关系对a 分三种情况讨论,运用f ()单调性和前两问的结论,求出g ()在区间上的取值范围,利用a 的范围化简整理后求出M ,再利用不等式的性质证明结论成立. 【解答】解:(1)若f ()=3﹣a ﹣b ,则f ′()=32﹣a , 分两种情况讨论:①、当a ≤0时,有f ′()=32﹣a ≥0恒成立, 此时f ()的单调递增区间为(﹣∞,+∞), ②、当a >0时,令f ′()=32﹣a=0,解得=或=,当>或<﹣时,f ′()=32﹣a >0,f ()为增函数, 当﹣<<时,f ′()=32﹣a <0,f ()为减函数,故f ()的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f ()存在极值点0,则必有a >0,且0≠0,由题意可得,f ′()=32﹣a ,则02=, 进而f (0)=03﹣a 0﹣b=﹣﹣b ,又f (﹣20)=﹣803+2a 0﹣b=﹣0+2a 0﹣b=f (0),由题意及(Ⅰ)可得:存在唯一的实数1,满足f (1)=f (0),其中1≠0, 则有1=﹣20,故有1+20=0;(Ⅲ)设g ()在区间[﹣1,1]上的最大值M ,ma{,y}表示、y 两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f()在区间[﹣1,1]上单调递减,所以f()在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=ma{|f(1)|,|f(﹣1)|}=ma{|1﹣a﹣b|,|﹣1+a﹣b|}=ma{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f()在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=ma{|f()|,|f(﹣)|}=ma{||,||}=ma{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f()在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=ma{|f(﹣1)|,|f(1)|}=ma{|﹣1+a﹣b|,|1﹣a﹣b|}=ma{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g()在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

2016年天津市高考数学试卷文科(高考真题)

2016年天津市高考数学试卷文科(高考真题)

2016 年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的 1.(5分)已知集合 A={1,2,3},B={y|y=2x ﹣1,x ∈A},则 A ∩B=()A .{ 1,3}B .{1,2}C .{ 2,3}D .{1,2,3} 2.(5 分)甲、乙两人下棋,两人下成和棋的概率是 ,甲获胜的概率是 ,则甲不输的概率为( )A .B .C .D .3.(5 分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的 正视图与俯视图如图所示,则该几何体的侧(左)视图为( )条渐近线与直线 2x+y=0 垂直,则双曲线的方程为( )A . ﹣y 2=1B .x 2﹣ =1C . ﹣=1 D . ﹣ =1 4.(5 分)已知双曲线=1(a >0,b > 0)的焦距为 2 ,且双曲线的一A .充要条件B .充分不必要条件C .必要而不充分条件D .既不充分也不必要条件点,连接 DE 并延长到点 F ,使得 DE=2EF ,则 ? 的值为( ) 间( π, 2π)内没有零点,则 ω的取值范围是( )二、填空题本大题 6小题,每题 5 分,共 30分9.(5分) i 是虚数单位,复数 z 满足( 1+i )z=2,则 z 的实部为 . 10.(5分)已知函数 f (x )=(2x+1)e x ,f ′(x )为 f (x )的导函数,则 f ′(0) 的值为 .11.(5分)阅读如图所示的程序框图, 运行相应的程序,则输出 S 的值为6.(5 分)已知 f (x )是定义在 R 上的偶函数,且在区间(﹣∞增,若实数 a 满足 f (2|a﹣1|)>f (﹣ ),则 a 的取值范围是(0)上单调递,+∞)7.(5 分)已知△ ABC 是边长为 1 的等边三角形,点 D 、E 分别是A .(﹣∞ , ) B .( +∞) C . A . B . C . D .8.(5 分)已知函数 f (x )+sω>0),x ∈ R ,若 f (x )在区A . 0, ]B .(0, ] ∪[ ,1)C .(0, ]D .(0, ] ∪[ ,]﹣12.( 5分)已知圆 C 的圆心在 x 轴正半轴上,点( 0, )圆C 上,且圆心到直 线2x ﹣y=0的距离为 ,则圆 C 的方程为 . 13.(5分)如图,AB 是圆的直径,弦 CD 与 AB 相交于点 E ,BE=2AE=2,BD=ED ,单调递减,且关于 x 的方程|f (x )| =2﹣ 恰有两个不相等的实数解,则 a 的取 值范围是 三、解答题:本大题共 6 小题,80分 15(.13分)在△ABC 中,内角A ,B ,C 所对的边分别为 a ,b ,c ,已知 asin2B= bsinA.14.(5 分)已知函数 f (x ) a >0,且 a ≠1)在 R 上 则线段 CE 的1)求B;16.