高斯小学奥数五年级上册含答案_第10讲_约数与倍数

合集下载

高斯小学奥数五年级上册含答案_整除问题进阶

高斯小学奥数五年级上册含答案_整除问题进阶

第二讲整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有□2 0 O是99的倍数,只能是99 •两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234ab789,两位截断求和1 23 b7 89 160 ba是99 的倍数,只能是198 .所以a=8, b=3.例题3.答案:6详解:利用7的整除特性,口89 59 □30能被7整除,只能填6.例题4.答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|兀帀就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6. 答案:20999详解:利用数字谜,从后往前逐位确定.313913 232323239 f39 f 739626269 999 99999999练习1. 答案:6237简答:两位截断后的和是99 .练习2. 答案:12327678简答:两位截断后的和是198.练习3.答案:5712 或5782简答:利用7的整除特性,右2与5的差是7的倍数,空格中可以填1或8.练习4. 答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下匚•它是13的倍数, 那么空格中只能填0.作业1.答案:7 的倍数有7315, 58674, 360360; 13 的倍数有325702, 360360简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3. 答案:2758简答:应用三位截断法,可知和6能被7整除,框中填5满足条件.作业4.答案:9简答:应用三位截断,可知8C 能被7和13整除,即8C 是91的倍数,框中填9 满足条件.作业5.答案:3简答:应用三位截断,可知口3能被7整除,框中填3满足条件.第二讲整除问题进阶厂我只能填在中同、怎样才能保证是11的倍数呢7 /"我翌填在白位和、个位上+怎么填才好呢?墨莫和小高在黑板前玩一个填三位数的游戏.如果填岀的三位数是H的倍数,那么小高就ST, 如果不是11的倍数则墨莫嬴.观察小高和墨英的话,逆冇必胜的策略上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等•现在我们再来学习一些新的判断方法.一、截断作和六位数L_l2003LJ能冋时被9和11整除.这个六位数是多少?皿U 能被99整除的数的特征:从个位开始每两位一截,得到的所有两位数(最前面的可以是一位【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数23 能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数123口口678能被99整除,这个八位数是多少?、截断作差阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小咼写一个一位数放在59与89之间辩需一金右佶豹kal I PQ估徂仪金右佶貓■台次朮7敕阵洁白•小直官的貓■具虫/卜:【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数5^[2能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.25个5 25个9变得简短一些.因为 1001是13的倍数,而555555、999999分别是555、999与1001的乘 积,说明它们都是13的倍数.那我们是不是可以去掉这个 51位数上的一些5和9,并仍然 保证它能被13整除?已知多位数[1L 1 {33L 3能被13整除,那么中间方格内的数字是多少?2010 个 12010 个 3【分析】能被6, 7, 8整除的数有什么特点呢?最难把握的在于这个六位数能被 7整除, 我们应该怎样安排数字才能使得它的前三位与后三位的差能被 7整除呢?题目只要求我们 写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.【分析】在本题中,55L 35^992L39能被13整除.这个数的位数太多,我们可以想办法使它用数字6, 7, 8各两个,要组成能同时被6, 7, 8整除的六位数.请写出一个满足要求的六位数.【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑•我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积•接下来,大家想到该怎么办了吗?枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946〜1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业i1. 在7315, 58674, 325702 , 96723 , 360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33 能同时被9和11整除,这个四位数是多少?3. 四位数2^8能被7整除,那么这个四位数是多少?4. 已知多位数81口154258切2l§8 (2012个258)能同时被7和13整除,方格内的数字是2012 个258多少?5. 已知多位数[1L 1 03L 3能被7整除,那么中间方格内的数字是多少?2011 个1 2011 个3。

