高中数学必修五公式方法总结

合集下载

高中数学必修五知识点总结及例题学习资料

高中数学必修五知识点总结及例题学习资料

高中数学必修5知识点1、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b cR A B C===. 2、正弦定理的变形公式:①2sin a R =A ,2sin b R =B ,2sin c R C =;(边化角)②sin 2a A R =,sin 2b B R =,sin 2cC R=;(角化边)③::sin :sin :sin a b c A B C =;④sin sin sin sin sin sin a b c a b cA B C A B C ++===++. 3、三角形面积公式:111sin sin sin 222C S bc A ab C ac B ∆AB ===.4、余弦定理:在C ∆AB 中,有2222cos a b c bc A =+-,2222cos b a c ac B =+-, 2222cos c a b ab C =+-.5、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=.6、设a 、b 、c 是C ∆AB 的角A 、B 、C 的对边,则:①若222a b c +=,则90C =;(.C ABC ⇒∆为直角为直角三角形)②若222a b c +>,则90C <;(.C ABC ⇒∆为锐角不一定是锐角三角形) ③若222a b c +<,则90C >.(.C ABC ⇒∆为钝角为钝角三角形)注:在C ∆AB 中,则有(1)A B C π++=,sin 0,sin 0,sin 0A B C >>>(正弦值都大于0) (2),,.a b c a c b b c a +>+>+>(两边之和大于第三边) (3)sin sin A B A B a b >⇔>⇔>(大角对大边,大边对大角) 7、递增数列:从第2项起,每一项都不小于它的前一项的数列.10n n a a +-> 8、递减数列:从第2项起,每一项都不大于它的前一项的数列.10n n a a +-< 9、常数列:各项相等的数列.11,.n n a a S na ==10、数列的通项公式:表示数列{}n a 的第n 项与序号n 之间的关系的公式.11、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式.12、如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差.11()n n n n a a d a a d -+-=-=13、由三个数a ,A ,b 组成的等差数列可以看成最简单的等差数列,则A 称为a 与b 的等差中项.若2a cb +=,则称b 为a 与c 的等差中项.14、若等差数列{}n a 的首项是1a ,公差是d ,则()111()n a a n d dn a d An B =+-=+-=+.(可看做自变量是n 的一次函数) 15、通项公式的变形:① ()n m a a n m d =+-;②n m a a d n m -=-;③11n a a d n -=-.(已知任意两项求公差)16、{}n a 是等差数列,若m n p q +=+(m 、n 、p 、*q ∈N ),则m n p q a a a a +=+;若2m n p +=(m 、n 、p *∈N ),则2m n p a a a +=.17、等差数列的前n 项和的公式:①()12n n n a a S +=; ②()22111()222n n n d dS na d n a n An Bn -=+=+-=+.(可看做自变量是n 的二次函数) 18、等差数列的前n 项和的性质:①若项数为()*2n n ∈N ,则()21n n n S n a a +=+,且S S nd -=偶奇,1n n S aS a +=奇偶. ②若项数为()*21n n -∈N ,则()2121n n S n a -=-,且n S S a -=奇偶,1S nS n =-奇偶 (其中n S na =奇,()1n S n a =-偶).③若等差数列{}n a 的前n 项和为n S ,则数列k S ,2k k S S -,32k k S S -成等差数列.19、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比.注:等比数列中每一项都不等于零,其奇数项符号相同,偶数项符号相同。

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点知识讲解

高中数学必修五第一章《解三角形》知识点收集于网络,如有侵权请联系管理员删除高中数学必修五 第一章 解三角形知识点归纳1、三角形三角关系:A+B+C=180°;C=180°—(A+B);2、三角形三边关系:a+b>c; a-b<c3、三角形中的基本关系:sin()sin ,A B C +=cos()cos ,A B C +=-tan()tan ,A B C +=- sincos ,cos sin ,tan cot 222222A B C A B C A B C +++=== 4、正弦定理:在C ∆AB 中,a 、b 、c 分别为角A 、B 、C 的对边,R 为C ∆AB 的外接圆的半径,则有2sin sin sin a b c R C===A B . 5、正弦定理的变形公式: ①化角为边:2sin a R =A ,2sin b R =B ,2sin c R C =; ②化边为角:sin 2a R A =,sin 2b R B =,sin 2c C R=; ③::sin :sin :sin a b c C =A B ; ④sin sin sin sin sin sin a b c a b c C C++===A +B +A B . 6、两类正弦定理解三角形的问题:①已知两角和任意一边,求其他的两边及一角.②已知两角和其中一边的对角,求其他边角.(对于已知两边和其中一边所对的角的题型要注意解的情况(一解、两解、三解)7、三角形面积公式:111sin sin sin 222C S bc ab C ac ∆AB =A ==B .=2R 2sinAsinBsinC=R abc 4=2)(c b a r ++=))()((c p b p a p p ---8、余弦定理:在C ∆AB 中,有2222cos a b c bc =+-A ,2222cos b a c ac =+-B , 2222cos c a b ab C =+-.9、余弦定理的推论:222cos 2b c a bc +-A =,222cos 2a c b ac +-B =,222cos 2a b c C ab+-=. 10、余弦定理主要解决的问题:①已知两边和夹角,求其余的量。