(13 分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产 1 车皮甲种肥料和生产 1 车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料10现有A种原料200 吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为 3 万元、分别用x,y 表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13 分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥ AB,AB=2,DE=3,BC=EF=,1 AE= ,∠ BAD=60°,G 为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.,求sinC 2)已S 6=63. (1)求{ a n }的通项公式;18.(13分)已知 { a n }是等比数列,前n 项和为 S n (n ∈N *),且 ﹣ = ,2)若对任意的 n ∈N *,b n 是 log 2a n 和 log 2a n +1的等差中项,求数列{(﹣ 1)n b } 的前 2n 项和.1)求椭圆的方程; (2)设过点 A 的直线l 与椭圆交于 B (B 不在x 轴上),垂直于 l 的直线与 l 交于 点M ,与y 轴交于点 H ,若BF ⊥HF ,且∠MOA=∠MAO ,求直线 l 的斜率. 20.(14 分)设函数 f (x )=x 3﹣ax ﹣b ,x ∈R ,其中 a ,b ∈R .( 1)求 f (x )的单调区间;( 2)若 f (x )存在极值点 x 0,且 f (x 1) =f (x 0),其中 x 1≠x 0,求证: x 1+2x 0=0;(3)设 a >0,函数 g (x )=| f (x )| ,求证: g (x )在区间[ ﹣1,1]上的最大值 不小于 . 2016 年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的 1.(5分)已知集合 A={1,2,3},B={y|y=2x ﹣1,x ∈A},则 A ∩B=( ) A .{ 1,3} B .{ 1,2} C .{ 2,3} D .{ 1,2,3}【分析】 根据题意,将集合 B 用列举法表示出来,可得 B={ 1,3,5} ,由交集的 定义计算可得答案.【解答】解:根据题意,集合 A={ 1, 2, 3} ,而 B={y|y=2x ﹣1,x ∈A},则 B={ 1,3,5} ,则 A ∩B={ 1,3},故选: A .19.( 14 分)设椭圆 + =1( a > )的右焦点为 F ,右顶点为 A ,已知 e 为椭圆的离心率. O 为原【点评】本题考查集合的运算,注意集合 B 的表示方法.2.( 5 分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P= + = .故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5 分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()故选: B .【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于 基础题.=1(a >0,b > 0)的焦距为 2 ,且双曲线的一 条渐近线与直线 2x+y=0 垂直,则双曲线的方程为( )4.(5 分)已知双曲线 解答】 解:由主视图和俯视图可知切去的棱锥为 D﹣ AD C ,A.﹣y2=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为 2 ,且双曲线的一条渐近线与直线2x+y=0 垂直,求出几何量a,b,c,即可求出双曲线的方程.解答】解:∵双曲线=1(a>0,b>0)的焦距为 2 ,∴ c= ,∵双曲线的一条渐近线与直线2x+y=0 垂直,∴=,∴ a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“>xy”是“>x|y| ”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1 时,满足x>y 但不满足x>| y| ,故由x>0,y∈R,则“>xy”推不出“>x| y|”,而“>x| y| ”? “>xy”,故“>xy”是“>x| y| ”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、 充要条件的判定, 考查了推理能力与计算能 力,属于基础题.即可. 增,∵2| a ﹣1| >0,f (﹣ )=f ( ), ∴2|a ﹣1| < =2 .∴ |a ﹣1| ,解得 .故选: C .点评】 本题考查了函数的单调性,奇偶性的性质,属于中档题. 7.(5 分)已知△ ABC 是边长为 1 的等边三角形,点 D 、E 分别是边 AB 、BC 的中点,连接 DE 并延长到点 F ,使得 DE=2EF ,则 ? 的值为( )【分析】 由题意画出图形,把 、 都用 表示,然后代入数量积公式得答案.【解答】 解:如图,6.(5 分)已知 f (x )是定义在 R 上的偶函数,且在区间(﹣∞增,若实数 a 满足 f (2|a ﹣1|)>f (﹣ ),则 a 的取值范围是( 0)上单调递A .(﹣∞分析】, ) B .(﹣ 根据函数的对称性可∪( , f (x )在( 0,+∞)递减,故只需令 2|a 1|< +∞) C . ,+∞ 解答】 解:∵ f (x )是定义在 R 上的偶函数,且在区间(﹣∞, 0 )上单调递 ∴f (x ) 在( 0, +∞)上单调递减.∵D 、 E 分别是边 AB 、BC 的中点,且 DE=2EF , ∴ ? = ==== = =故选: C .点评】 本题考查平面向量的数量积运算, 考查向量加减法的三角形法则, 是中档题.间( π, 2π)内没有零点,则 ω的取值范围是( )A .(0, ]B .(0, ] ∪[ ,1)C .(0, ]D .(0, ]∪[ , ]【分析】 函数 f (x ) = ,由 f (x )=0,可得 =0,解 得 x= ?(π,2π),因此 ω? ∪ ∪ ∪⋯=,即可得出.+ sin ωx8.