平抛运动-圆周运动测试题(含答案-答题卡)
高考物理母题题源系列专题04平抛运动与圆周运动(含解析)

专题04平抛运动与圆周运动【母题来源一】2016年全国新课标Ⅲ卷【母题原题】(多选)如图,一固定容器的内壁是半径为R的半球面;在半球面水平直径的一端有一质量为m的质点P。
它在容器内壁由静止下滑到最低点的过程中,克服摩擦力做的功为W。
重力加速度大小为g。
设质点P在最低点时,向心加速度的大小为a,容器对它的支持力大小为N,则:()A.2()mgR WamR-B.2mgR WamR-=C.32mgR WNR-=D.)mgR W NR-=2(【答案】AC【考点定位】考查了动能定理、圆周运动【方法技巧】应用动能定理应注意的几个问题:(1)明确研究对象和研究过程,找出始末状态的速度;(2)要对物体正确地进行受力分析,明确各力做功的大小及正负情况(待求的功除外);(3)有些力在物体运动过程中不是始终存在的,若物体运动过程中包括几个阶段,物体在不同阶段内的受力情况不同,在考虑外力做功时需根据情况区分对待。
【母题来源二】2016年江苏卷【母题原题】有A、B两小球,B的质量为A的两倍.现将它们以相同速率沿同一方向抛出,不计空气阻力.图中①为A的运动轨迹,则B的运动轨迹是:()A.①B.②C.③D.④【答案】A【考点定位】考查抛体运动【方法技巧】两球的质量不同是本题的一个干扰因素,重在考查学生对物体运动规律的理解,抛体运动轨迹与物体的质量无关,只要初始条件相同,则轨迹相同。
【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。
【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。
竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。
平抛运动与圆周运动(原卷版)

原创精品资源学科网独家享有版权,侵权必究!
1 专题04 平抛运动与圆周运动
【母题来源一】2019年普通高等学校招生全国统一考试物理(全国II 卷)
【母题原题】(2019·新课标全国Ⅱ卷)如图(a ),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。
某运动员先后两次从同一跳台起跳,每次都从离开跳台开始计时,用v 表示他在竖直方向的速度,其v –t 图象如图(b )所示,t 1和t 2是他落在倾斜雪道上的时刻。
则
A .第二次滑翔过程中在竖直方向上的位移比第一次的小
B .第二次滑翔过程中在水平方向上的位移比第一次的大
C .第一次滑翔过程中在竖直方向上的平均加速度比第一次的大
D .竖直方向速度大小为v 1时,第二次滑翔在竖直方向上所受阻力比第一次的大
【答案】BD
【解析】由v –t 图面积易知第二次面积大于等于第一次面积,故第二次竖直方向下落距离大于第一次下落距离,所以,A 错误;由于第二次竖直方向下落距离大,由于位移方向不变,故第二次水平方向位移大,故B 正确;由于v –t 斜率知第一次大、第二次小,斜率越大,加速度越大,或由0v v a t
-=易知a 1>a 2,故C 错误;由图象斜率,速度为v 1时,第一次图象陡峭,第二次图象相对平缓,故a 1>a 2,由G –f y =ma ,可知,f y 1<f y 2,故D 正确
【母题来源二】2019年全国普通高等学校招生统一考试物理(江苏卷)
【母题原题】(2019·江苏卷)如图所示,摩天轮悬挂的座舱在竖直平面内做匀速圆周运动.座舱的质量为。
平抛运动测试题及答案范本

平抛运动测试题及答案范本测试题:题目一:假设一颗子弹以80 m/s的初速度从平地的一点射出,求其水平运动的时间。
题目二:一名游泳运动员在比赛中进行平抛运动,投掷角度为45°,求其竖直方向上的运动时间。
题目三:一个小球以12 m/s的速度向上抛出,求其最大高度。
答案范本:题目一答案:假设子弹水平运动时间为t秒,则可以利用水平运动速度的定义 v = S / t,其中 v 为水平初速度,S为水平距离。
根据题目中给出的信息 v = 80 m/s,S = 0(因为水平运动,不受竖直方向上的重力作用,所以水平位移为0)。