高中数学必修5优质课件:数列的通项公式与递推公式

高中数学必修5优质课件:数列的通项公式与递推公式
第七页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,要弄清楚公式中各部 分的关系,依次代入计算即可.另外,解答这类问题时还需 注意:若知道的是首项,通常将所给公式整理成用前面的项 表示后面的项的形式;若知道的是末项,通常将所给公式整 理成用后面的项表示前面的项的形式.
第十二页,编辑于星期日:二十三点 三十九分。
[类题通法] 根据递推公式写出数列的前几项,然后由前几项分析其 特点、规律,归纳总结出数列的一个通项公式.
第十三页,编辑于星期日:二十三点 三十九分。
[对点训练] 3.已知数列{an}满足 a1=1,an=an-1+nn1-1(n≥2), 写出该数列前 5 项,并归纳出它的一个通项公式. 解:a1=1, a2=a1+2×1 1=1+12=32, a3=a2+3×1 2=32+16=53, a4=a3+4×1 3=53+112=74,
[类题通法] 通项公式法、列表法与图象法表示数列优点
(1)用通项公式表示数列,简洁明了,便于计算.公 式法是常用的数学方法.
(2)列表法的优点是不经过计算,就可以直接看出项 数与项的对应关系.
(3)图象能直观形象地表示出随着序号的变化,相应 项变化的趋势.
第四页,编辑于星期日:二十三点 三十九分。
第十七页,编辑于星期日:二十三点 三十九分。
3.已知 a1=1,an=1+an1-1(n≥2),则 a5=________. 解析:由 a1=1,an=1+an1-1得 a2=2,a3=32,a4=53, a5=85. 答案:85
第十八页,编辑于星期日:二十三点 三十九分。
4.已知数列{an}满足 a1>0,aan+n 1=13(n∈N*),则数列{an}是 ________数列(填“递增”或“递减”).