(5 分)已知函数 f ( x ) =sin 2 + sin ω﹣x ω>0),x ∈ R ,若 f (x )在区 解 答 】 解 : 函 数 f ( x ) + sin ωx﹣由f(x)=0,可得=0,∴ ω? ∪ ∵ f (x )在区间( π,2π)内没有零点,∴ ω∈ ∪故选: D .点评】本题考查了三角函数的图象与性质、 不等式的解法, 考查了推理能力与 计算能力,属于中档题.、填空题本大题 6小题,每题 5 分,共 30分 9.(5分) i 是虚数单位,复数 z 满足( 1+i )z=2,则 z 的实部为 1 . 【分析】 把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.∴ z 的实部为 1.故答案为: 1.【点评】本题考查复数代数形式的乘除运算, 考查了复数的基本概念, 是基础题.10.(5分)已知函数 f (x )=(2x+1)e x,f (′x )为 f (x )的导函数,则 f ′(0) 的值为 3 .【分析】 先求导,再带值计算.【解答】 解:∵ f (x )=(2x+1)e x,∴f ′(x )=2e x +(2x+1)e x ,∴f (′0)=2e 0+(2×0+1)e 0=2+1=3. 故答案为: 3.【点评】 本题考查了导数的运算法则,属于基础题. 11.(5分)阅读如图所示的程序框图, 运行相应的程序,则输出 S解答】 解:由( 1+i )解得 x=?(π,2π), ∪⋯=的值为 4【分析】根据循环结构,结合循环的条件,求出最后输出S 的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0 的距离为,则圆C的方程为(x﹣2)2+y2=9 .【分析】由题意设出圆的方程,把点M 的坐标代入圆的方程,结合圆心到直线的距离列式求解.解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0 的距离为,得,解得a=2,r=3.∴圆 C 的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△ BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过 D 作DH⊥ AB于H,∵BE=2AE=2,BD=ED,∴ BH=HE=1,则AH=2,BH=1,∴ DH2=AH?BH=2,则DH= ,在Rt△DHE 中,则,由相交弦定理可得:CE?DE=AE?E,B∴.又 ≤ a ≤ 点评】 本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数 f (x )= (a >0,且a ≠1)在 R 上 单调递减,且关于 x 的方程|f (x )| =2﹣ 恰有两个不相等的实数解,则 a 的取 值范围是 [ , ) .【分析】 由减函数可知 f (x )在两段上均为减函数,且在第一段的最小值大于或 等于第二段上的最大值,作出 |f (x )|和 y=2﹣ 的图象,根据交点个数判断 3a 与 2 的大小关系,列出不等式组解出.【解答】解:∵ f (x )是 R 上的单调递减函数,∴y=x 2+(4a ﹣3)x+3a 在(﹣∞.,0)上单调递减, y=log a (x+1)+1 在( 0,+∞)上单调递减, 且 f ( x )在(﹣∞, 0)上的最小值大于或等于 f (0).∴ ,解得 ≤ a ≤ .作出 y=| f (x )| 和 y=2﹣ 的函数草图如图所示: 由图象可知 | f (x )| =2﹣ 在[ 0,+∞)上有且只有一解, ∵|f (x )| =2﹣ 恰有两个不相等的实数解, ∴x 2+(4a ﹣3)x+3a=2﹣ 在(﹣∞, 0)上只有 1 解, 即 x 2+(4a ﹣ )x+3a ﹣2=0在(﹣∞, 0)上只有 1 解,解得 a= 或a <,,故答案为[ ,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共 6 小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B= bsinA.(1)求B;(2)已知cosA= ,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵ asin2B= bsinA,∴ 2sinAsinBcosB= sinBsinA,∴ cosB= ,∴ B= .(2)∵ cosA= ,∴ sinA= ,∴ sinC=sin(A+B)=sinAcosB+cosAsinB= = .【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13 分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产 1 车皮甲种肥料和生产 1 车皮乙种肥料所需三种原料的吨数如下表所示:BC 肥料原料10现有 A 种原料 200 吨, B 种原料 360吨, C 种原料 300吨,在此基础上生产甲、 乙两种肥料.已知生产 1车皮甲种肥料,产生的利润为 2万元;生产 1车皮乙种 肥料,产生的利润为 3 万元、分别用 x ,y 表示计划生产甲、乙两种肥料的车皮 数.(Ⅰ)用 x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域;( Ⅱ)问分别生产甲、 乙两种肥料各多少车皮, 能够产生最大的利润?并求出此 最大利润.分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域. Ⅱ)设出目标函数,利用平移直线法进行求解即可.面区域为,(Ⅱ)设年利润为 z 万元,则目标函数为 z=2x+3y ,即 y=﹣ x+ , ,由图象得当直线经过点 M 时,直线的截距最大,此时 z 最大,,即 M (20,24),此时 z=40+72=112,即分别生产甲肥料 20 车皮,乙肥料 24 车皮,能够产生最大的利润, 最大利润为112 万元.