电子技术基础-数字部分(第六版)-康华光第4章组合逻辑电路共6节共142页文档

合集下载

电子技术基础—数字部分康光华主编课件

电子技术基础—数字部分康光华主编课件

③ 状将态数表码1101右移串行输入给寄存器(串行输入是 指逐位依次输入)。
在接收数码表前5-2,从4位输右入移端位输寄入存器一状个态负表脉冲把各触
发器置为0状态(称为清零)。
CP顺序
输 入DSR
输出 Q0 Q1 Q2 Q3
0
1
0000
1
1
1000
2
0
1100
3
1
0110
4
0
1011
5
0
0101
6
0
19
表5-4 74LS194功能表
结论:清零功能最优先(异步方式)。 计数、移位、并行输入都需CP的↑到来(同步方式)
2019/10/13
20
工作方式控制端
M1 M0
功能
M1M0区分四种功能。
00
01
保持 右移
10
左移
2019/10/13
1 1 并行置数 21
5.1.3 寄存器的应用实例
1.数数据据显显示示锁锁存存器器; 数显示值序构数在。通列成码许常脉的计多以串冲数设84/信器备21并号…中B与发…C常D并生需码/器要计串;显数转示,换计并;数以器七的段计数数码值显,示计器
单拍工作方式:不需清除原有数据,只要CP↑一 到达,新的数据就会存入。
常用4D型触发器74LS175、6D型触发器74LS174、 8D型触发器74LS374或MSI器件等实现。
2019/10/13
8
2.由D型锁存器构成的数码寄存器 (1)锁存器的工作原理
送数脉冲CP为锁存 控制信号输入端, 即使能信号(电平
问题:如果计数器的计数速度高,人眼则无法 辨认显示的字符。
措施:在计数器和译码器之间加入锁存器,就 可控制数据显示的时间。

数字电路-康华光-04组合逻辑电路分解

数字电路-康华光-04组合逻辑电路分解

组合逻辑电路的设计
L0
【解】(4)画出逻辑电路图:
I0 I1
& 1 1 & 1
L1
1
&
I2
1
L2
L0 = I0
L1 = I0 I1
L2 = I0 I1 I2
数字电子技术
组合逻辑电路的设计
【例】试设计一个在楼上、楼下均能开关路灯的 控制逻辑电路,要求全用与非门实现。 【解】(1)列真值表:
特点:输出取决于 原来的状态
组成:组合电路 + 记忆元件
数字电子技术
组合逻辑电路的分析与设计
分析: 逻辑图 设计: 逻辑功能 逻辑图 逻辑功能
数字电子技术
组合逻辑电路的分析
逻辑图 逻辑功能
分析步骤:
1、由给定的逻辑图逐级写出逻辑关系表 达式。
2、用逻辑代数或卡诺图对逻辑函数进行 化简。 3、列出输入输出真值表并得出逻辑功能。
数字电子技术
组合逻辑电路的分析
真值表
逻辑功能
A 0 0 1 1
B 0 1 0 1
相同为“1” 相异为“0”
F 1 0 0 1
同或门
=1
F AB
数字电子技术
课 堂 练 习
& AB A
表达式 化简
分析下图的逻辑功能:
A B
&
AB
&
S AB AB
AB A ABB
& 1
AB
三个按键A、B、C按下时为“1”,不 按时为“0”。输出是F,多数赞成时是 “1”,否则是“0”。
数字电子技术
组合逻辑电路的设计
2、根据题意列出逻辑状态表: 真 值 表

数字电子基础部分答案(康华光)第04章_组合逻辑习题解答

数字电子基础部分答案(康华光)第04章_组合逻辑习题解答

第四章组合逻辑习题解答4.1.2 组合逻辑电路及输入波形(A.B)如图题4.1.2所示,试写出输出端的逻辑表达式并画出输出波形。

解:由逻辑电路写出逻辑表达式=+=L AB AB A B首先将输入波形分段,然后逐段画出输出波形。

当A.B信号相同时,输出为1,不同时,输出为0,得到输出波形。

如图所示4.2.1 试用2输入与非门设计一个3输入的组合逻辑电路。

当输入的二进制码小于3时,输出为0;输入大于等于3时,输出为1。

解:根据组合逻辑的设计过程,首先要确定输入输出变量,列出真值表。

由卡诺图化简得到最简与或式,然后根据要求对表达式进行变换,画出逻辑图1)设入变量为A.B.C输出变量为L,根据题意列真值表2)由卡诺图化简,经过变换得到逻辑表达式L A BC A BC=+=*3)用2输入与非门实现上述逻辑表达式4.2.7 某足球评委会由一位教练和三位球迷组成,对裁判员的判罚进行表决。