高中数学必修1-5常用公式

高中数学必修1-5常用公式

高中数学必修1-5常用公式一、集合与逻辑1.集合的基本运算:A ∩B ={x|x ∈A,且x ∈B};A ∪B ={x|x ∈A,或x ∈B};∁U A ={x|x ∈U,且x ∉A}.2.集合的包含关系:A ⊆A; ∅⊆A;A ⊆B ⇔C U B ⊆C U A ⇔A ∩B =A ⇔A ∪B =B ⇔A ∩C U B =∅⇔C U A ∪B =R3.集合{a 1,a 2,⋯,a n }的子集有2n 个;真子集有2n −1个;非空子集有2n −1个;非空真子集有2n −2个.4.5.(2)若p ⇒q ,且q ⇒p ,则p 是q 的充要条件.(3)设A ={x|p(x)},B ={x|q(x)},①若A ⊆B ,则p 是q 的充分条件;②若B ⊆A ,则p 是q 的必要条件; ③若A =B ,则p 是q 的充要条件. 口诀:小集合推大集合. 二、函数的概念与性质1. 二次函数解析式的三种形式: (1)一般式f(x)=ax 2+bx +c(a ≠0); (2)顶点式f(x)=a(x −ℎ)2+k(a ≠0);(3)零点式f(x)=a(x −x 1)(x −x 2)(a ≠0).2. 函数的单调性:(1)定义:区间D ⊆函数f(x)的定义域, ∀x 1,x 2∈D ,当x 1<x 2时,都有 ①f (x 1)<f (x 2)⇔f (x 1)−f (x 2)<0⇔f(x)在区间D 上单调递增; ②f (x 1)>f (x 2)⇔f (x 1)−f (x 2)>0⇔f(x)在区间D 上单调递减.(2)复合函数y =f[g(x)]的单调性——同增异减:如果函数y =f(u)和u =g(x)在其对应的定义域上都是减函数或都是增函数,则复合函数y =f[g(x)]是增函数;如果函数y =f(u)和u =g(x)在其对应的定义域上单调性相异,则复合函数y =f[g(x)]是减函数.(3) 若函数f(x)和g(x)都是增函数,则①kf(x)(k >0)是增函数,kf(x)(k <0)是减函数;②在定义域公共区间上f(x)+g(x)也是增函数. (减函数同理)3. 函数的奇偶性:(1)f(x)是定义域D 上的偶函数⇔∀x ∈D,f (−x )=f(x) ⇔f (x )的图象关于y 轴对称; (2)f(x)是定义域D 上的奇函数⇔∀x ∈D,f (−x )=−f (x )⇔f (−x )+f (x )=0⇔f (x )的图象关于原点对称. 注意:判断函数f(x)的奇偶性,必须先判断f(x)的定义域是否关于原点对称.4. 函数图象的对称性:函数y =f(x)的图象关于直线x =a 对称⇔f(a +x)=f(a −x)⇔f(2a −x)=f(x).5. 两个函数图象的对称性:(1)函数y =f(x)与y =f(−x)的图象关于直线x =0 (即y 轴)对称. (2)函数y =f(x)与y =−f(x)的图象关于直线y =0 (即x 轴)对称. (3)函数y =f(x)与y =−f(−x)的图象关于原点中心对称.(4)函数y =f(x)与其反函数y =f −1(x)的图象关于直线y =x 对称,例如函数y =a x 与y =log a x . 6. 函数的周期性:若函数f(x)的定义域为D ,∀x ∈D,f(x +T)=f(x)(T 为非零常数),则称f(x)是周期函数. 7. 函数的零点:(1)方程f(x)=0有实数根⇔函数y =f(x)有零点⇔函数y =f(x)的图象与x 轴有公共点.(2)零点存在定理:若函数y =f(x)在区间[a,b ]上的图象是连续不断的曲线,且f (a )f (b )<0,则y =f(x)在区间(a,b )上至少有一个零点.三、指数函数、对数函数、幂函数1.根式的性质:(1)(√a n)n =a ;(2)当n 为奇数时,√a n n =a ;当n 为偶数时,√a n n =|a|={a,a ≥0,−a,a <0.2.分数指数幂:(1)a m n =√a m n(a >0,m,n ∈N ∗,且n >1);(2)a −mn =1a m n(a >0,m,n ∈N ∗,且n >1).3.实数指数幂的运算性质:(1) a r ⋅a s =a r+s (a >0,r,s ∈R);(2) (a r )s =a rs (a >0,r,s ∈R);(3) (ab)r =a r b r (a >0,b >0,r ∈R). 4.指数式与对数式的互化: log a N =b ⇔a b =N(a >0,且a ≠1,N >0). 5.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么(1) log a (MN)=log a M +log a N ; (2) log a MN =log a M −log a N ; (3) log a M n =n log a M (n ∈R). 6.对数的换底公式:log a N =log m N log m a(a >0,且a ≠1,m >0,且m ≠1, N >0).推论:log a m b n =n mlog a b (a >0,且a >1,m,n >0,且m ≠1,n ≠1, N >0).7.x 8.9.如果初始量为N ,每单位时间的增长率为p ,则x 单位时间后的总量y =N(1+p)x .1 yxoox1y 1xyo1xyo10. 幂函数y=xα(其中x为自变量,α为常数):(1)必过点(1,1);(2)在区间(0,+∞)上,α>0时,y=xα单调递增;α<0时,y=xα单调递减.(3)常用幂函数图象:四、三角函数1. 任意角与弧度制:(1)角度与弧度的换算:180°=π rad,1°=π180 rad,1 rad=(180π)°;(2)与α终边相同角的集合:{β|β=α+2kπ,k∈Z};(3)弧度|α|=lr ,弧长l=|α|r,扇形面积S=12lr=12|α|r2.2. 