代入公式可以得到 t = S / v = 0 / 80 = 0秒。
因此,子弹的水平运动时间为0秒。
题目二答案:由题目给出的投掷角度为45°,可以将水平方向和竖直方向的运动分开计算。
对于水平方向的运动,由于没有水平的外力作用,所以水平速度始终保持不变,即 vt = 0,其中 v为水平速度,t为水平运动时间。
而对于竖直方向的运动,运用自由落体运动的规律,可以得到运动时间 t' = 2 * (v / g),其中 v为竖直初速度,g为重力加速度。
根据题目中给出的投掷角度,可以得到v = v0 * sinθ,其中 v0为初速度,θ为投掷角度。
代入公式可得t' = 2 * (v0 * sinθ / g)。
由于题目中没有给出具体数值,所以无法计算出游泳运动员在竖直方向上的运动时间的具体数值。
题目三答案:小球的最大高度即为其竖直方向上运动时间的一半所对应的高度。
根据自由落体运动的规律,小球的竖直运动方程可以表示为 h = v0 * t - (1/2) * g * t^2,其中 h为高度,v0为初速度,t为时间,g为重力加速度。
最大高度对应的时间为小球的总运动时间的一半,因此 t' = t / 2。
代入公式可得 h = v0 * t' - (1/2) * g * (t')^2。
高考物理:平抛运动与圆周运动 考点强化练习卷

平抛运动与圆周运动1. 〔多项选择〕如图.倾角为θ的斜面上有A 、B 、C 三点 ,现从这三点分别以不同的初速度水平抛出一小球 ,三个小球均落在斜面上的D 点.今测得AB :BC :CD=5:3:1 ,由此可判断〔 〕A. A 、B 、C 处抛出的三个小球运动时间之比为3:2:1B. A 、B 、C 处抛出的三个小球的速率变化率之比为3:2:1C. A 、B 、C 处抛出的三个小球的初速度大小之比为3:2:1D. A 、B 、C 处抛出的三个小球落在斜面上时速度与斜面间的夹角之比为1:1:1【答案】ACD2. 〔多项选择〕如下图 ,在竖直平面内固定有两个很靠近的同心圆孰道 ,外圆内外表光滑 ,内圆外外表粗糙 ,.一质量为m 的小球从轨道的最低点以初速度0v 向右运动 ,球的直径略小于两圆间距 ,球运动的轨道半径为R ,不计空气阻力.设小球过最低点时重力势能为零 ,以下说法正确的选项是A. 假设小球运动到最高点时速度为0 ,那么小球机械能一定不守恒B. 假设经过足够长时间 ,小球最终的机械能可能为32mgC. 假设使小球始终做完整的圆周运动 ,那么v 0D. 假设小球第一次运动到最高点时速度大小为0 ,那么v 0【答案】ACD3. 一根光滑金属杆 ,一局部为直线形状并与x 轴负方向重合 ,另一局部弯成图示形状 ,相应的曲线方程为25y x =-。
(单位:m) ,一质量为0.1Kg 的金属小环套在上面.t=0时刻从1x =-m 处以01v =m /s 向右运动 ,并相继经过1x m =的A 点和2x m =的B 点 ,以下说法正确的选项是A. 小环在B 点与金属环间的弹力大于A 点的弹力B. 小环经过B 点的加速度大于A 点时的加速度C. 小环经过B 点时重力的瞬时功率为20WD. 小环经过B 点的时刻为t=2s【答案】C4. 如下图 ,长为L 的细绳一端固定 ,另一端系一质量为m 的小球 ,给小球一个适宜的初速度 ,小球便可在水平面内做匀速圆周运动 ,这样就构成了一个圆锥摆 ,设细绳与竖直方向的夹角为.以下说法中正确的选项是〔 〕A. 小球受重力、绳的拉力和向心力作用B. 细绳的拉力提供向心力C. 越大 ,小球运动的周期越大D. 越大 ,小球运动的线速度越大【答案】D5. 如下图 ,将一质量为m 的小球从空中O 点以速度0v 水平抛出 ,飞行一段时间后 ,小球经过P 点时动能205K E mv = ,不计空气阻力 ,那么小球从O 到P 过程中 〔 〕 A. 经过的时间为 03v gB. 速度增量为03v ,方向斜向下C. 运动方向改变的角度的正切值为13D. 下落的高度为205v g【答案】A6. 跳台滑雪运发动的动作惊险而优美 ,其实滑雪运动可抽象为物体在斜坡上的平抛运动.