解答】 解:(Ⅰ)由已知 x ,y 满足不等式,则不等式对应的平平移直线 y=﹣点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13 分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥ AB,AB=2,DE=3,BC=EF=,1 AE= ,∠ BAD=60°,G 为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD= ,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB 与平面BED 所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△ BCD中,∵ G 是BC的中点,∴OG∥ DC,且OG= DC=1,又∵EF∥AB,AB∥DC,∴ EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵ FG?平面BED,OE? 平面BED,∴ FG∥平面BED;(2)证明:在△ ABD中,AD=1,AB=2,∠ BAD=6°0,由余弦定理可得BD= ,仅而∠ ADB=9°0 ,即BD⊥ AD,又∵平面AED⊥平面ABCD,BD? 平面ABCD,平面AED∩平面ABCD=AD,∴ BD⊥平面AED,∵ BD? 平面BED,∴平面BED⊥平面AED.(Ⅲ)∵ EF∥AB,∴直线EF与平面BED所成的角即为直线AB 与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB 与平面BED所成的角为∠ ABH,在△ ADE,AD=1,DE=3,AE= ,由余弦定理得cos∠ADE= ,∴ sin∠ADE= ,∴ AH=AD? ,在Rt△AHB中,sin∠ABH= = ,【点评】 本题考查了直线与平面的平行和垂直, 平面与平面的垂直, 直线与平面 所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知 { a n }是等比数列,前 n 项和为 S n(n ∈N *),且 S 6=63.(1)求{ a n }的通项公式;( 2)若对任意的 n ∈N *,b n 是 log 2a n 和 log 2a n +1的等差中项,求数列{(﹣ 1)nb } 的前 2n 项和.【分析】(1)根据等比数列的通项公式列方程解出公比 q ,利用求和公式解出 a 1, 得出通项公式;( 2)利用对数的运算性质求出 b n ,使用分项求和法和平方差公式计算.∴a n =2n ﹣1.=解答】 解:(1)设{ a n } 的公比为 q ,则====解得 q=2 或 q=﹣ 1.若 q=﹣ 1,则 S 6=0,与 S 6=63 矛盾,不符合题意.∴ q=2, ∴S 6= =63,∴ a 1=1.,即12)∵b n 是log2a n和log2a n+1 的等差中项,∴b n= ( log2a n+log2a n+1)= (log22n﹣1+log22n)=n﹣∴ b n +1﹣ b n =1.∴{ b n }是以 为首项,以 1 为公差的等差数列. 设{(﹣1)nb n 2} 的前 2n 项和为 T n ,则T n =(﹣ b 12+b 22)+(﹣b 32+b 42)+⋯+(﹣ b 2n ﹣12+b 2n 2)点评】本题考查了等差数列, 等比数列的性质, 分项求和的应用, 属于中档题.F ,右顶点为 A ,已知1)求椭圆的方程;2)设过点 A 的直线 l 与椭圆交于 B (B 不在 x 轴上),垂直于 l 的直线与 l 交于点M ,与 y 轴交于点 H ,若 BF ⊥HF ,且∠MOA=∠MAO ,求直线 l 的斜率. 【分析】(1)由题意画出图形,把 | OF| 、| OA| 、| FA| 代入+转化为关于 a 的方程,解方程求得 a 值,则椭圆方程可求; (2)由已知设直线 l 的方程为 y=k (x ﹣2),(k ≠0),联立直线方程和椭圆方程, 化为关于 x 的一元二次方程, 利用根与系数的关系求得 B 的坐标,再写出 MH 所 在直线方程, 求出 H 的坐标,由BF ⊥HF ,得,整理得到 M 的坐标与 k 的关系,由∠ MOA=∠MAO ,得到 x 0=1,转化为关于 k 的+e 为椭圆的离心率. =b 1+b 2+b 3+b 4⋯+b 2n ﹣=2n 2.19.( 14 分)设=1( a > )的右焦点,其中 O 为原点,等式求得k 的值.==解答】解:(2)由已知设直线 l 的方程为 y=k (x ﹣2),(k ≠0), 设 B (x 1,y 1),M ( x 0,k (x 0﹣2)),∵∠ MOA=∠ MAO ,∴ x 0=1, 再设 H (0,y H ), 得( 3+4k 2)x 2﹣16k 2x+16k 2﹣12=0.△=(﹣16k 2)2﹣4(3+4k 2)(16k 2﹣12)=144>0. 由根与系数的关系得MH 所在直线方程为 y ﹣ k (x 0﹣2)=﹣ (x ﹣x 0), 令 x=0,得 y H =(k+ ) x 0﹣2k , ∵BF ⊥HF , ∴,整理得:=1,即 8k 2=3.∴k=﹣ 或 k= .【点评】本题考查椭圆方程的求法, 考查直线与椭圆位置关系的应用, 体现了 “整=a[ a 2﹣( a 2﹣3)] =3a (a 2 即﹣3),解得 a=2. ∴椭圆方程为 联立即 1﹣ ﹣ [(k x 0﹣ 2k] ,体运算”思想方法和 “设而不求”的解题思想方法,考查运算能力,是难题.20.(14 分)设函数 f (x )=x 3﹣ax ﹣b ,x ∈R ,其中 a ,b ∈R .( 1)求 f (x )的单调区间;( 2)若 f (x )存在极值点 x 0,且 f (x 1) =f (x 0),其中 x 1≠x 0,求证: x 1+2x 0=0; (3)设 a >0,函数 g (x )=| f (x )| ,求证: g (x )在区间[ ﹣1,1]上的最大值 不小于 .