任意角的三角函数:角α终边上任意点P(x,y)(非原点),设r=√x2+y2,则sinα=yr ,cosα=xr,tanα=yx.3. 同角三角函数的基本关系:sin2θ+cos2θ=1,tanθ=sinθcosθ.(知一求二)4. 诱导公式——奇变偶不变,符号看象限,例如:sin(π2−α)=cosα,sin(π−α)=sinα,sin(−α)=−sinα,cos(π−α)=−cosα,cos(−α)=cosα,tan(π−α)=−tanα.5. 和差角公式:sin(α±β)=sinαcosβ±cosαsinβ;cos(α±β)=cosαcosβ∓sinαsinβ;tan(α±β)=tanα±tanβ1∓tanαtanβ.6. 辅助角公式:a sin x+b cos x=√a2+b2sin(x+φ)(其中φ所在象限由点(a,b)的象限决定,tanφ=ba).7. 二倍角公式:sin2α=2sinαcosα;cos2α=cos2α−sin2α=2cos2α−1=1−2sin2α;tan2α=2tanα1−tan2α.8. 降幂公式:sinαcosα=12sin2α;sin2α=1−cos2α2;cos2α=1+cos2α2;(sinα±cosα)2=1±sin2α.9. 三角函数的图象与性质(1)函数y=A sin(ωx+φ),x∈R及函数y=A cos(ωx+φ) ,x∈R(A,ω,φ为常数,且A≠0)的周期T=2π|ω|;函数y=tan(ωx+φ),x≠kπ+π2,k∈Z(A,ω,φ为常数,且A≠0)的周期T=π|ω|.(2)类正弦函数y=A sin(ωx+φ)(A>0,ω>0)的图象变换(两种方法殊途同归)方法一:①先将正弦函数y=sin x的图象向左(φ>0)或向右(φ<0)平移|φ| 个单位,得到y=sin(x+φ)的图象;②再将图象所有点的横坐标伸长或缩短到原来的1ω倍,得到y=sin(ωx+φ)的图象;③最后将图象所有点的纵坐标伸长或缩短到原来的A倍,得到y=A sin(ωx+φ)的图象.方法二:①先将正弦函数y=sin x的图象所有点的横坐标伸长或缩短到原来的1ω倍,得到y=sinωx的图象;②再将图象向左(φ>0)或向右(φ<0)平移|φω| 个单位,得到y=sin(ωx+φ)的图象;③最后将图象所有点的纵坐标伸长或缩短到原来的A倍,得到y=A sin(ωx+φ)的图象.(3)类正弦函数y=A sin(ωx+φ)+b(A>0)的参数计算: A=y max−y min2, b=y max+y min2,ω=2πT,最后代入已知点求φ,一般代入最高点或最低点坐标,利用已知三角函数值以及给定的范围分析得到φ值(若代入平衡点坐标,则必须区分是上升平衡点还是下降平衡点).y=tan xπ(1)正弦定理:asin A =bsin B=csin C=2R(R为△ABC的外接圆半径).变式:a=2R sin A,sin A=a2R,a:b:c=sin A:sin B:sin C.(边角关系的互化)(2)余弦定理:a2=b2+c2−2bc cos A;b2=a2+c2−2ac cos B;c2=a2+b2−2ab cos C.变式:cos A =b 2+c 2−a 22bc;cos B =a 2+c 2−b 22ac ;cos C =a 2+b 2−c 22ab.(3)三角形面积公式:S =12ab sin C =12ac sin B =12bc sin A =12(a +b +c)r (r 为△ABC 的内切圆半径). (4)在△ABC 中,有A +B +C =π⇔C =π−(A +B)⇔C 2=π2−A+B 2⇔2C =2π−2(A +B),常用三角函数关系:sin C =sin (A +B ),cos C =−cos (A +B ),sin C2=cosA+B 2.五、平面向量1. 向量的加法:三角形法则(首尾相接连首尾,符号示例:AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ )或平行四边形法则(共起点). 2. 向量的减法:三角形法则(共起点,连终点,指被减,符号示例:OA ⃗⃗⃗⃗⃗ −OB ⃗⃗⃗⃗⃗ =BA⃗⃗⃗⃗⃗ ). 3. 平行向量:(1)方向相同或相反的向量叫做平行向量,又叫共线向量,向量a ,b ⃗ 平行记作a //b⃗ . (2)向量共线定理:a //b ⃗ (a ≠0⃗ )⇔存在唯一实数λ,使b ⃗ =λa .(3)推论:①平面内A,B,C 三点共线⇔AB⃗⃗⃗⃗⃗ //AC ⃗⃗⃗⃗⃗ ⇔存在唯一实数λ,使AB ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ . ②若OA⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ 不共线,OP ⃗⃗⃗⃗⃗ =xOA ⃗⃗⃗⃗⃗ +yOB ⃗⃗⃗⃗⃗ ,则P,A,B 三点共线⇔x +y =1. 4.平面向量基本定理:如果e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1⃗⃗⃗ +λ2e 2⃗⃗⃗ .不共线向量e 1⃗⃗⃗ ,e 2⃗⃗⃗ 叫做表示这一平面内所有向量的一组基底.5. a 与b ⃗ 的数量积(或内积):(1) a ∙b ⃗ =|a ||b ⃗ |cos θ,其中θ为a 与b ⃗ 的夹角〈a ,b ⃗ 〉,θ∈[0,π]. (2)a ∙b ⃗ 的几何意义:数量积 a ∙b ⃗ 等于a 的长度|a |与b ⃗ 在a ⃗ 方向上的投影|b ⃗ |cos θ的乘积.6. 