如下图 ,设可视为质点的滑雪运发动从倾角为的斜坡顶端P 处 ,以初速度v 0水平飞出 ,运发动最后又落到斜坡上A 点处 ,AP 之间距离为L ,在空中运动时间为t ,改变初速度v 0的大小 ,L 和t 都随之改变.关于L 、 t 与v 0的关系 ,以下说法中正确的选项是〔 〕A. L 与v 0成正比B. L 与v 0成反比C. t 与v 0成正比D. t 与v 0成反比【答案】C7. 如下图 ,长为h 的轻杆一端固定一质量为 m 的小球 ,另一端有固定转轴 O ,杆可在竖直平面内绕转轴 O 无摩擦转动.小球通过最低点 Q 时 ,速度大小为v =2√gℎ ,那么小球的运动情况为〔 〕A. 小球能到达圆周轨道的最高点 P ,且在 P 点受到轻杆对它向上的弹力B. 小球能到达圆周轨道的最高点 P ,且在 P 点受到轻杆对它向下的弹力C. 小球能到达圆周轨道的最高点 P ,但在 P 点不受轻杆对它的作用力D. 小球不可能到达圆周轨道的最高点 P【答案】A8. 在中国南昌有我国第一高摩天轮——南昌之星 ,总建设高度为160米 ,横跨直径为153米 ,如下图。
高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。
2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。
【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。
(压轴题)高中物理必修二第五章《抛体运动》测试卷(含答案解析)(1)

一、选择题1.如图,x轴沿水平方向,y轴沿竖直方向,图中画出了从y轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的,不计空气阻力,则()A.a的飞行时间比b的长B.b和c的飞行时间不相同C.a的水平速度比b的小D.若a、b同时抛出,落地前它们不可能在空中相碰2.物体做曲线运动,则()A.物体的速度大小一定变化B.物体的速度方向一定变化C.物体的加速度大小一定变化D.物体的加速度方向一定变化3.如图所示,小船船头始终垂直于河岸行驶,且船速保持不变。
从A点出发行驶至B 点,小船轨迹如图所示。
则下列说法正确的是()A.河岸中心水速最大B.船可能做匀速运动C.水速将影响渡河时间,水速越大,渡河时间越短D.改变船速方向不会影响渡河时间4.冬奥会跳台滑雪比赛,场地是利用山势特点建造的一个特殊跳台,如图甲是模型图。
简化模型如图乙所示,一运动员穿着专用滑雪板,在助滑道上获得高速后从A点以速度v0水平飞出,在空中飞行一段距离后在山坡上B点着陆。
若不考虑空气阻力,下列关于运动员的说法正确的是()A.空中飞行时间与v0无关B .落点B 跟A 点的水平距离与v 0成正比C .落点B 到A 点的距离与v 0的二次方成正比D .初速度v 0大小改变时落到斜面上的速度方向将改变5.在一次运动会上某运动员在铅球比赛中成绩是9.6m ,图示为他在比赛中的某个瞬间,不考虑空气阻力,下列说法正确的是( )A .刚被推出的铅球只受到重力B .9.6m 是铅球的位移C .铅球推出去后速度变化越来越快D .该运动员两次成绩一样,则铅球位移一定相同6.如图所示,将一篮球从地面上方B 点斜向上抛出,刚好垂直击中篮板上A 点,不计空气阻力,若抛射点B 向篮板方向水平移动一小段距离,仍使抛出的篮球垂直击中A 点,则可行的是( )A .增大抛射速度v 0,同时减小抛射角θB .减小抛射速度v 0,同时减小抛射角θC .增大抛射角θ,同时减小抛出速度v 0D .增大抛射角θ,同时增大抛出速度v 07.如图,小球以一定速度沿水平方向离开桌面后做平抛运动,这样的平抛运动可分解为水平方向和竖直方向的两个分运动,下列说法正确的是( )A .水平方向的分运动是匀加速运动B .竖直方向的分运动是匀加速运动C .水平方向的分速度为零D .竖直方向的分速度不变8.如图所示,小球A B 、分别从2l 和l 的高度水平抛出后落地,上述过程中A B 、的水平位移分别为l 和2l 。
(完整版)平抛与圆周运动相结合专项训练卷