【分析】(1)求出 f (x )的导数,讨论 a ≤0时f ′(x )≥0,f (x )在 R 上递增; 当 a >0 时,由导数大于 0,可得增区间;导数小于 0,可得减区间; (2)由条件判断出 a >0,且x 0≠0,由f (′x 0)=0求出 x 0,分别代入解析式化简 f (x 0),f (﹣2x 0),化简整理后可得证;(3)设 g (x )在区间 [ ﹣1,1] 上的最大值 M ,根据极值点与区间的关系对 a 分 三种情况讨论,运用 f (x )单调性和前两问的结论,求出 g (x )在区间上的取 值范围,利用 a 的范围化简整理后求出M ,再利用不等式的性质证明结论成立. 【解答】 解:(1)若 f(x )=x 3﹣ax ﹣b ,则 f ′(x ) =3x 2﹣ a , 分两种情况讨论: ①、当 a ≤ 0时,有 f ′(x )=3x 2﹣a ≥0 恒成立, 此时 f (x )的单调递增区间为(﹣∞, +∞), ②、当 a > 0时,令 f (′ x ) =3x 2﹣ a=0,解得当 x > 或 x <﹣ 时,f ′(x )=3x 2﹣a >0,f (x )为增函数, 当﹣ < x <2)若 f(x )存在极值点 x 0,则必有 a >0,且 x 0≠0,由题意可得, f ′(x )=3x 2﹣ a ,则 x 02=时,f ′(x )=3x 2﹣a <0,f (x )为减函数,故 f ( x )的增区间为 (﹣∞, ,+∞ ),减区间为 (﹣ , );或 x= ,又 f (﹣ 2x 0) =﹣ 8x 03+2ax 0﹣ b=由题意及( Ⅰ)可得:存在唯一的实数 x 1,满足 f (x 1)=f (x 0),其中 x 1≠x 0, 则有 x 1=﹣ 2x 0,故有 x 1+2x 0=0;(Ⅲ)设 g (x )在区间 [ ﹣1,1]上的最大值 M ,max{x ,y}表示 x 、y 两个数的 最大值,下面分三种情况讨论: ①当 a ≥3 时,﹣ ≤﹣1<1≤,由(I )知 f (x )在区间 [ ﹣1,1]上单调递减,所以 f (x )在区间 [﹣1,1] 上的取值范围是 [ f (1),f (﹣1)],因此 M=max{| f (1)| ,| f (﹣ 1)|} =max{| 1﹣a ﹣b| ,| ﹣1+a ﹣b|}=max{| a ﹣1+b|,|a ﹣1﹣b|} =,所以 M=a ﹣1+|b| ≥2 ②当 a <3 时,,由( Ⅰ)、(Ⅱ)知,f (﹣1)≥ =(f),f (1)≤= ,所以 f (x )在区间 [﹣1,1] 上的取值范围是 [ f ( ),f (﹣)] ,因此 M=max{| f ( )| ,| f (﹣)|} =max{| |,||} =max{|| ,||} = ,③当 0<a < 时, ,由( Ⅰ)、(Ⅱ)知,f (﹣1)<=(f ),f (1)>进而 f (x 0)=x 03﹣ ax 0﹣ b=﹣ x 0﹣b ,x 0+2ax 0﹣b=f (x 0),= ,所以f(x)在区间[﹣1,1] 上的取值范围是[ f(﹣1),f (1)],因此M=max{| f(﹣1)| ,| f(1)|} =max{| ﹣1+a﹣b| ,| 1﹣a ﹣b|}=max{| 1﹣a+b| ,| 1﹣a﹣b|} =1﹣a+| b| > ,综上所述,当a>0时,g(x)在区间[﹣1,1] 上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

2016年天津市高考数学试卷文科【新】

2016年天津市高考数学试卷文科【新】

2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9.【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a 与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z 最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出b n,使用分项求和法和平方差公式计算.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.∴b n﹣b n=1.+1∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得y H=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1y H=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||} =max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年天津市高考数学试卷(文科)一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=15.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.2016年天津市高考数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合要求的1.(5分)已知集合A={1,2,3},B={y|y=2x﹣1,x∈A},则A∩B=()A.{1,3}B.{1,2}C.{2,3}D.{1,2,3}【分析】根据题意,将集合B用列举法表示出来,可得B={1,3,5},由交集的定义计算可得答案.【解答】解:根据题意,集合A={1,2,3},而B={y|y=2x﹣1,x∈A},则B={1,3,5},则A∩B={1,3},故选:A.【点评】本题考查集合的运算,注意集合B的表示方法.2.(5分)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为()A.B.C.D.