平面向量的坐标运算:(1) 向量的加减法:设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ±b ⃗ =(x 1±x 2,y 1±y 2). (2) 向量的数乘:设a =(x,y),λ∈R ,则λa =(λx,λy).(3) 两点求向量:设A(x 1,y 1),B(x 2,y 2),则AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(x 2−x 1,y 2−y 1).(4) 向量的数量积:设a =(x 1,y 1),b ⃗ =(x 2,y 2),则a ∙b ⃗ =|a ||b⃗ |cos θ=x 1x 1+y 1y 2. (5) 平行: a //b ⃗ (a ≠0⃗ )⇔存在唯一实数λ,使b ⃗ =λa ⇔x 1y 2−x 2y 1=0. (6) 垂直:a ⊥b ⃗ ⇔a ∙b ⃗ =0⇔x 1x 1+y 1y 2=0. (7) 长度:设a =(x,y ),则|a |=√a 2=√x 2+y 2.平面两点间的距离公式:若A (x 1,y 1),B (x 2,y 2),则|AB |=|AB ⃗⃗⃗⃗⃗ |=√AB ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ =√(x 2−x 1)2+(y 2−y 1)2. (8) 夹角:cos θ=a⃗ ∙b ⃗ |a ⃗ ||b ⃗ |=1212√x 1+y 1⋅√x 2+y 2.7. 三角形的重心:△ABC 三个顶点的坐标分别为A(x 1,y 1),B(x 2,y 2),C(x 3,y 3),G 为△ABC 的重心⇔GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0⃗ ⇔G(x 1+x 2+x 33,y 1+y 2+y33).8. 物理应用:①力、速度、位移的合成与分解用向量的加减法,三力F 1⃗⃗⃗ ,F 2⃗⃗⃗⃗ ,F 3⃗⃗⃗⃗ 平衡⇔F 1⃗⃗⃗ +F 2⃗⃗⃗⃗ +F 3⃗⃗⃗⃗ =0⃗ ;②物体在力F 作用下产生位移s ,则力F 所做的功W =F ∙s =|F ||s |cos θ,其中θ为F ,s 的夹角. 六、解析几何1. 直线斜率公式:k =tan α=y 2−y 1x 2−x 1(α≠π2,直线两点坐标P 1(x 1,y 1),P 2(x 2,y 2),x 1≠x 2,).2. 直线的五种方程:(1)点斜式:y −y 0=k(x −x 0) (直线过点P(x 0,y 0),且斜率为k ).(2)斜截式:y =kx +b (直线斜率为k ,在y 轴上的截距为b ). (3)两点式:y−y 1y2−y 1=x−x 1x2−x 1(已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2),且x 1≠x 2,y 1≠y 2).(4)截距式:x a +yb =1 (a,b 分别为直线的横、纵截距,且a ≠0,b ≠0)(5)一般式:Ax +By +C =0 (其中A,B 不同时为0). 3. 两条直线的平行和垂直(1)若l 1:y =k 1x +b 1,l 2:y =k 2x +b 2,则①l 1||l 2⇔k 1=k 2,b 1≠b 2;②l 1⊥l 2⇔k 1k 2=−1.(2)若l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则①l1||l2⇔A1B2−A2B1=0且A1C2−A2C1≠0(即不能重合);②l1⊥l2⇔A1A2+B1B2=0;4. 两点距离公式:已知两点坐标A(x1,y1),B(x2,y2),则|AB|=√(x1−x2)2+(y1−y2)2.5. 点线距离公式:已知点P(x0,y0),直线l:Ax+By+C=0,则P到l的距离d=00√A2+B2.6. 圆的方程:(1)圆的标准方程:(x−a)2+(y−b)2=r2(其中圆心为(a,b),半径为r).(2)圆的一般方程:x2+y2+Dx+Ey+F=0(其中D2+E2−4F>0,圆心(−D2,−E2),半径r=√D2+E2−4F2).7. 点与圆的位置关系:若点P(x0,y0)到圆心(a,b)的距离d=√(a−x0)2+(b−y0)2,圆半径为r,则①d>r⇔点P在圆外;②d=r⇔点P在圆上;③d<r⇔点P在圆内.8. 直线与圆的位置关系:若直线l:Ax+By+C=0与圆(x−a)2+(y−b)2=r2,圆心到直线距离为d,则①d>r⇔相离⇔Δ<0;②d=r⇔相切⇔Δ=0;③d<r⇔相交⇔Δ>0.9. 两圆位置关系:若两圆圆心分别为O1,O2,半径分别为r1,r2,|O1O2|=d,则①d>r1+r2⇔外离⇔4条公切线;②d=r1+r2⇔外切⇔3条公切线;③|r1−r2|<d<r1+r2⇔相交⇔2条公切线;④d=|r1−r2|⇔内切⇔1条公切线;⑤0<d<|r1−r2|⇔内含⇔无公切线.10. 圆的切线方程求法:(1)过圆上一点P(x0,y0)求切线方程,先根据切点P与圆心的连线垂直于切线,求出切线斜率k,再用点斜式写出切线方程.(2)过圆外一点P(x0,y0)的切线方程可设为y−y0=k(x−x0),再利用相切条件求k,必有两条切线,注意不要漏掉平行于y轴的切线.(3)已知斜率为k的切线方程可设为y=kx+b,再利用相切条件求b,必有两条切线.七、立体几何1. 空间几何体的体积与表面积(1)圆柱:S=2πr(r+l),其中r为底面半径,l为母线长,侧面积为S侧=2πrl.(2)圆锥:S=πr(r+l),其中r为底面半径,l为母线长,侧面积为S侧=πrl.(3)圆台:S=π(r12+r22+r1l+r2l),其中r1,r2为上、下底面半径,l为母线长,侧面积为S侧=π(r1l+r2l).