高斯小学奥数五年级上册含答案_余数的性质与计算

高斯小学奥数五年级上册含答案_余数的性质与计算

第二十一讲余数的性质与计算37』桂除的余数足多少?我知沽玳,余数昂7!^1这一讲我们来学习余数问题.在整数的除法中,只有能整除和不能整除两种情况. 当不能整除时,就会产生余数.一般地,如果a是整数,b是整数(b丰0),若有a+ b=q r (也就是a b q r ), 0当r 0 时,我们称a 能被b 整除;当r 0 时,我们称a 不能被b 整除,r 为a 除以b 的余数,q 为a 除以b 的商余数问题和整除问题是有密切关系的,因为只要我们去掉余数,就能和整除问题联系在一起了.余数有如下一些重要性质.基本性质:被除数=除数X商(当余数大于0时也可称为不完全商)+余数除数=(被除数-余数)*商;商=(被除数-余数)十除数.余数小于除数.理解这条性质时,要与整除性联系起来,从被除数中减掉余数,那么所得到的差就能够被除数整除了.在一些题目中因为余数的存在,不便于我们计算,去掉余数,回到我们比较熟悉的整除性问题,那么问题就会变得简单了.例题1.用一个自然数去除另一个整数,商40,余数是16,被除数、除数的和是877,求被除数和除数各是多少?「分析」如果设除数为a,被除数可以表示为什么?练习1.甲、乙两数的和是2014,甲数除以乙数商99余14,求甲、乙两数.我们之前学过一些特殊数(如2、3、4、5、7、8、9、11、13、25、99、125)的整除特性.这些数的整除特性稍加改造,即可成为求解余数的一类简便算法:1)一个数除以2或5的余数,等于这个数的个位数字除以2或5的余数;一个数除以4或25的余数,等于这个数的末两位数除以4或25的余数;一个数除以8或125的余数,等于这个数的末三位数除以8或125 的余数;2)一个数除以3或9的余数,等于这个数的各位数字和除以3或9的余数;一个数除以99(包括11、33)的余数,等于将它两位截断再求和之后的余数;此外,求3和9的余数还可应用乱切的方法.(3)一个数除以11 的余数,等于它的奇位数字和减去偶位数字和除以11的余数,如果奇位数字和比偶位数字和小,则先加上若干个11 再减即可.(4)一个数除以7、11和13的余数,等于将它三位截断之后,奇数段之和减去偶数段之和除以7、11 和13 的余数,如果奇数段之和比偶数段之和小,则加上若干个7、11 或13再减即可.这种利用整除特性来计算余数的方法叫做特性求余法.例题2.1)20132013 除以4和8 的余数分别是多少?2)20142014 除以3和9 的余数分别是多少?分析」根据4、8、3、9 的特性,可以很快计算出结果.练习2.(1)20121221 除以5和25 的余数分别是多少?(2)20130209 除以3和9 的余数分别是多少?例题3.(1)123456789 除以7和11的余数分别是多少?87654321 呢?(2)360360360 除以99 的余数是多少?「分析」根据7、1、99 的特性,可以计算出结果.在截断的时候要特别小心.练习3.201420132012 除以13和99 的余数分别是多少?为了更好地了解余数的其它一些重要性质,我们再来做几个练习:1)211除以9的余数是 _______ ;(2)137除以9的余数是_________(3) 211 137的和除以9的余数是___________ ; ( 4) 211 137的差除以9的余数是(5)211 137的积除以9的余数是__________ ; (6) 1372除以9的余数是________比较上面的结果,我们发现余数还有一些很好的性质:和的余数等于余数的和;差的余数等于余数的差;积的余数等于余数的积•这三条性质分别称为余数的可加性、可减性和可乘性•在计算一个算式的结果除以某个数的余数时,可以利用上述性每个数都用它除以7的质进行简算.例如计算33 37 15 80的结果除以7的余数就可以像右侧这样计算•这一简算方法又称替换求余法•需要提醒大家的是,虽然上述三条计算余数的口诀朗朗上口,但并不严格,在使用时还需要注意:(1)如果替换之后余数的计算结果大于除数,还需要再次计算结果的余数.例如:在计算423 317除以6的余数时,利用“和的余数等于余数的和”,结果就变成了3 5 8, 8 6,所以还需要再次计算8除以6的余数是2,才是423 317除以6最后的余数•再比如:在计算423 317除以6的余数时,也会遇到3 5 15 6的情况,同样的还需要计算15除以6的余数是3,才是最终的结果.(2)在计算减法时,会出现余数不够减的情况,这时只要再加上除数或除数的倍数即可•例如:在计算423 317除以6的余数时,会发现结果变成了3 5不够减.此时,只要再加上6,用6 3 5 4来计算即可.例题4.一年有365天,轮船制造厂每天都可以生产零件1234个•年终将这些零件按6个一包的规格打包,最后一包不够6个.请问:最后一包有多少个零件?「分析」最后一包的零件数实际上就是零件总数除以19的余数.练习4.(1)123 456 789除以111 的余数是多少?(2)224468 6678 的结果除以22 余数是多少?如果我们将“特性求余法”和“替换求余法”相结合,便可大大简化余数的计算.例题5.(1)87784 49235 81368除以4、9 的余数分别是多少?(2)365366+367368 369370除以7、11、13的余数分别是多少?「分析」要把结果算出来,再求余数,计算量很大.看看如何利用“替换求余”以及“特性求余”的方法来进行求解.例题6.(1)2100的个位数字是多少?32014除以10 的余数是多少?(2)32014除以7 的余数是多少?「分析」一个数的个位数字就是它除以10 的余数,大家来找一下个位数字的变化规律.小熊分粽子今天是端午节,猴爸爸一大早就领着猴儿们去观看龙舟比赛。

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

【教师版】小学奥数5-4-3 约数与倍数(三).专项练习及答案解析

1. 本讲主要对课本中的:约数、公约数、最大公约数;倍数、公倍数、最小公倍数性质的应用。

2. 本讲核心目标:让孩子对数字的本质结构有一个深入的认识,例如:(1)约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在关系;(2)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为...⨯⨯⨯☆☆☆△△△的结构,而且表达形式唯一”一、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数a 能被整数b 整除,a 叫做b 的倍数,b 就叫做a 的约数;(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0被排除在约数与倍数之外1. 求最大公约数的方法①分解质因数法:先分解质因数,然后把相同的因数连乘起来.例如:2313711=⨯⨯,22252237=⨯⨯,所以(231,252)3721=⨯=;②短除法:先找出所有共有的约数,然后相乘.例如:2181239632,所以(12,18)236=⨯=;③辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数.用辗转相除法求两个数的最大公约数的步骤如下:先用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是0为止.那么,最后一个除数就是所求的最大公约数.(如果最后的除数是1,那么原来的两个数是互质的).例如,求600和1515的最大公约数:151********÷=;6003151285÷=;315285130÷=;28530915÷=;301520÷=;所以1515和600的最大公约数是15. 2. 最大公约数的性质①几个数都除以它们的最大公约数,所得的几个商是互质数;②几个数的公约数,都是这几个数的最大公约数的约数;③几个数都乘以一个自然数n ,所得的积的最大公约数等于这几个数的最大公约数乘以n .3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数a ;求出各知识点拨教学目标5-4-3.约数与倍数(三)个分数的分子的最大公约数b ;b a即为所求. 4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数二、倍数的概念与最小公倍数(1)倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数(2)公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数(3)最小公倍数:公倍数中最小的那个称为这些正整数的最小公倍数。