当满足以下条件时表示同意;有三人或三人以上同意,或者有两人同意,但其中一人是叫教练。

试用2输入与非门设计该表决电路。

解: 1)设一位教练和三位球迷分别用A和B.C.D表示,并且这些输入变量为1时表示同意,为0时表示不同意,输出L表示表决结果。

L为1时表示同意判罚,为0时表示不同意。

由此列出真值表输入输出A B C D L2)由真值表画卡诺图由卡诺图化简得L=AB+AC+AD+BCD由于规定只能用2输入与非门,将上式变换为两变量的与非——与非运算式 *******L AB AC AD BCD AB AC AD B CD ==3)根据L 的逻辑表达式画出由2输入与非门组成的逻辑电路4.3.3 判断图所示电路在什么条件下产生竞争冒险,怎样修改电路能消除竞争冒险?解: 根据电路图写出逻辑表达式并化简得*L A B BC =+当A=0,C=1时,L B B =+ 有可能产生竞争冒险,为消除可能产生的竞争冒险,增加乘积项使AC ,使 *L A B BC A C =++ ,修改后的电路如图4.4.4 试用74HC147设计键盘编码电路,十个按键分别对应十进制数0~9,编码器的输出为8421BCD码。

数电第04章组合逻辑电路的分析康华光 11022

数电第04章组合逻辑电路的分析康华光 11022

1001 1011 1101
当A、B、C三个变量不一致时
1110
输出为“ 1”,所以这个电路称为“不一致电路”。 (1-5)
§4.2 组合逻辑电路的设计
根据逻辑功能要求 设计 逻辑电路
一、设计步骤
逻辑要求 逻辑功能
弄清输入输出 和输入输出 0、 1的意义
状态表
逻辑图 二、举例
化简
逻辑式
(1-6)
例1 设计三人的无记名表决电路。每人前面一个按键。 如果同意则按下,不同意则不按。结果用指示灯表
首先写出组合逻辑电路的逻辑表达式。当某些逻辑
变量取特定值 (0或1)时,如果表达式出现:
L ? AA 存在1冒险;
L ? A? A 存在0冒险。
(1-23)
例3
判断图示电路是否存在冒险 ? 如有,指出冒险类型。
解:逻辑表达式:
B
L ? AC ? BC
C
&
A
若输入变量 A=B=l,则有:
L? C? C
ABCF 0000 0010 0100 0111 1000 1011 1101 1111
(1-7)
(4)根据逻辑表达式画出逻辑图 F =AB+BC+CA
A
&
B
C
&
≥1
F
&
(1-8)
若只能用 与非门实现:
F=AB+BC+CA=AB+BC+CA ? AB?BC?CA
A
&
B
&
&
F
C
&
A&
注意:与非门当非门使用时,应将所
第四章

康华光《电子技术基础-数字部分》第6版教材题库

康华光《电子技术基础-数字部分》第6版教材题库

康华光《电子技术基础-数字部分》第6版教材题库康华光《电子技术基础-数字部分》(第6版)配套题库【考研真题精选+章节题库】目录第一部分考研真题精选一、填空题二、选择题三、分析题第二部分章节题库第1章数字逻辑概论第2章逻辑代数与硬件描述语言基础第3章逻辑门电路第4章组合逻辑电路第5章锁存器和触发器第6章时序逻辑电路第7章半导体存储器第8章CPLD和FPGA第9章脉冲波形的变换与产生第10章数模与模数转换器第11章数字系统设计基础•试看部分内容考研真题精选一、填空题1(10100011.11)2=()10=()8421B C D。

[电子科技大学2009年研]【答案】163.75;000101100011.01110101查看答案【解析】二进制转换为十进制时,按公式D=∑k i×2i求和即可,再由十进制数的每位数对应写出8421BCD码。

2数(39.875)10的二进制数为(),十六进制数为()。

[重庆大学2014年研]【答案】100111.111;27.E查看答案【解析】将十进制数转化为二进制数时,整数部分除以2取余,小数部分乘以2取整,得到(39.875)10=(100111.111)2。

4位二进制数有16个状态,不够4位的,若为整数位则前补零,若为小数位则后补零,即(100111.111)2=(0010 0111.1110)2=(27.E)16。

3(10000111)8421B C D=()2=()8=()10=()16。

[山东大学2014年研]【答案】1010111;127;87;57查看答案【解析】8421BC D码就是利用四个位元来储存一个十进制的数码。

所以可先将8421BCD码转换成10进制再进行二进制,八进制和十六进制的转换。

(1000 0111)8421B C D=(87)10=(1010111)22进制转8进制,三位为一组,整数向前补0,因此(001 010 1 11)2=(127)8。