(4) V柱体=Sh(S是柱体的底面积,ℎ是柱体的高);V锥体=13Sh(S是锥体的底面积,ℎ是锥体的高);V台体=13(S′+√S′S+S)ℎ(S,S′分别是台体的上、下底面积,ℎ是台体的高).(5)球体:若球的半径是R,则其体积为V=43πR3,其表面积为S=4πR2.(6)解球的相关问题的常用方法:若球的半径为R,球的截面圆半径为r,球心到截面的距离为d,三者可以构造直角三角形,则R=√r2+d2.特别地,长方体的外接球直径等于长方体的体对角线长.2. 常用公理和定理公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线平行.定理:①空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补.②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.③一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.④一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直.⑤一个平面过另一个平面的垂线,则两个平面垂直.⑥一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行. ⑦两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行. ⑧垂直于同一个平面的两条直线平行.⑨两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直. 八、数列1.数列的通项a n 与前n 项的和S n 的关系:a n ={S 1, n =1S n −S n−1,n ≥2 (其中S n =a 1+a 2+⋯+a n ).2.等差数列:(1)定义:a n −a n−1=d (d 为常数,n ≥2).(2)通项公式:a n =a 1+(n −1)d =a m +(n −m)d =dn +a 1−d(n ∈N ∗). (3)前n 项和公式:S n =n(a 1+a n )2=na 1+n(n−1)2d =d 2n 2+(a 1−12d)n .(4)角码和定理:若{a n }为等差数列,且m +n =p +q(m,n,p,q ∈N ∗),则a m +a n =a p +a q ,特别地, 当m +n =2p 时,a m +a n =2a p . 3.等比数列:(1) 定义:a n a n−1=q (q 为常数且q ≠0,n ≥2).(2)通项公式:a n =a 1q n−1=a m q n−m =a 1q⋅q n (n ∈N ∗).(3)前n 项和公式:S n ={a 1(1−q n )1−q=a 1−a n q 1−q,q ≠1,na 1,q =1.(4)角码和定理:若{a n }为等比数列,且m +n =p +q(m,n,p,q ∈N ∗),则a m ∙a n =a p ∙a q ,特别地,当m +n =2p 时,a m ∙a n =a p 2. 4.若{a n }是等差数列,{b n }是等比数列,求数列{a n ∙b n }的前n 项和使用“错位相减法”. 5.“裂项相消法”常用公式:1n(n+k)=1k (1n−1n+k),√n+√n+k =1k(√n +k −√n).九、不等式1. 不等式常用性质:(1)a >b ⇔a −b >0 (作差比较法) . (2) 若a >0,b >0,则a >b ⇔ab >1(作商比较法) . (3)倒数性质:若ab >0 (即a,b 同号),则a >b ⇔1a<1b.2. 一元二次不等式ax 2+bx +c >0(或<0)(a ≠0),Δ=b 2−4ac >0时,如果a 与ax 2+bx +c 同号,则其解集在两根之外;如果a 与ax 2+bx +c 异号,则其解集在两根之间. 简言之:同号两根之外,异号两根之间. 穿根法:(x −x 1)(x −x 2)<0(x 1<x 2)⇔x 1<x <x 2;(x −x 1)(x −x 2)>0(x 1<x 2)⇔x <x 1,或x >x 2. 3. 重要不等式:若a,b ∈R ,则a 2+b 2≥2ab (当且仅当a =b 时取“=”号). 4. 基本不等式:若a >0,b >0,则a+b 2≥√ab (当且仅当a =b 时取“=”号).常用变式:ab ≤(a+b 2)2≤a 2+b 22(当且仅当a =b 时取“=”号).5. 和或积求最值:若x,y >0,(1)若积xy 是定值p ,则当且仅当x =y 时,和x +y 有最小值2√p (积定和最小);(2)若和x +y 是定值s ,则当且仅当x =y 时,积xy 有最大值14s 2 (和定积最大). 十、概率与统计1. 古典概率计算公式:P(A)=A 包含的基本事件个数m 基本事件的总数n.2. 概率加法公式:若事件 A,B 为互斥事件,则A 或B 发生的概率为 P (A ∪B )=P (A )+P(B).3. 若事件A,B 为对立事件,则P (A )=1−P (B ).4. 概率乘法公式:事件A,B 为相互独立事件⇔A ,B 同时发生的概率P(AB)= P(A)·P(B).5. 用样本估计总体:(1)将样本的频率作为总体的概率估计值. 一般地,样本容量越大,估计就越精确.(2)频率分布直方图的纵坐标为频率/组距,各小矩形的面积就是对应各组的频率,总和为1.6. 样本平均数:x=x1+x2+⋯+x nn =1n∑x ini=1;样本方差:s2=1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2];样本标准差:s=√1n[(x1−x)2+(x2−x)2+⋯+(x n−x)2].7.变量的相关性:回归直线ŷ=b̂x+â必过样本中心点(x̅,y̅).。