高斯小学奥数五年级上册含答案_物不知数与同余

高斯小学奥数五年级上册含答案_物不知数与同余

第二十二讲物不知数与同余农孙子算经〉是南北朝时一邮董要的数 学苕诈,为我国古代 伸经十书》之一• 三人阳行七十稀 五树梅花廿一枝 七子团圆正半月 除百零五便得知除以3余N 除以5余汝除以7定2CP 2书中右一道暑皂的題目、我们称之 为“物不知数冋题“ •这過题的实质圧一个余数问翹, 我国古代的学者很早就研究这个 问题的斛注.我国明朝的数学 家程人位柱抱暑的 农算法统宗》中' 就用了四旬很通倍 的口诀暗承了竝且 的解法.IWWL 你能知道程大位先 生口诀里的盍思叫?故事中的余数问题就是我们今天要研究的 “物不知数” 问题,也称为中国古余数问题. 简 单来说,这类问题就是先知道了除数和余数, 反求被除数的问题. 通常在不同的题目中,余 数限制条件的数量也是不同的,但都是从一个条件入手,逐个条件的去满足.例题 1.(1)一个数除以 21 余 17,除以 20 也余 17.这个数最小是多少?第二小是多少? (2)一个数除以 11 余 7,除以 10 余 6.这个数最小是多少?第二小是多少? 「分析」(1)这个数除以 21和20都余 17,那么减去 17以后得到的差跟 21和 20有什么关 系呢:(2)除以 11和 10 的余数不一样,所以不能同时减去一个数了.反方向考虑一下?练习 1.4余 3,除以 5也余 3,这个自然数最小是多少?5余 1,除以 7余3,这个自然数最小是多少?例题 2.(1)一个三位数除以 8 余 3,除以 12 也余 3.这个三位数最小是多少? (2)一个三位数除以 6 余 1,除以 10 余 5.这个三位数最小是多少?「分析」 看起来和例题 1没有太多区别.不过要小心哦, 8和12 的最小公倍数是 8 12 96 吗?练习 2.一个三位数除以 4 余 3,除以 6 也余 3.这个三位数最大是多少?例题 3.(1)一个数除以 7余2,除以 11余 1.这个数最小是多少?(2)有一队解放军战士, 人数在 150 人到 200 人之间, 从第一个开始依次按 1,2,3, L ,9 的顺序报数,最后一名战士报的数是 3;如果按 1,2,3,L ,7 的顺序报数,最后一名 战士报的数是 4.请问:一共有多少名战士?「分析」 所求自然数要满足两个余数条件, 直接处理并不容易, 但我们可以先让它满足其中 一个余数条件,在此前提下满足另一个余数条件.练习3.一个三位数除以5余2,除以7余3.这个三位数最小是多少?1)一个自然数除以 2)一个自然数除以如果两个数除以同一个数,所得的余数相同,我们称这两个数同余•例如195除以9余6, 15除以9也余6,我们就说“ 195和15除以9同余”.我们之前总结的余数性质以及余数的可替代性都是在同余的前提下进行的,例如195与它的数字和除以9是同余的,1135与它的末两位数字除以4是同余的•而处理余数问题的方法,除了用余数性质、余数可替代性以及分解求余几种方法以外,我们还有一个极其有用的手段:转化成整除问题!195与15除以9的时候同余,195 15 180则是9的倍数;1135与35除以4的时候同余,贝U 1135 35 1100是4的倍数•也就是说:[如果两个数除以第三个数余数相同,则这两个数的差能被第三个数整除•反之亦然.例题4.(1)1024除以一个两位数,余数为23,那么这个两位数可能是多少?(2)100和84除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?「分析」(1 )由被除数除数商L余数,被除数是1024,余数是23,说明除数和商要满足什么条件? ( 2)利用同余的定义就可以解决这个问题.练习4.(1 )用150除以一个整数,所得余数是15,请问:这个除数可能是多少?(2) 80和56除以同一个数,得到的余数相同,但余数不为0•这个除数可能是多少?例题5.刘叔叔养了400多只兔子.如果每3只兔子关在一个笼子里,那么最后一个笼子里有2只; 如果每5只兔子关在一个笼子里,那么最后一个笼子里也有2只;如果每7只兔子关在一个笼子里,那么最后一个笼子里有5只•请问:刘叔叔一共养了多少只兔子?「分析」兔子数量要满足哪些余数条件?例题6.把63 个苹果,90个桔子,130个梨平均分给一些同学,最后一共剩下25 个水果没有分出去.请问:剩下个数最多的水果剩下多少个?「分析」这些同学一共分了多少个水果?人数和分掉的水果数有什么关系?未来的数学家节选自《怎样解题》乔治波利亚未来的数学家应该是一个聪明的解题者,但仅仅做一个聪明的解题者是不够的. 在适当的时候,他应该去解答重大的数学题目,而首先他应该搞清楚他的天资特别适合于哪种类型的题目对他来说,工作中最重要的那部分就是回去再看一下完整的解答. 通过考察他的工作过程和最后的解答形式,他会发现要认识的东西真是千变万化,层出不穷.他可以深思题目的困难之处及决定性的观念,他可以尝试去了解是什么阻碍了他,又是什么最后帮助了他.他可以注意寻找简单直观的念头:你能一眼就看出它来吗?他可以比较和发展各种方法:你能以不同的方式推导这个结果吗?他可以尝试通过将当前的题目和以前的解过的题目作比较以使当前的题目更加清晰. 