2013—2014学年度北京师范大学万宁附属中学平抛运动与圆周运动相结合训练卷考试范围:平抛 圆周 机械能;命题人:王占国;审题人:孙炜煜学校:___________姓名:___________班级:___________考号:___________一、选择题(题型注释)6.如图所示,半径为R,内径很小的光滑半圆细管竖直放置,一质量为m 的小球A 以某一速度从下端管口进入,并以速度1v 通过最高点C 时与管壁之间的弹力大小为mg 6.0,另一质量也为m 小球B 以某一速度从下端管口进入,并以速度2v 通过最高点C 时与管壁之间的弹力大小为mg 3.0,且21v v >,210s m g =。
当A 、B 两球落地时,落地点与下端管口之间的水平距离B x 、A x 之比可能为( )A.27=A B x x B 。
213=A B x x C 。
47=A B x x D 。
413=A B x x 【答案】CD 【解析】试题分析:若A 球通过最高点时,对细管是向下的压力,则B 也是向下的压力,则根据牛顿第二定律可得,'210.6v mg mg m R -=,解得:'10.4v gR =,'220.3v mg mg m R-=,解得'20.7v gR =不符合题意故对A 只能有:'210.6v mg mg m R+=解得:'1 1.6v gR =对B 有:'220.3v mg mg m R -=,解得'20.7v gR '220.3v mg mg m R+=解得'2 1.3v gR 通过C 点后,小球做平抛运动,所以水平位移x vt =,因为距离地面的高度相同,所以落地时间相同,故可得47=A B x x 或者413=A B x x 故选CD考点:考查了平抛运动点评:做本题的关键是知道小球在C 点的向心力来源,可根据21v v >判断7.如图所示,半径为R 的半圆形圆弧槽固定在水平面上,在圆弧槽的边缘A 点有一小球(可视为质点,图中未画出),今让小球对着圆弧槽的圆心O 以初速度0v 作平抛运动,从抛出到击中槽面所用时间为gR (g为重力加速度).则平抛的初速度可能是A .gRv 2320-=B .gRv 2320+=C .0332v gR+=D .gR v 2330-=【答案】AB【解析】试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动.由竖直位移2122Rh gt ==,小球可能落在左半边也可能落在右半边,水平位移有两个值,由勾股定理可求出分别为00cos30,cos30R R R R -+,由水平方向匀速直线运动可求出两个水平速度分别为gRv 2320-=、gRv 2320+=AB 对。
《常考题》高中物理必修二第六章《圆周运动》检测题(含答案解析)(1)
一、选择题1.下面说法正确的是()A.平抛运动属于匀变速运动B.匀速圆周运动属于匀变速运动C.圆周运动的向心力就是做圆周运动物体受到的合外力D.如果物体同时参与两个直线运动,其运动轨迹一定是直线运动2.如图所示,竖直平面上的光滑圆形管道里有一个质量为m可视为质点的小球,在管道内做圆周运动,管道的半径为R,自身质量为3m,重力加速度为g,小球可看作是质点,管道的内外径差别可忽略。
已知当小球运动到最高点时,管道刚好能离开地面,则此时小球的速度为()A.gR B.2gR C.3gR D.2gR3.如图所示,一圆盘绕过O点的竖直轴在水平面内旋转,角速度为ω,半径R,有人站在盘边缘P点处面对O随圆盘转动,他想用枪击中盘中心的目标O,子弹发射速度为v,则()A.枪应瞄准O点射击B.枪应向PO左方偏过θ角射击,cosRvωθ=C.枪应向PO左方偏过θ角射击,tanRvωθ=D.枪应向PO左方偏过θ角射击,sinRvωθ=4.和谐号动车以80m/s的速率转过一段弯道,某乘客发现放在桌面上的指南针在10s内匀速转过了约10︒。
在此10s时间内,则火车()A.角速度约为1rad/s B.运动路程为800mC .加速度为零D .转弯半径约为80m5.一般的曲线运动可以分成很多小段,每小段都可以看成圆周运动的一部分,即把整条曲线用一系列不同半径的小圆弧来代替。
如图甲所示,曲线上的A 点的曲率圆定义为:通过A 点和曲线上紧邻A 点两侧的两点作一圆,在极限情况下,这个圆就叫做A 点的曲率圆,其半径ρ叫做A 点的曲率半径。