人教版高中数学必修1至必修5公式

人教版高中数学必修1至必修5公式

必修二:
直线与方程
1)直线的倾斜角
3
人教版高中数学必修一至必修五公式(必会)
定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与 x 轴平行或重合时,我们规定它的倾
斜角为 0 度。因此,倾斜角的取值范围是 0°≤α<180°
(2)直线的斜率
①定义:倾斜角不是 90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用 k 表示。即 k tan 。斜
log a m n log am b n
n log a m
n m
log a
b
(a、b、m
0,n
R, 且a
1)
,
log a
b
log c log c
b a
(a、b、c
0, 且a、c
1)
(换底公式)
函数图像(必须熟)
表1
y ax a 0, a 1
指数函数
定义域 值域
xR
y 0,
对数数函数 y log a x a 0, a 1
○1 在任一直线上任取一点,再转化为点到直线的距离进行求解。
d C1 C2 ( A、B都相等)
○2 设直线 l1 Ax By C1 0, l2 Ax By C2 ; 则两点间的距离为
A2 B2
二、圆的方程
1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
(a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac (a b c)2 a 2 b2 c 2 2ab 2bc 2ac ; (a b c)2 a 2 b2 c 2 2ab 2bc 2ac

高中数学必修一至必修五知识点总结

高中数学必修一至必修五知识点总结

高中数学必修一至必修五知识点总结高中数学必修一至必修五知识点总结高中数学常用公式及结论大全(新课标)必修11、集合的含义与表示集合的三大特性:确定性、互异性、无序性。

集合的表示有列举法、描述法。

描述法格式为:{元素|元素的特征},例如{x|x5,且xN}2、常用数集及其表示方法(1)自然数集N(又称非负整数集):0、1、2、3、(2)正整数集N*或N+:1、2、3、(3)整数集Z:(4)有理数集Q:包含分数、整数、有限小数等(5)实数集R:全体实数的集合(6)空集Ф:不含任何元素的集合3、元素与集合的关系:属于∈,不属于4、集合与集合的关系:子集、真子集、相等5、重要结论(1)传递性:若AB,BC,则AC(2)Ф是任何集合的子集,是任意非空集合的真子集.6、含有n个元素的集合,它的子集个数共有2n个;真子集有2n1个;非空子集有2n1个(即不计空集);非空的真子集有2n2个.7、集合的运算:交集、并集、补集.(1)A∩B={x|x∈A,且x∈B}.(2)A∪B={x|x∈A,或x∈B}.(3)CUAx|xU,且xA注:讨论集合的情况时,不要发遗忘了A的情况。

8、函数概念9、分段函数:在定义域的不同部分,有不同的对应法则的函数。

如y2x1x0x23x010、求函数的定义域的原则:(解决任何函数问题,必须要考虑其定义域)①分式的分母不为零;如:y1x1,则x10②偶次方根的被开方数大于或等于零;如:y5x,则5x0③对数的底数大于0且不等于1;如:yloga(x2),则a0且a1④对数的真数大于0;如:yloga(x2),则x20⑤指数为0的底不能为零;如:y(m1)x,则m1011、函数的奇偶性(在整个定义域内考虑)(1)奇函数满足f(x)f(x),奇函数的图象关于原点对称;(2)偶函数满足f(x)f(x),偶函数的图象关于y轴对称;注:①具有奇偶性的函数,其定义域关于原点对称;②若奇函数在原点有定义,则f(0)0③根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、非奇非偶函数。

天津高二数学必修五知识点

天津高二数学必修五知识点必修五是天津高中二年级数学课程的一部分,主要涉及数列与数学归纳法、排列与组合、概率与统计等内容。

下面将对这些知识点做一简要介绍。

一、数列与数学归纳法数列是指按照一定顺序排列的一组数。

常见的数列有等差数列和等比数列。

其中,等差数列的通项公式为An = A1 + (n-1)d,其中A1为首项,d为公差;等比数列的通项公式为An = A1 * q^(n-1),其中A1为首项,q为公比。

数学归纳法是一种证明方法,可用于证明数学命题的正确性。

其基本思想是:先证明命题在某个特定条件下成立,然后说明如果命题对于某一个正整数n成立,那么它也对于n+1成立。

由此可推知,命题对于一切正整数都成立。

二、排列与组合排列与组合是研究对象的选择或者排列方式的数学分支。

它们在实际问题中有着广泛的应用。

排列是指从给定对象中按一定顺序选取若干个对象进行排列。

对于n个不同的对象,取出m(m≤n)个进行排列的方法数记作A(n, m)或者P(n, m)。

其中,A(n, m) = n! / (n-m)!,P(n, m) = n! / (n-m)!表示排列的计算公式。

组合是指从给定对象中选取若干个对象,不考虑排列顺序的方法数。

对于n个不同的对象,取出m(m≤n)个进行组合的方法数记作C(n, m)。

其中,C(n, m) = n! / [m! * (n-m)!] 表示组合的计算公式。

三、概率与统计概率是数学中研究随机事件发生可能性的学科。

在概率中,我们常用事件发生的频率来描述其概率。

概率的取值范围是0到1之间,表示事件发生的可能性大小。

常见的概率运算有概率的加法原理和乘法原理。

统计是研究通过对数据进行收集、整理和分析来获得有关事物特征的学科。

统计学中常用的两个分支是描述统计和推断统计。

描述统计是通过对样本数据进行收集、整理和分析,来描述事物特征的统计方法。

常见的描述统计方法有平均数、中位数、众数和标准差等。

推断统计是通过对样本数据进行收集、整理和分析,来对总体特征进行推断的统计方法。

高中数学必修5用构造法求数列的通项公式

用结构法求数列的通项公式在高中数学教材中,有好多已知等差数列的首项、公比或公差 (或许经过计算能够求出数列的首项 ,公比 ),来求数列的通项公式。

但实质上有些数列其实不是等差、等比数列,给出数列的首项和递推公式 ,要求出数列的通项公式。

而这些题目常常能够用结构法,依据递推公式结构出一个新数列,进而间接地求出原数列的通项公式。

关于不一样的递推公式,我们自然能够采纳不一样的方法结构不一样的种类的新数列。

下边给出几种我们常有的结构新数列的方法:一.利用倒数关系结构数列。

比如:数列 { a n } 中,若 a12,114(n N ), 求a n an 1an设b n 1 , 则b n 1b n+4,a n即 b n 1b n=4,{b n}是等差数列。