他可以尝试创造一些新题目,而这些新题目可以根据他刚刚完成的工作解答出来:你能在别的什么题目中利用这个结果或这种方法吗?如果他对解答过的题目尽可能地完全消化吸收,他就可以获得井然有序的知识,以备今后随时调用.和其他所有人一样,未来的数学家通过模仿和练习来学习. 他应该注意寻找正确的模范;他应该觉察到一个能激励人心的教师;他应该和一位能干的朋友竞赛. 然后,可能最重要的是,他不仅应该阅读通用的教材,还应阅读优秀作者的作品,直到他找到一个作者,其方式是他天生倾向于模仿的.他应该欣赏和寻求在他看来简单的或有启发性的或美的东西. 他应该解题,选择适合他思路的那些题目,思考它们的解答,并创造新的题目. 他应该通过这些方法及所有其他方法来努力做出他的第一个重大发现:他应该发现自己的好恶、趣味以及自己的思路.陶哲轩(1975-)澳籍华裔数学家,“菲尔兹”奖获得者. 13岁成为国际奥林匹克数学金牌得主. 20岁获得普林斯顿大学博士学位. 24岁成为加利福尼亚大学洛杉矶分校有史以来最年轻的正教授. 2006年,31岁时获得数学界的诺贝尔奖“菲尔兹”奖•目前已发表超过230篇学术论文.作业 1. 在小于50的数中,与67 除以11 同余的数有哪些?作业2. 一个自然数除以7余3,除以27余5,这个自然数最小是多少?作业3. 2025除以一个两位数,余数是75,这个两位数是多少?作业4. 1986和2011 这两个数除以同一个两位数,得到相同的余数,这个两位数是多少?作业 5. 韩信点兵:有兵四五百,五五数之余三,七七数之余四,九九数之余五.那么这队兵有多少人?第二十二讲物不知数与同余例题1. 答案:(1)17;437.(2)106;216详解:(1)这是一道余同的问题.这个数最小是17,第二小是[21,20] 17 437 .(2)这是一道缺同的问题.这个自然数加上4 即可被11 和10 整除,[11,10] 110 ,因此这个数最小为110 4 106 .第二小的是110 2 4 216 .例题2. 答案:(1)123.(2)115详解:(1)这是一道余同的问题.满足条件的数可表示为[8,12] n 3,其中n 为自然数.要求满足条件的最小三位数,应令n 为5,即[8,12] 5 3 123 .(2)这是一道缺同的问题.满足条件的数可表示为[6,10] n 5,其中n 为自然数.要求满足条件的最小三位数,应令n 为4,即[6,10] 4 5 115 .例题3. 答案:(1)23;(2)165详解:(1)采用逐步满足条件法•满足第二个条件的数为1, 12 , 23,……发现23同时满足第一个条件,因此这个数最小是23;(2)战士的人数除以9余3,除以7余4,满足这两个条件最小的数是39,不断加63,直到满足限制条件,最后得到165.例题4. 答案:(1)77、91;(2)16、8详解:(1)1024 23 1001 ,可知除数是1001 的约数.其中大于23的有77和91;(2)100 84 16,可知除数是16的约数,可能是1、2、4、8和16.但因为余数不为0, 只能是16和8.例题5. 答案:467详解:兔子数除以3余2,除以5余2,除以7余5.所有满足前两个条件的数为2 [3,5] n, 其中n为自然数,即2, 17, 32, 47,……其中47同时满足第三个条件•所有满足条件的数为47 [3,5,7] n,其中n为自然数.n取4时满足条件,为467.例题6. 答案:20 详解:从整体的角度出发考虑问题, 水果总数减去没有分出去的水果数, 得到的数应为学生数的倍数.63 90 130 25 258 , 258 的约数有1、2、3、6、43、86、129、258, 其中43满足条件.苹果剩下20个,桔子剩下4个,梨剩下1个,因此剩下个数最多的水果剩下20 个.练习1. 答案:(1)3.(2)31 简答:(1)这个自然数减去3以后是4和5的公倍数,所以最小是3;(2)这个自然数加上4 以后是5 和7 的公倍数,所以最小是31.练习2. 答案:999 这是一道余同的问题.满足条件的数可表示为[4,6] n 3,其中n 为自然数.要求满足条件的最大三位数,应令n 为83,即[4,6] 83 3 999.练习3. 答案:122简答:使用逐步满足条件法,满足第一个条件的数依次为2、7、12、17,17 正好除以7 余3,那么同时满足两个条件的数最小是17.然后依次为52、87、122.最小是三位数是122.练习4. (1)27、45、135;(2)24、12、6、3简答:(1)150 15 135,除数是135 的约数.其中大于15 的有135、45和27;(2)80 5624 ,除数是24 的约数,可能是1、2、3、4、6、8、12 和24.但要满足余数不为0,除数只能是3、6、12 和24.作业1. 答案:1,12,23,34,45 简答:除以11 的余数都是1.作业2. 答案:59简答:除以27余5的数有5、32、59、…,其中除以7余3的第一个数是59.作业3. 答案:78 简答:这个两位数是2025 75 1950的约数,其中比75 大的只有78.作业4. 答案:25 简答:这个两位数是2011 1986 25 的约数,只能是25.作业5. 答案:473简答:先列出除以9余5的数,从中找除以7余4的数,再从剩下的数中找除以5余3 的数.。