电子技术基础数字部分第六版

电子技术基础数字部分第六版

4000系列
速度慢 与TTL不兼容 抗干扰 功耗低
74HC 74HCT
速度加快 与TTL兼容 负载能力强 抗干扰 功耗低
74VHC 74VHCT
速度两倍于74HC 与TTL兼容 负载能力强 抗干扰 功耗低
74LVC 74AUC
低(超低)电压 速度更加快 负载能力强 抗干扰 功耗低
2.TTL 集成电路: 广泛应用于中大规模集成电路
(1) VGS 控制沟道的导电性 vGS=0, vDS0, 等效背靠背连接的两个二极管, iD0。
vGS>0, 建立电场 反型层 vDS>0, iD 0。
沟道建立的最小 vGS 值称为开启电压 VT.
V DS
S
V GS G
D
N
N
P
n-沟 道
B 10
1. N沟道增强型MOS管的结构和工作原理
1. CMOS漏极开路门
1.)CMOS漏极开路门的提出 A
B
输出短接,在一定情况下会产
生低阻通路,大电流有可能导 致器件的损毁,并且无法确定 C
D
输出是高电平还是低电平。
VDD
T P1
TN1
1
与非门 G1
VDD
T P2
0
TN2
与非门 G2
35
(2)漏极开路门的结构与逻辑符号
漏极开路门输出连接
电路
逻辑符号
31
3.3.1 输入保护电路和缓冲电路
采用缓冲电路能统一参数,使不同内部逻辑集成逻辑门电路 具有相同的输入和输出特性。
VDD
vi
基本逻辑
vo
功能电路
输入保护缓冲电路 基本逻辑功能电路 输出缓冲电路
32

电子技术基础数字部分第六版康华光

模数转换的实现
模拟信号 3V
模数转换器
00000011 数字输出
1.1.4 数字信号的描述方法
1、二值数字逻辑和逻辑电平 二值数字逻辑
0、1数码---表示数量时称二进制数
表示方式
---表示事物状态时称二值逻辑
a 、在电路中用低、高电平表示0、1两种逻辑状态
逻辑电平与电压值的关系(正逻辑)
电压(V) 二值逻辑
3、数字电路的分析、设计与测试
(1)数字电路的分析方法 数字电路的分析:根据电路确定电路输出与输入之间的逻辑关系。 分析工具:逻辑代数。 电路逻辑功能主要用真值表、功能表、逻辑表达式和波形图。
(2) 数字电路的设计方法 数字电路的设计:从给定的逻辑功能要求出发,选择适当的 逻辑器件,设计出符合要求的逻辑电路。 设计方式:分为传统的设计方式和基于EDA软件的设计方式。
1.8万个电子管
保存80个字节
晶体管时代
器件
电流控制器件 —半导体技术
半导体二极管、三极管
半导体集成电路
电路设计方法伴随器件变化从传统走向现代
a)传统的设计方法: 采用自下而上的设计方法;由人工组装,经反复调试、验证、 修改完成。所用的元器件较多,电路可靠性差,设计周期长。
b)现代的设计方法: 现代EDA技术实现硬件设计软件化。采用从上到下设计方 法,电路设计、 分析、仿真 、修订 全通过计算机完成。
--数字电路可分为TTL 和 CMOS电路
从集成度不同 --数字集成电路可分为小规模、中规模、大规模、超
大规模和甚大规模五类。
集成度:每一芯片所包含的门个数
分类
小规模 中规模 大规模 超大规模
甚大规模
门的个数
典型集成电路

电子技术基础-数字部分(第六版)-康华光第4章组合逻辑电路共6节


Z
B
例1 分析如图所示逻辑电路的功能。 C
L
解:1.根据逻辑图写出输出函数的逻辑表达式
LZC
A B C ZAB L(ABC)
(AB)C
000
0
0
ABC
001
0
1
2. 列写真值表。
010
1
1
011
1
0
3. 确定逻辑功能:
100
1
1
输入变量的取值中有奇数 1 0 1
1
0
个1时,L为1,否则L为0, 1 1 0
YAB AB ABAB 0 1 0 0 1 0
ZACAC ACAC
0 1 1 01 1 1 0 0 11 1
1 0 1 11 0
1 1 0 10 1
1 1 1 10 0
3、确定电路逻辑功能 这个电路逻辑功能是对输入 的二进制码求反码。最高位为 符号位,0表示正数,1表示负 数,正数的反码与原码相同; 负数的数值部分是在原码的基 础上逐位求反。
4.1.2 组合逻辑电路的分析方法
一. 组合逻辑电路分析 根据已知逻辑电路,经分析确定电路的逻辑功能。 二. 组合逻辑电路的分析步骤: 1、 由逻辑图写出各输出端的逻辑表达式; 2、 化简和变换逻辑表达式; 3、 列出真值表; 4、 根据真值表或逻辑表达式,经分析最后确定其功能。
三、组合逻辑电路的分析举例 A
( G3 G2 G3 G2) G1 G3 G2 G3 G2) G1 G3 G2 G1
B0 G3 G2 G1 G0
(3) 根据逻辑表达式,画出逻辑图
用异或门代替与门和或门能使逻辑电路比较简单。考虑 相同乘积项 可以减少门电路数目,降低实现电路的成本。