将圆周运动的半径换成曲率半径后,质点在曲线上某点的向心加速度可根据圆周运动的向心加速度表达式求出,向心加速度方向沿曲率圆的半径方向。
已知重力加速度为g 。
现将一物体沿与水平面成α角的方向以速度v 0抛出,如图乙所示,则在轨迹最高点Q 处和抛出点P 处的曲率半径之比为( )A .cos αB .cos αC .cos 2αD .cos 3α6.如图所示,旋转雨伞时,水珠会从伞的边缘沿切线方向飞出,说明( )A .水珠做圆周运动B .水珠处于超重状态C .水珠做离心运动D .水珠蒸发7.如图所示,A 、B 两物块置于绕竖直轴匀速转动的水平圆盘上。
高考物理考前三个月:专题3-抛体运动与圆周运动(含答案)
1.(·新课标全国Ⅰ·18)一带有乒乓球发射机的乒乓球台如图1所示.水平台面的长和宽分别为L 1和L 2,中间球网高度为h .发射机安装于台面左侧边缘的中点,能以不同速率向右侧不同方向水平发射乒乓球,发射点距台面高度为3h .不计空气的作用,重力加速度大小为g .若乒乓球的发射速率v 在某范围内,通过选择合适的方向,就能使乒乓球落到球网右侧台面上,则v 的最大取值范围是( )图1A.L 12g6h <v <L 1g6hB.L 14gh <v < (4L 21+L 22)g6h C.L 12g 6h <v <12 (4L 21+L 22)g 6h D.L 14g h <v <12(4L 21+L 22)g 6h答案 D解析 发射机无论向哪个方向水平发射,乒乓球都做平抛运动.当速度v 最小时,球沿中线恰好过网,有: 3h -h =gt 212①L 12=v 1t 1② 联立①②得v 1=L 14g h当速度最大时,球斜向右侧台面两个角发射,有 (L 22)2+L 21=v 2t 2③ 3h =12gt 22④联立③④得v 2=12(4L 21+L 22)g 6h所以使乒乓球落到球网右侧台面上,v 的最大取值范围为L 14g h <v <12(4L 21+L 22)g6h,选项D 正确.2.(·浙江理综·19)如图2所示为赛车场的一个水平“U ”形弯道,转弯处为圆心在O 点的半圆,内外半径分别为r 和2r .一辆质量为m 的赛车通过AB 线经弯道到达A ′B ′线,有如图所示的①、②、③三条路线,其中路线③是以O ′为圆心的半圆,OO ′=r .赛车沿圆弧路线行驶时,路面对轮胎的最大径向静摩擦力为F max .选择路线,赛车以不打滑的最大速率通过弯道(所选路线内赛车速率不变,发动机功率足够大),则( )图2A .选择路线①,赛车经过的路程最短B .选择路线②,赛车的速率最小C .选择路线③,赛车所用时间最短D .①、②、③三条路线的圆弧上,赛车的向心加速度大小相等 答案 ACD解析 赛车经过路线①的路程s 1=πr +2r =(π+2)r ,路线②的路程s 2=2πr +2r =(2π+2)r ,路线③的路程s 3=2πr ,A 正确;根据F max =m v 2R ,可知R 越小,其不打滑的最大速率越小,所以路线①的最大速率最小,B 错误;三种路线对应的最大速率v 2=v 3=2v 1,则选择路线①所用时间t 1=(π+2)r v 1,路线②所用时间t 2=(2π+2)r 2v 1,路线③所用时间t 3=2πr2v 1,t 3最小,C 正确;由F max =ma ,可知三条路线对应的a 相等,D 正确.3.(·海南单科·14)如图3所示,位于竖直平面内的光滑轨道由四分之一圆弧ab 和抛物线bc 组成,圆弧半径Oa 水平,b 点为抛物线顶点.已知h =2 m ,s = 2 m .取重力加速度大小g =10 m/s 2.图3(1)一小环套在轨道上从a 点由静止滑下,当其在bc 段轨道运动时,与轨道之间无相互作用力,求圆弧轨道的半径;(2)若环从b 点由静止因微小扰动而开始滑下,求环到达c 点时速度的水平分量的大小. 答案 (1)0.25 m (2)2103m/s解析 (1)小环在bc 段轨道运动时,与轨道之间无相互作用力,则说明下落到b 点时的速度水平,使小环做平抛运动的轨迹与轨道bc 重合,故有s =v b t ① h =12gt 2② 在ab 滑落过程中,根据动能定理可得mgR =12m v 2b ③联立三式可得R =s 24h=0.25 m(2)下滑过程中,初速度为零,只有重力做功,根据动能定理可得mgh =12m v 2c④因为小环滑到c 点时速度与竖直方向的夹角等于(1)问中做平抛运动过程中经过c 点时速度与竖直方向的夹角,设为θ,则根据平抛运动规律可知sin θ=v bv 2b +2gh⑤根据运动的合成与分解可得sin θ=v 水平v c ⑥联立①②④⑤⑥可得v 水平=2103m/s.1.