五年级数学上册综合算式专项练习倍数与约数计算

五年级数学上册综合算式专项练习倍数与约数计算

五年级数学上册综合算式专项练习倍数与约数计算在学习数学过程中,倍数与约数的计算是我们经常接触的重要概念。

通过正确的计算倍数与约数,可以帮助我们更好地理解数字之间的关系,提高数学运算的能力。

本文将通过实例演示和详细解析,为五年级的同学们介绍倍数与约数的计算方法。

一、倍数的计算倍数是指一个数能够整除另外一个数的情况下,该数称为另外一个数的倍数。

例如,6是3的倍数,因为6可以被3整除。

接下来,我们通过具体的例子来进一步理解和计算倍数。

例1:求12的倍数。

解析:12的倍数即是能够被12整除的数。

我们可以列举一些12的倍数:12、24、36、48……根据观察推断发现,12的倍数是由12递增而来,即每次加12。

因此,我们可以得出结论:12的倍数可以表示为12n(n为自然数)。

例2:某个数的倍数。

解析:假设某个数为a,我们需要求出它的倍数。

与例1类似,我们可以通过观察推断得出这个结论:a的倍数可以表示为an(n为自然数)。

例如,假设a=5,那么5的倍数可以表示为5n(n为自然数),即5、10、15、20……二、约数的计算约数是指能够整除某个数的因数。

例如,6的约数有1、2、3、6。

接下来,我们通过实例来演示如何计算约数。

例3:求12的约数。

解析:要求12的约数,即要找出能够整除12的数。

我们列举一些12的约数:1、2、3、4、6、12。

从这些数中我们可以发现,约数是两两配对的:1与12配对,2与6配对,3与4配对。

这就是因为如果一个数a是另外一个数b的约数,则b/a也是约数。

因此,我们可以发现,12的约数可以分为两组:{1, 12}和{2, 6},以及{3, 4}。

所以我们可以将12的所有约数按照从小到大的顺序排列:1、2、3、4、6、12。

例4:某个数的约数。

解析:假设我们需要求某个数a的约数。

我们可以通过试除法来找出这个数的约数。

试除法是指从2开始,依次用正整数去除这个数,若能整除则为约数,直到试除的数超过这个数的平方根。

小学奥林匹克数学 竞赛数学 五年级 第7讲-约数与倍数

小学奥林匹克数学  竞赛数学 五年级 第7讲-约数与倍数

第7讲约数与倍数【例1】导引拓展篇第1题72共有多少个约数?其中有多少个约数是3的倍数?72 1 2 3 4 6 8 72 36 24 18 12 9 2332⨯=0032⨯=0132⨯=1032⨯=2332⨯=2232⨯=1332⨯=2132⨯=1232⨯=2032⨯=0232⨯=1132⨯=0332⨯=个)()共有(121213=+⨯+个)的倍数(82133=⨯+约数个数:指数加1连乘【例2】导引拓展篇第2题5400共有多少个约数?并求出所有约数乘积的质因数分解形式。

332 5400235=⨯⨯所以共有()()() 31312148 +⨯+⨯+=个约数23353254001⨯⨯=⨯23353227002⨯⨯=⨯......共48÷2=24对,乘积为()24233245325400⨯⨯=487272242243243532532⨯⨯=⨯⨯⨯⨯⨯【例3】导引拓展篇第3题有甲、乙两个数,它们的最小公倍数是甲数的27倍.已知甲数是2、4、6、8、10、12、14、16的倍数,但不是18的倍数,而乙数是两位数,则乙数是多少?23218⨯=甲数中含1个因数3 最小公倍数:不同取最大最小公倍数中含有4个3 乙中含有4个3,最小为81乙数为81【例4】导引拓展篇第4题两数乘积为2800,而且已知其中一数的约数个数比另一数的约数个数多1.那么这两个数分别是多少?422800257=⨯⨯42257⨯和 约数个数分别为5和 ,此时成立.()()21116+⨯+=这两个数是 、 4216=257175⨯=【例5】导引拓展篇第5题(1)计算(391,357),[391,357];(2)计算(18,24,36),[18,24,36].3573717=⨯⨯3911723=⨯()391,35717=[]391,3571737238211=⨯⨯⨯=21823=⨯32423=⨯223623=⨯()18,24,36236=⨯=[]3218,24,362372=⨯=最大公约:相同取最小最小公倍:不同取最大【例6】导引拓展篇第5题1547、1573、1859的最大公约数是多少?最小公倍数是多少?=⨯=⨯⨯154713119137172=⨯=⨯15731312113112=⨯=⨯158913143111322⨯⨯⨯=71113172433431最大公约为:13 最小公倍为【例7】导引拓展篇第7题张阿姨把有225个苹果、350个梨和150个桔子平均分给小朋友们,最后剩下9个苹果、26个梨和6个桔子没分出去.请问:每个小朋友分得了多少个苹果?一共分出去了苹果梨桔子2259216-= 35026324-= 1506144-=3321623=⨯2432423=⨯4214423=⨯()22216,324,1442336=⨯=大于26的只有36所以人数为36每人分得苹果216÷36=6个【例8】导引拓展篇第8题一个数和16的最大公约数是8,最小公倍数是80,这个数是多少?两个数的乘积,等于它们的最大公约数与最小公倍数的乘积。