【分析】利用互斥事件的概率加法公式即可得出.【解答】解:∵甲不输与甲、乙两人下成和棋是互斥事件.∴根据互斥事件的概率计算公式可知:甲不输的概率P=+=.故选:A.【点评】本题考查互斥事件与对立事件的概率公式,关键是判断出事件的关系,然后选择合适的概率公式,属于基础题.3.(5分)将一个长方体沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为()A.B.C.D.【分析】根据主视图和俯视图作出几何体的直观图,找出所切棱锥的位置,得出答案.【解答】解:由主视图和俯视图可知切去的棱锥为D﹣AD1C,棱CD1在左侧面的投影为BA1,故选:B.【点评】本题考查了棱锥,棱柱的结构特征,三视图,考查空间想象能力,属于基础题.4.(5分)已知双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,则双曲线的方程为()A.﹣y2=1 B.x2﹣=1C.﹣=1 D.﹣=1【分析】利用双曲线﹣=1(a>0,b>0)的焦距为2,且双曲线的一条渐近线与直线2x+y=0垂直,求出几何量a,b,c,即可求出双曲线的方程.【解答】解:∵双曲线﹣=1(a>0,b>0)的焦距为2,∴c=,∵双曲线的一条渐近线与直线2x+y=0垂直,∴=,∴a=2b,∵c2=a2+b2,∴a=2,b=1,∴双曲线的方程为=1.故选:A.【点评】本题考查双曲线的方程与性质,考查待定系数法的运用,确定双曲线的几何量是关键.5.(5分)设x>0,y∈R,则“x>y”是“x>|y|”的()A.充要条件B.充分不必要条件C.必要而不充分条件D.既不充分也不必要条件【分析】直接根据必要性和充分判断即可.【解答】解:设x>0,y∈R,当x>0,y=﹣1时,满足x>y但不满足x>|y|,故由x>0,y∈R,则“x>y”推不出“x>|y|”,而“x>|y|”⇒“x>y”,故“x>y”是“x>|y|”的必要不充分条件,故选:C.【点评】本题考查了不等式的性质、充要条件的判定,考查了推理能力与计算能力,属于基础题.6.(5分)已知f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,若实数a满足f(2|a﹣1|)>f(﹣),则a的取值范围是()A.(﹣∞,) B.(﹣∞,)∪(,+∞)C.(,)D.(,+∞)【分析】根据函数的对称性可知f(x)在(0,+∞)递减,故只需令2|a﹣1|<即可.【解答】解:∵f(x)是定义在R上的偶函数,且在区间(﹣∞,0)上单调递增,∴f(x)在(0,+∞)上单调递减.∵2|a﹣1|>0,f(﹣)=f(),∴2|a﹣1|<=2.∴|a﹣1|,解得.故选:C.【点评】本题考查了函数的单调性,奇偶性的性质,属于中档题.7.(5分)已知△ABC是边长为1的等边三角形,点D、E分别是边AB、BC的中点,连接DE并延长到点F,使得DE=2EF,则•的值为()A.﹣ B.C.D.【分析】由题意画出图形,把、都用表示,然后代入数量积公式得答案.【解答】解:如图,∵D、E分别是边AB、BC的中点,且DE=2EF,∴•========.故选:C.【点评】本题考查平面向量的数量积运算,考查向量加减法的三角形法则,是中档题.8.(5分)已知函数f(x)=sin2+sinωx﹣(ω>0),x∈R,若f(x)在区间(π,2π)内没有零点,则ω的取值范围是()A.(0,]B.(0,]∪[,1)C.(0,]D.(0,]∪[,]【分析】函数f(x)=,由f(x)=0,可得=0,解得x=∉(π,2π),因此ω∉∪∪∪…=∪,即可得出.【解答】解:函数f(x)=+sinωx﹣=+sinωx=,由f(x)=0,可得=0,解得x=∉(π,2π),∴ω∉∪∪∪…=∪,∵f(x)在区间(π,2π)内没有零点,∴ω∈∪.故选:D.【点评】本题考查了三角函数的图象与性质、不等式的解法,考查了推理能力与计算能力,属于中档题.二、填空题本大题6小题,每题5分,共30分9.(5分)i是虚数单位,复数z满足(1+i)z=2,则z的实部为1.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由(1+i)z=2,得,∴z的实部为1.故答案为:1.【点评】本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.10.(5分)已知函数f(x)=(2x+1)e x,f′(x)为f(x)的导函数,则f′(0)的值为3.【分析】先求导,再带值计算.【解答】解:∵f(x)=(2x+1)e x,∴f′(x)=2e x+(2x+1)e x,∴f′(0)=2e0+(2×0+1)e0=2+1=3.故答案为:3.【点评】本题考查了导数的运算法则,属于基础题.11.(5分)阅读如图所示的程序框图,运行相应的程序,则输出S的值为4.【分析】根据循环结构,结合循环的条件,求出最后输出S的值.【解答】解:第一次循环:S=8,n=2;第二次循环:S=2,n=3;第三次循环:S=4,n=4,结束循环,输出S=4,故答案为:4.【点评】本题主要考查程序框图,循环结构,注意循环的条件,属于基础题.12.(5分)已知圆C的圆心在x轴正半轴上,点(0,)圆C上,且圆心到直线2x﹣y=0的距离为,则圆C的方程为(x﹣2)2+y2=9.【分析】由题意设出圆的方程,把点M的坐标代入圆的方程,结合圆心到直线的距离列式求解.【解答】解:由题意设圆的方程为(x﹣a)2+y2=r2(a>0),由点M(0,)在圆上,且圆心到直线2x﹣y=0的距离为,得,解得a=2,r=3.∴圆C的方程为:(x﹣2)2+y2=9.故答案为:(x﹣2)2+y2=9.【点评】本题考查圆的标准方程,训练了点到直线的距离公式的应用,是中档题.13.(5分)如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为.【分析】由BD=ED,可得△BDE为等腰三角形,过D作DH⊥AB于H,由相交弦定理求得DH,在Rt△DHE中求出DE,再由相交弦定理求得CE.