《电子技术基础》(数字)康华光-课后答案

电子技术基础康华光课后习题答案(完整版)第一章数字逻辑1.1数字电路与数字信号1.1.2 图形代表的二进制数0101101001.1.4 一周期性数字波形如图题所示,试计算:(1)周期;(2)频率;(3)占空比例MSB0 1 2LSB11 12 (ms)解:因为图题所示为周期性数字波,所以两个相邻的上升沿之间持续的时间为周期,T=10ms频率为周期的倒数,f=1/T=1/0.01s=100HZ占空比为高电平脉冲宽度与周期的百分比,q=1ms/10ms*100%=10%1.2数制1.2.2 将下列十进制数转换为二进制数,八进制数和十六进制数(要求转换误差不大于2 4(2)127 (4)2.718解:(2)(127)D=27-1=(10000000)B-1=(1111111)B=(177)O=(7F)H(4)(2.718)D=(10.1011)B=(2.54)O=(2.B)H1.4二进制代码1.4.1将下列十进制数转换为8421BCD 码:(1)43 (3)254.25解:(43)D=(01000011)BC D1.4.3 试用十六进制写书下列字符繁荣ASCⅡ码的表示:P28(1)+ (2)@ (3)you (4)43解:首先查出每个字符所对应的二进制表示的ASCⅡ码,然后将二进制码转换为十六进制数表示。

(1)“+”的ASCⅡ码为0101011,则(00101011)B=(2B)H(2)@的ASCⅡ码为1000000,(01000000)B=(40)H(3)you 的ASCⅡ码为本1111001,1101111,1110101, 对应的十六进制数分别为79,6F,75(4)43 的ASCⅡ码为0110100,0110011,对应的十六紧张数分别为34,331.6逻辑函数及其表示方法1.6.1在图题1. 6.1 中,已知输入信号A,B`的波形,画出各门电路输出L 的波形。

解: (a)为与非, (b)为同或非,即异或第二章 逻辑代数2.1.1 用真值表证明下列恒等式(3) A ⊕ B = AB + AB (A ⊕B )=AB+AB 解:真值表如下由最右边 2 栏可知, A ⊕ B 与 AB +AB 的真值表完全相同。

电子技术基础(康华光版)PPT

电子技术基础(康华光版)
• 电子技术概述 • 电子器件基础 • 模拟电子技术 • 数字电子技术 • 电子技术实验与实践 • 电子技术应用案例分析
01
电子技术概述
电子技术的发展历程
晶体管时代
20世纪50年代,晶体管的发明 推动了电子技术的快速发展。
微电子技术时代
20世纪80年代,微电子技术的 兴起使得电子设备更加智能化 和微型化。
主要包括电压负反馈、电流负反馈、串联 负反馈和并联负反馈。
负反馈对放大电路性能的影响
负反馈放大电路的分析方法
主要包括提高放大倍数的稳定性、减小非 线性失真、扩展通频带等。
主要包括瞬态分析和频率分析。
集成运算放大器
集成运算放大器的定义
集成运算放大器是一种将多个晶体管集成在一个芯片上的模拟集成电路。
集成运算放大器的特点
逻辑门电路具有高输入电阻、 低输出电阻的特性,能够实现 高速、低功耗的逻辑运算。
逻辑门电路的输入电阻很高, 可以认为输入信号几乎不损失 ,输出电阻很低,能够驱动较 大的负载。这些特性使得逻辑 门电路在数字电子系统中得到 广泛应用。
组合逻辑电路
第一季度
第二季度
第三季度
第四季度
总结词
组合逻辑电路由若干个 逻辑门电路组成,用于 实现各种组合逻辑功能 。
器等。
综合实验与项目实践
综合实验
结合多个知识点,进行综合性实验,如音频放大 器、数字钟等。
故障排查与维修
学习如何排查电路故障,并进行维修,培养实际 操作和解决问题的能力。
ABCD
项目实践
分组完成实际项目,如设计并制作一个简单的电 子产品,培养团队协作和实践能力。
实验报告撰写
学习如何撰写规范的实验报告,总结实验过程和 结果,培养科学素养。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档