高斯小学奥数五年级上册含答案_分数应用题

高斯小学奥数五年级上册含答案_分数应用题

22第十六讲 分数应用题在三、四年级的时候, 同学们学习了 “和差倍”问题.在这一讲,继续来学习 “和差倍” 问题.但不同的是,今天的学习中,我们将引入“分数倍”的概念.和“整数倍”一样, “分 数倍”也是一种倍数关系,唯一的区别是用分数来表示.我们举一个例子:卡莉娅买了 20 个苹果, 10 个桔子,容易知道,卡莉娅买的苹果数量是桔子的 2 倍,那桔子是苹果的几倍 11 呢?同样的,用一个除法算式来计算: 10 20 ,即桔子的数量是苹果的 倍,或者桔22 11子的数量是苹果的 1 .我们把分数倍,比如前面的“ 1 ”,称为 分率 .221注意,每一个分率都有一个对应的总量.例如,桔子的数量是苹果的 1 ,在这里,分211率“ 1 ”所对应的总量是苹果总数, “ 1 ”表示的是苹果总数的一半.如果我们将苹果的数量设为“ 1”份,那桔子的数量就为“ 1”份.通常,将分率所对应的总量设为“1”份,2也就是此分率所对应的单位“ 1”.在计算分数应用题的时候,一定要首先找到分率所对应的单位“ 1”.当知道单位“ 1”的数量时,计算分率的对应数量很容易.例如,卡莉娅有20 个苹果,11她的桔子数量是苹果数量的,那卡莉娅就拥有20 10 个桔子.那知道了分率的对应22量,如何来求单位“ 1”呢?请熟记公式:单位“1”= 分率对应量分率2 例如,小高有30 张动物卡,他的动物卡是植物卡数量的2,那么他的植物卡有多少张52呢?列算式计算:30 2 75张,即小高有75 张植物卡.一般来说,每一个分率都会有一5个数量和它对应(包括单位“ 1”),我们将这种对应关系称为量率对应.找到量率对应,是解决分数应用题的关键.(1)小高有100个梨,他把其中的21送给了墨莫,那么小高送给了墨莫 __________ 个梨.(2)卡莉娅有20 个苹果,她把其中的4送给了萱萱,那么卡莉娅送给了萱萱5_______ 个苹果.(3)小高有高思积分360 分,是墨莫的积分的3,则墨莫有高思积分___________分.(4)卡莉娅今年10 岁,是小山羊的2,那么小山羊今年____________ 岁.54例题 1.小高买来一些巧克力,和墨莫、卡莉娅一起吃,不一会便把所有巧克力吃光了.墨 23莫吃了全部巧克力的 2 ,卡莉娅吃了全部巧克力的 3 ,小高吃了 9 块.请问小高一共买来5 10多少块巧克力?「分析」 小高吃的巧克力占全部的几分之几呢?口袋里装着红、黄、绿三种颜色的球.其中红球占总球数的 1 ,黄球占总球数的 1,绿34 球有 50 个.口袋里一共有几个球?在例题 1 中,容易找到分率与数量的对应. 但有的题目并不直接给出分率所对应的数量, 那就需要同学们仔细寻找和计算,完成量率对应.11例题 2.有一堆砖,搬走总数的 1 后又运来 306 块.这时这堆砖比最开始还多了 1.这堆砖 45 原来有多少块?「分析」 这道题中只有一个具体的量: 306 块砖,那么我们就应该去寻找它所对应的分率.1小言在练毛笔字.第 1 个小时结束的时候,还差 1才完成练字计划.第 2 个小时,小31言又写了 84 个毛笔字, 结果总的练字数超过了练字计划的 1.那么小言计划写多少个字?五年级原来有学生325人,新学期男生增加25人,女生减少了1,结果总人数增加了16 人.请「分析」题目条件虽然比较多,好在分率只有一个,同学们能不能看出“ 1”这个分率是20相对于哪个单位“ 1”来说的?它对应的又是哪个量呢?上届校运动会共有250 名同学报名参加.本届校运动会的报名统计显示,男生减少了1人,而总人数却增加了 4 人,原因是女生增加了1.那么本届校运动会有多少女同学报名?20在上面的分数应用题中,每题中分率所对应的单位“1”都是统一的,便于我们进行分率的加减.但如果题目中出现的分率所对应的单位“1”并不统一,又该如何处理呢?甲、乙两城相距多少千米?22分析」第二天走的“ 2”是全部路程的2吗?如果不是,它应该是全部路程的几分之几?33小明看一本书,第一天看了全书的1,第二天看了剩下的2,还剩下144页没有看.问35这本书共有多少页?现有苹果、桔子、梨三种水果各若干个,苹果的数目是其它两种水果总数的5是其它两种水果总数的5,梨有26 个.这些水果一共有多少个?163 ;玩了若干局后,阿5 呆赢了阿瓜的20张牌,此时阿呆手里的牌数反而是阿瓜手里牌数的7.请问:11,桔子的数目6阿呆和阿瓜一起玩游戏牌.开始时阿呆手里的牌数是阿瓜手里牌数的分析」已知条件中又有好几个分率,它们对应的单位“1”也不一样,需要将它们统阿呆此时一共5多少张牌?「分析」题目中的两个分率,都是以墨莫手里的牌数作为单位“ 1”,但墨莫手里的牌数前后不一样,需要将两个分率统一.丢番图的墓志铭古希腊的大数学家丢番图。

(完整版)小学奥数第9讲约数与倍数(含解题思路)

(完整版)小学奥数第9讲约数与倍数(含解题思路)

9、约数与倍数【约数问题】例1 用1155个同样大小的正方形拼成一个长方形,有______种不同的拼法。

(上海市第五届小学数学竞赛试题)讲析:不论拼成怎样的长方形,它们的面积都是1155。

而长方形的面积等于长乘以宽.所以,只要将1155分成两个整数的积,看看有多少种方法。

一般来说,约数都是成对地出现。

1155的约数共有16个。

16÷2=8(对)。

所以,有8种不同的拼法。

例2 说明:360这个数的约数有多少个?这些约数之和是多少?(全国第三届“华杯赛”决赛第一试试题)讲析:将360分解质因数,得360=2×2×2×3×3×5=23×32×5。