【解答】解:如图,过D作DH⊥AB于H,∵BE=2AE=2,BD=ED,∴BH=HE=1,则AH=2,BH=1,∴DH2=AH•BH=2,则DH=,在Rt△DHE中,则,由相交弦定理可得:CE•DE=AE•EB,∴.故答案为:.【点评】本题考查与圆有关的比例线段,考查相交弦定理的应用,是中档题.14.(5分)已知函数f(x)=(a>0,且a≠1)在R上单调递减,且关于x的方程|f(x)|=2﹣恰有两个不相等的实数解,则a的取值范围是[,).【分析】由减函数可知f(x)在两段上均为减函数,且在第一段的最小值大于或等于第二段上的最大值,作出|f(x)|和y=2﹣的图象,根据交点个数判断3a 与2的大小关系,列出不等式组解出.【解答】解:∵f(x)是R上的单调递减函数,∴y=x2+(4a﹣3)x+3a在(﹣∞.,0)上单调递减,y=log a(x+1)+1在(0,+∞)上单调递减,且f(x)在(﹣∞,0)上的最小值大于或等于f(0).∴,解得≤a≤.作出y=|f(x)|和y=2﹣的函数草图如图所示:由图象可知|f(x)|=2﹣在[0,+∞)上有且只有一解,∵|f(x)|=2﹣恰有两个不相等的实数解,∴x2+(4a﹣3)x+3a=2﹣在(﹣∞,0)上只有1解,即x2+(4a﹣)x+3a﹣2=0在(﹣∞,0)上只有1解,∴或,解得a=或a<,又≤a≤,∴.故答案为[,).【点评】本题考查了分段函数的单调性,函数零点的个数判断,结合函数函数图象判断端点值的大小是关键,属于中档题.三、解答题:本大题共6小题,80分15.(13分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知asin2B=bsinA.(1)求B;(2)已知cosA=,求sinC的值.【分析】(1)利用正弦定理将边化角即可得出cosB;(2)求出sinA,利用两角和的正弦函数公式计算.【解答】解:(1)∵asin2B=bsinA,∴2sinAsinBcosB=sinBsinA,∴cosB=,∴B=.(2)∵cosA=,∴sinA=,∴sinC=sin(A+B)=sinAcosB+cosAsinB==.【点评】本题考查了正弦定理解三角形,两角和的正弦函数,属于基础题.16.(13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料,生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:肥料原料A B C 甲483乙5510现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲、乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元、分别用x,y表示计划生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【分析】(Ⅰ)设出变量,建立不等式关系,即可作出可行域.(Ⅱ)设出目标函数,利用平移直线法进行求解即可.【解答】解:(Ⅰ)由已知x,y满足不等式,则不等式对应的平面区域为,(Ⅱ)设年利润为z万元,则目标函数为z=2x+3y,即y=﹣x+,平移直线y=﹣x+,由图象得当直线经过点M时,直线的截距最大,此时z 最大,由得,即M(20,24),此时z=40+72=112,即分别生产甲肥料20车皮,乙肥料24车皮,能够产生最大的利润,最大利润为112万元.【点评】本题主要考查线性规划的应用,根据条件建立约束条件,作出可行域,利用平移法是解决本题的关键.17.(13分)如图,四边形ABCD是平行四边形,平面AED⊥平面ABCD,EF∥AB,AB=2,DE=3,BC=EF=1,AE=,∠BAD=60°,G为BC的中点.(1)求证:FG∥平面BED;(2)求证:平面BED⊥平面AED;(3)求直线EF与平面BED所成角的正弦值.【分析】(1)利用中位线定理,和平行公理得到四边形OGEF是平行四边形,再根据线面平行的判定定理即可证明;(2)根据余弦定理求出BD=,继而得到BD⊥AD,再根据面面垂直的判定定理即可证明;(3)先判断出直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,再根据余弦定理和解直角三角形即可求出答案.【解答】证明:(1)BD的中点为O,连接OE,OG,在△BCD中,∵G是BC的中点,∴OG∥DC,且OG=DC=1,又∵EF∥AB,AB∥DC,∴EF∥OG,且EF=OG,即四边形OGEF是平行四边形,∴FG∥OE,∵FG⊄平面BED,OE⊂平面BED,∴FG∥平面BED;(2)证明:在△ABD中,AD=1,AB=2,∠BAD=60°,由余弦定理可得BD=,仅而∠ADB=90°,即BD⊥AD,又∵平面AED⊥平面ABCD,BD⊂平面ABCD,平面AED∩平面ABCD=AD,∴BD⊥平面AED,∵BD⊂平面BED,∴平面BED⊥平面AED.(Ⅲ)∵EF∥AB,∴直线EF与平面BED所成的角即为直线AB与平面BED所形成的角,过点A作AH⊥DE于点H,连接BH,又平面BED∩平面AED=ED,由(2)知AH⊥平面BED,∴直线AB与平面BED所成的角为∠ABH,在△ADE,AD=1,DE=3,AE=,由余弦定理得cos∠ADE=,∴sin∠ADE=,∴AH=AD•,在Rt△AHB中,sin∠ABH==,∴直线EF与平面BED所成角的正弦值【点评】本题考查了直线与平面的平行和垂直,平面与平面的垂直,直线与平面所成的角,考查了空间想象能力,运算能力和推理论证能力,属于中档题.18.(13分)已知{a n}是等比数列,前n项和为S n(n∈N*),且﹣=,S6=63.(1)求{a n}的通项公式;(2)若对任意的n∈N*,b n是log2a n和log2a n+1的等差中项,求数列{(﹣1)n b}的前2n项和.