能够经过等差数列的通项公式求出b n,然再求后数列{ a n}的通项。

练习: 1)数列 { a n } 中, a n≠0,且知足a111N ), 求a n , a n11, (n23a nn}中, a11, a n 2a n n通项公式。

2)数列 { a1a n, 求a 2n}中 , a11, a n0,且a n2a n a n 1a n1 0(nn3)数列 { a2, n N ), 求 a .二.结构形如 b n a n2的数列。

例:正数数列 { a n } 中,若 a15, a n 12a n24(n N ), 求a n解:设 b n a n 2 , 则b n1bn4,即b n1b n4数列 { b n } 是等差数列,公差是4, b1225 a1b n25(n 1)( 4)294n即 a n 24n29a n294n , (1n7, n N )练习:已知正数数列 { a n } 中, a1 2, a n 2 a n 1 (n2, n N ) ,求数列 { a n } 的通项公式。

三.结构形如 b n lg a n的数列。

例:正数数列 { a} 中,若 a =10,且lg a n lg a n 1 , (n2, n N ), 求a .n11n2解:由题意得:lg a n1,可设 b n lg a n,lg a n 12即b n1,bn 12b n是等比数列,公比为1, b1 lg 10 12b n 1 (1) n 1(1)n 1 ,(n N) .22(1) n 1 , a n( 1 )n 1即 lg a n10 22练习:(选自 2002 年高考上海卷)数列 { a n } 中,若 a1=3, a n 1a n2 ,n 是正整数,求数列 { a n } 的通项公式。

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

最新数学必修五数列公式总结

最新数学必修五数列公式总结数学习题无非就是数学概念和数学思想的组合应用,弄清数学基本概念、基本定理、基本方法是判断题目类型、知识范围的前提,是正确把握解题方法的依据。

只有概念清楚,方法全面,遇到题目时,就能很快的得到解题方法,或者面对一个新的习题,就能联想到我们平时做过的习题的方法,达到迅速解答。

弄清基本定理是正确、快速解答习题的前提条件,特别是在立体几何等章节的复习中,对基本定理熟悉和灵活掌握能使习题解答条理清楚、逻辑推理严密。

反之,会使解题速度慢,逻辑混乱、叙述不清。

严防题海战术做习题是为了巩固知识、提高应变能力、思维能力、计算能力。

学数学要做一定量的习题,但学数学并不等于做题,在各种考试题中,有相当的习题是靠简单的知识点的堆积,利用公理化知识体系的演绎而就能解决的,这些习题是要通过做一定量的习题达到对解题方法的展移而实现的,但,随着高考的改革,高考已把考查的重点放在创造型、能力型的考查上。

因此要精做习题,注意知识的理解和灵活应用,当你做完一道习题后不访自问:本题考查了什么知识点什么方法我们从中得到了解题的什么方法这一类习题中有什么解题的通性实现问题的完全解决我应用了怎样的解题策略只有这样才会培养自己的悟性与创造性,开发其创造力。

也将在遇到即将来临的期末考试和未来的高考题目中那些综合性强的题目时可以有一个科学的方法解决它。

归纳数学大思维数学学习其主要的目的是为了培养我们的创造性,培养我们处理事情、解决问题的能力,因此,对处理数学问题时的大策略、大思维的掌握显得特别重要,在平时的学习时应注重归纳它。

在平时听课时,一个明知的学生,应该听老师对该题目的分析和归纳。

但还有不少学生,不注意教师的分析,往往沉静在老师讲解的每一步计算、每一步推证过程。

听课是认真,但费力,听完后是满脑子的计算过程,支离破碎。

老师的分析是引导学生思考,启发学生自己设计出处理这些问题的大策略、大思维。

当教师解答习题时,学生要用自己的计算和推理已经知道老师要干什么。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学必修五公式方法总结
第一章 解三角形
一.正弦定理:

变形:推论:
二.余弦定理:

三.三角形面积公式

第二章 数列
一.等差数列
: .定义:
(常数)

.通项公式:或

.求和公式:

.重要性质()
()

二.等比数列
:.定义:
.通项公式:或
.求和公式:

.重要性质()
()
三.数列求和方法总结:
.等差等比数列求和可采用求和公式(公式法).
.非等差等比数列可考虑分组求和法、错位相减法等转化为等差或等比数列再求和,

常见的拆项公式:

第三章:不等式
一.解一元二次不等式三步骤:
特别地:若二次项系数为正且有两根时写解集用口诀:不等号大于取两边,小于取中间
二.分式不等式的求解通法:
()标准化:①右边化零,②系数化正.
()转 换:化为一元二次不等式(依据:两数的商与积同号)


.二元一次不等式>(,不同时为),确定其所表示的平

面区域用口诀:同上异下(与不等式的符号)
(注意:包含边界直线用实线,否则用虚线)
四.线性规划问题求解步骤
:画(可行域),移(平行线),求(交点坐标,最优解,最值),答.

五.基本不等式
:(当且仅当时,等号成立).

相关文档
最新文档