所以,360的约数个数是:(3+1)×(2+1)×(1+1)=24(个)这24个约数的和是:例3 一个数是5个2,3个3,2个5,1个7的连乘积。

这个数当然有许多约数是两位数,这些两位的约数中,最大的是几?(全国第一届“华杯赛”决赛第一试试题)讲析:这个数是2×2×2×2×2×3×3×3×5×5×7。

把两位数从99、98、……开始,逐一进行分解:99=3×3×11; 98=2×7×7;97是质数; 96=2×2×2×2×2×3。

发现,96是上面数的约数.所以,两位数的约数中,最大的是96.例4 有8个不同约数的自然数中,最小的一个是______。

(北京市第一届“迎春杯"小学数学竞赛试题)讲析:一个自然数N,当分解质因数为:因为8=1×8=2×4=2×2×2,所以,所求自然数分解质因数,可能为:27,或23×3,或2×3×5,……不难得出,最小的一个是24。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十讲约数与倍数在前面的章节,我们学习了数论中的整除和质数合数等知识.今天,我们来学习数论中有关约数与倍数的知识.约数和倍数的定义是这样的:对整数a和b,如果|a b,我们就称a是b的约数(因数),b是a的倍数.=⨯=⨯=⨯,根据定义,我们很容易找到一个数的所有约数,例如对12:因为121122634可知12可以被1、2、3、4、6、12整除,那么它的约数有1、2、3、4、6、12,共6个.从上面12的分拆可以看出,约数具有“成对出现....”的特征,也就是:最大约数对应最小约数、第二大约数对应第二小约数等.所以在写一个数的所有约数时,可以逐对写出.另外如果计算较大约数不太方便,可以转而计算与其成对的较小约数.例题1.12345654321的第三大约数是多少?「分析」第三大约数有点大,那我们可以先求出第三小的约数,再根据它计算第三大的约数.12345678987654321的第二大约数是多少?从上面的分析知,可以通过枚举的方法逐对写出一个数的所有约数,从而可就算出它的约数个数.但是对很大的数,例如20120000,用枚举来计算个数便很麻烦,所以我们要采用新的方法计算.以72为例,首先采用枚举可知72共12个约数,分别为1、72;2、36;3、24;4、18;6、12;8、9.因为72的约数能整除72,而72的所有质因数也都能整除72,所以对72进行质因数分解,有:32=⨯,那么72的所有约数应当由若干个2与若干个3构成.显7223然,2有0个到3个共4种选择;3有0个到2个共3种选择,根据乘法原理,72的约数共⨯=个,见下表(注意0214312=、031=):从72的这个例子,我们可以总结出计算约数个数的一个简单做法:约数个数等于指数加1再相乘例题2.下列各数分别有多少个约数?23, 64, 75, 225, 720.「分析」熟练掌握约数个数的计算公式即可.下列各数分别有多少个约数?18, 47, 243, 196, 450.例题3.3600有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?「分析」约数既然能整除3600,那说明约数一定包含在3600的因数中.我们知道4223600235=⨯⨯,那么3600的所有约数一定是由若干个2、若干个3和若干个5组成的.如果约数是3的倍数,那么它至少要含有多少个3?3456共有多少个约数?其中有多少个是3的倍数?有多少个是4的倍数?有多少个不是6的倍数?前面介绍过,一个数的约数具有“可配对”的特点,在练习时大家可以发现,平方数在进行配对时会出现两个重复的数,所以平方数有奇数个约数,根据上面关于约数个数的知识我们可以知道,有奇数个约数的数一定是平方数..............,有偶数个约数的数一定不是平方数................ 72 20 21 22 23 30 00231⨯= 10232⨯= 20234⨯= 30238⨯= 31 01233⨯= 11236⨯=212312⨯=312324⨯= 3202239⨯=122318⨯= 222336⨯=322372⨯=例题4.在小于1000的正整数中,有多少个数有奇数个约数?「分析」有奇数个约数的数一定是平方数,所以只要找出有多少个平方数小于1000即可.在2000到3000中,有多少个数有奇数个约数?把一个数分解质因数后,可以知道它的约数个数,反过来,如果知道一个数的约数个数,虽然并不能知道这个数是多少(例如6和10都有4个约数),但可以知道这个数的质因数分解式的形式,例如有2个约数的数一定是质数,有4个约数的数是3a 或b c ⨯(a 、b 、c 都是质数).下面以16个约数为例,来看一下如何反求质因数分解式:先对16进行分解:1628442242222=⨯=⨯=⨯⨯=⨯⨯⨯. 所以质因数分解式为:15、7⨯、33⨯、3⨯⨯、⨯⨯⨯.例题5.有12个约数的数最小是多少?有多少个两位数的约数个数是12个?「分析」有12个约数的数有什么样的特点呢?2310823=⨯,根据约数个数的计算方法可知108有12个约数.除此之外,3223⨯,3225⨯,甚至形如32a b ⨯(a 、b 为不同的质数)均有12个约数.想一想还有没有其他的可能?关于约数的另一类问题是计算约数和,下以72为例,先利用上面的表格列出72的所有约数,并计算出行和:现在把3个行和相加,得到72的约数和是()()012301222223331513195+++⨯++=⨯=.72 20 21 22 23 行和30 0023⨯ 1023⨯ 2023⨯ 3023⨯ 01230(2222)3+++⨯ 31 0123⨯1123⨯2123⨯3123⨯01231(2222)3+++⨯ 320223⨯ 1223⨯ 2223⨯ 3223⨯01232(2222)3+++⨯根据这个例子,我们可以总结出计算约数和的一般方法:32a b c ⨯⨯的约数和为()()()232111a a a b b c +++⨯++⨯+.