【分析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1,得出通项公式;(2)利用对数的运算性质求出b n,使用分项求和法和平方差公式计算.【解答】解:(1)设{a n}的公比为q,则﹣=,即1﹣=,解得q=2或q=﹣1.若q=﹣1,则S6=0,与S6=63矛盾,不符合题意.∴q=2,∴S6==63,∴a1=1.∴a n=2n﹣1.(2)∵b n是log2a n和log2a n+1的等差中项,∴b n=(log2a n+log2a n+1)=(log22n﹣1+log22n)=n﹣.∴b n﹣b n=1.+1∴{b n}是以为首项,以1为公差的等差数列.设{(﹣1)n b n2}的前2n项和为T n,则T n=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n﹣12+b2n2)=b1+b2+b3+b4…+b2n﹣1+b2n===2n2.【点评】本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.19.(14分)设椭圆+=1(a>)的右焦点为F,右顶点为A,已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.【分析】(1)由题意画出图形,把|OF|、|OA|、|FA|代入+=,转化为关于a的方程,解方程求得a值,则椭圆方程可求;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),联立直线方程和椭圆方程,化为关于x的一元二次方程,利用根与系数的关系求得B的坐标,再写出MH所在直线方程,求出H的坐标,由BF⊥HF,得,整理得到M的坐标与k的关系,由∠MOA=∠MAO,得到x0=1,转化为关于k的等式求得k的值.【解答】解:(1)由+=,得+=,即=,∴a[a2﹣(a2﹣3)]=3a(a2﹣3),解得a=2.∴椭圆方程为;(2)由已知设直线l的方程为y=k(x﹣2),(k≠0),设B(x1,y1),M(x0,k(x0﹣2)),∵∠MOA=∠MAO,∴x0=1,再设H(0,y H),联立,得(3+4k2)x2﹣16k2x+16k2﹣12=0.△=(﹣16k2)2﹣4(3+4k2)(16k2﹣12)=144>0.由根与系数的关系得,∴,,MH所在直线方程为y﹣k(x0﹣2)=﹣(x﹣x0),令x=0,得y H=(k+)x0﹣2k,∵BF⊥HF,∴,即1﹣x1+y1y H=1﹣[(k+)x0﹣2k]=0,整理得:=1,即8k2=3.∴k=﹣或k=.【点评】本题考查椭圆方程的求法,考查直线与椭圆位置关系的应用,体现了“整体运算”思想方法和“设而不求”的解题思想方法,考查运算能力,是难题.20.(14分)设函数f(x)=x3﹣ax﹣b,x∈R,其中a,b∈R.(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1≠x0,求证:x1+2x0=0;(3)设a>0,函数g(x)=|f(x)|,求证:g(x)在区间[﹣1,1]上的最大值不小于.【分析】(1)求出f(x)的导数,讨论a≤0时f′(x)≥0,f(x)在R上递增;当a>0时,由导数大于0,可得增区间;导数小于0,可得减区间;(2)由条件判断出a>0,且x0≠0,由f′(x0)=0求出x0,分别代入解析式化简f(x0),f(﹣2x0),化简整理后可得证;(3)设g(x)在区间[﹣1,1]上的最大值M,根据极值点与区间的关系对a分三种情况讨论,运用f(x)单调性和前两问的结论,求出g(x)在区间上的取值范围,利用a的范围化简整理后求出M,再利用不等式的性质证明结论成立.【解答】解:(1)若f(x)=x3﹣ax﹣b,则f′(x)=3x2﹣a,分两种情况讨论:①、当a≤0时,有f′(x)=3x2﹣a≥0恒成立,此时f(x)的单调递增区间为(﹣∞,+∞),②、当a>0时,令f′(x)=3x2﹣a=0,解得x=或x=,当x>或x<﹣时,f′(x)=3x2﹣a>0,f(x)为增函数,当﹣<x<时,f′(x)=3x2﹣a<0,f(x)为减函数,故f(x)的增区间为(﹣∞,﹣),(,+∞),减区间为(﹣,);(2)若f(x)存在极值点x0,则必有a>0,且x0≠0,由题意可得,f′(x)=3x2﹣a,则x02=,进而f(x0)=x03﹣ax0﹣b=﹣x0﹣b,又f(﹣2x0)=﹣8x03+2ax0﹣b=﹣x0+2ax0﹣b=f(x0),由题意及(Ⅰ)可得:存在唯一的实数x1,满足f(x1)=f(x0),其中x1≠x0,则有x1=﹣2x0,故有x1+2x0=0;(Ⅲ)设g(x)在区间[﹣1,1]上的最大值M,max{x,y}表示x、y两个数的最大值,下面分三种情况讨论:①当a≥3时,﹣≤﹣1<1≤,由(I)知f(x)在区间[﹣1,1]上单调递减,所以f(x)在区间[﹣1,1]上的取值范围是[f(1),f(﹣1)],因此M=max{|f(1)|,|f(﹣1)|}=max{|1﹣a﹣b|,|﹣1+a﹣b|}=max{|a﹣1+b|,|a﹣1﹣b|}=,所以M=a﹣1+|b|≥2②当a<3时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)≥=f(),f(1)≤=,所以f(x)在区间[﹣1,1]上的取值范围是[f(),f(﹣)],因此M=max{|f()|,|f(﹣)|}=max{||,||} =max{||,||}=,③当0<a<时,,由(Ⅰ)、(Ⅱ)知,f(﹣1)<=f(),f(1)>=,所以f(x)在区间[﹣1,1]上的取值范围是[f(﹣1),f(1)],因此M=max{|f(﹣1)|,|f(1)|}=max{|﹣1+a﹣b|,|1﹣a﹣b|}=max{|1﹣a+b|,|1﹣a﹣b|}=1﹣a+|b|>,综上所述,当a>0时,g(x)在区间[﹣1,1]上的最大值不小于.【点评】本题考查导数的运用:求单调区间和最值,不等式的证明,注意运用分类讨论的思想方法和转化思想,考查分析法在证明中的应用,以及化简整理、运算能力,属于难题.。

相关文档
最新文档