例题6.计算下列数的约数和:108、144. 「分析」熟练掌握约数和的计算公式即可.完全数(perfect number)如果一个自然数的真因子(除了自己以外的约数)之和恰好等于这个数本身,这个数就被叫做完全数.完全数又称完美数或完备数,是一类特殊的自然数.利用本讲学过的知识不难知道6和28是最小的两个完全数.公元前6世纪的毕达哥拉斯是最早研究完全数的人,他已经知道6和28是完全数.毕达哥拉斯曾说:“6象征着完满的婚姻以及健康和美丽,因为它的部分是完整的,并且其和等于自身.”不过,或许印度人和希伯来人早就知道它们的存在了.有些《圣经》注释家认为6和28是上帝创造世界时所用的基本数字,他们指出,创造世界花了六天,二十八天则是月亮绕地球一周的日数.圣·奥古斯丁说:“6这个数本身就是完全的,并不因为上帝造物用了六天;事实恰恰相反,因为这个数是一个完数,所以上帝在六天之内把一切事物都造好了.”完全数诞生后,吸引着众多数学家与业余爱好者像淘金一样去寻找.它很久以来就一直对数学家和业余爱好者有着一种特别的吸引力,他们没完没了地找寻这一类数字.接下去的两个完全数是公元1世纪,毕达哥拉斯学派成员尼克马修斯发现的,他在其《数论》一书中有一段话如下:“也许是这样:正如美的、卓绝的东西是罕有的,是容易计数的,而丑的、坏的东西却滋蔓不已;是以盈数(真因子之和大于自身的数)和亏数(真因子之和小于自身的数)非常之多,杂乱无章,它们的发现也毫无系统.但是完全数则易于计数,而且又顺理成章:因为在个位数里只有一个6;十位数里也只有一个28;第三个在百位数的深处,是496;第四个却在千位数的尾巴上,接近一万,是8128.它们具有一致的特性:尾数都是6或8,而且永远是偶数.”第五个完全数要大得多,是33550336,它的寻求之路也艰难得多,直到十五世纪才由一位无名氏给出.这一寻找完全数的努力从来没有停止.电子计算机问世后,人们借助这一有力的工具继续探索.笛卡尔曾公开预言:“能找出完全数是不会多的,好比人类一样,要找一个完美人亦非易事.”时至今日,人们一直没有发现有奇完全数的存在.于是是否存在奇完全数成为数论中的一大难题.目前,只知道即便有,这个数也是非常之大,并且需要满足一系列苛刻的条件.作业1.111111111的第二大的约数是多少?作业2.79、128、180分别有多少个约数?作业3.在小于200的正整数中,有多少个数有偶数个约数?作业4.36的所有约数的和是多少?90的所有约数的和是多少?作业5.240有多少个约数?其中有多少个奇约数?有多少个约数是3的倍数?第十讲 约数与倍数例题1. 答案:1763664903详解:12345654321最小的约数是1,第二小的约数是3,第三小的约数是7,那么第三大的约数是1234565432171763664903÷=.例题2. 答案:2;7;6;9;30详解:23为质数,质数有2个约数.6642=,有617+=个约数.27535=⨯,有11216+⨯+=()()个约数.2222535=⨯,有21219+⨯+=()()个约数.42720235=⨯⨯,有41211130+⨯+⨯+=()()()个约数.例题3. 答案:45;30;27;21 详解:4223600235=⨯⨯,有41212145+⨯+⨯+=()()()个约数.41112130+⨯+⨯+=()()(),有41112130+⨯+⨯+=()()()个约数是3的倍数.42222236002354235=⨯⨯=⨯⨯⨯(),有21212127+⨯+⨯+=()()()个约数是4的倍数.4223236002356235=⨯⨯=⨯⨯⨯(),有31112124+⨯+⨯+=()()()个约数是6的倍数,不是6的倍数的约数有21个.例题4. 答案:31详解:平方数有奇数个约数.1000以内的平方数有22221,2,331,因此有31个数有奇数个约数.例题5. 答案:60,5详解:有12个约数的数分解质因数后,可能是11、5⨯、23⨯、2⨯⨯;对应的最小数分别是2048、96、72、60,那么最小的就是60.其中的两位数除了60、72、96之外还有84和90,共5个.例题6. 答案:(1)280;(2)403 详解:(1)2310823=⨯,它的所有约数之和是()()12413927280++⨯+++=.(2)4214423=⨯,它的所有约数之和是()()124816139403++++⨯++=.练习1. 答案:4115226329218107简答:约数是成对出现的,最大的约数对应最小的约数,第二大的约数对应第二小的约数,12345678987654321的第二小的约数是3,对应的第二大的约数是1234567898765432134115226329218107÷=.练习2. 答案:6,2,6,9,18简答:分解质因数后,指数加1连乘即可.练习3. 答案:32;24;24;11简答:73345623=⨯,约数有8432⨯=个.其中3的倍数有8324⨯=个,4的倍数有6424⨯=个,6的倍数有7321⨯=个,那么有322111-=个不是6的倍数.练习4. 答案:10简答:2000~3000之间的平方数有245、246、…、254,共10个,只有这10个数有奇数个约数.作业1. 答案:37037037简答:111111111第二小的约数为3,因此第二大的约数为.作业2. 答案:2个;8个;18个简答:提示,牢记计算约数个数的方法,并能准确分解质因数.作业3. 答案:185个简答:平方数有奇数个约数,小于200的平方数有,共14个,因此有偶数个约数的数有185个.作业4. 答案:91;234简答:提示,牢记求约数和的公式,并能准确分解质因数. 作业5.答案:20个;4个;10个简答:4240235=⨯⨯,有41111120+⨯+⨯+=()()()个约数.奇约数即不含有因子2,有11114+⨯+=()()个奇约数,有10个约数是3的倍数.22221,2,314111111111337037037÷=。

相关文档
最新文档