题型特点抛体运动与圆周运动是高考热点之一.考查的知识点有:对平抛运动的理解及综合运用、运动的合成与分解思想方法的应用、竖直面内圆周运动的理解和应用.高考中单独考查曲线运动的知识点时,题型为选择题,将曲线运动与功和能、电场与磁场综合时题型为计算题.2.应考策略抓住处理问题的基本方法即运动的合成与分解,灵活掌握常见的曲线运动模型:平抛运动及类平抛运动、竖直面内的圆周运动及完成圆周运动的临界条件.考题一运动的合成与分解1.如图4所示,河水以相同的速度向右流动,落水者甲随水漂流,至b点时,救生员乙从O 点出发对甲实施救助,则救生员乙相对水的运动方向应为图中的()图4A.Oa方向B.Ob方向C.Oc方向D.Od方向答案 B解析人在水中相对于水游动的同时还要随着水一起相对地面向下游漂流,以水为参考系,落水者甲静止不动,救援者做匀速直线运动,则救援者直接沿着Ob方向即可对甲实施救助.2.如图5所示,在一端封闭的光滑细玻璃管中注满清水,水中放一红蜡块R(R视为质点).将玻璃管的开口端用胶塞塞紧后竖直倒置且与y轴重合,在R从坐标原点以速度v0=3 cm/s匀速上浮的同时,玻璃管沿x轴正向做初速度为零的匀加速直线运动,合速度的方向与y轴夹角为α.则红蜡块R的()图5A.分位移y与x成正比B.分位移y的平方与x成正比C.合速度v的大小与时间t成正比D .tan α与时间t 成正比 答案 BD解析 由题意可知,y 轴方向,y =v 0t .而x 轴方向,x =12at 2,联立可得:y 2=2v 20a x ,故A 错误,B 正确;x 轴方向,v x =at ,那么合速度的大小v =v 20+a 2t 2,则v 的大小与时间t 不成正比,故C 错误;tan α=at v 0=av 0t ,故D 正确.3.如图6所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的环,环套在竖直固定的光滑直杆上,光滑的轻小定滑轮与直杆的距离为d ,杆上的A 点与定滑轮等高,杆上的B 点在A 点下方距离为d 处.现将环从A 处由静止释放,不计一切摩擦阻力,下列说法正确的是( )图6A .环到达B 处时,重物上升的高度h =d2B .环到达B 处时,环与重物的速度大小相等C .环从A 到B ,环减少的机械能等于重物增加的机械能D .环能下降的最大高度为43d答案 CD解析 环到达B 处时,重物上升的高度为(2-1)d ,选项A 错误;环到达B 处时,重物的速度与环的速度大小关系为:v 物=v 环sin 45°,即环与重物的速度大小不相等,选项B 错误;根据机械能守恒定律,对环和重物组成的系统机械能守恒,则环从A 到B ,环减少的机械能等于重物增加的机械能,选项C 正确;设环能下降的最大距离为H ,则 对环和重物组成的系统,根据机械能守恒定律可得:mgH =2mg (H 2+d 2-d ),解得H =43d ,选项D 正确.1.合运动与分运动的关系:(1)独立性:两个分运动可能共线、可能互成角度.两个分运动各自独立,互不干扰. (2)等效性:两个分运动的规律、位移、速度、加速度叠加起来与合运动的规律、位移、速度、加速度效果相同.(3)等时性:各个分运动及其合运动总是同时发生,同时结束,经历的时间相等. (4)合运动一定是物体的实际运动.物体实际发生的运动就是物体相对地面发生的运动,或者说是相对于地面上的观察者所发生的运动.2.判断以下说法的对错.(1)曲线运动一定是变速运动.( √ ) (2)变速运动一定是曲线运动.( × )(3)做曲线运动的物体所受的合外力一定是变力.( × )考题二 平抛(类平抛)运动的规律4.如图7所示,A 、B 两点在同一条竖直线上,A 点离地面的高度为2.5h .B 点离地面的高度为2h .将两个小球分别从A 、B 两点水平抛出,它们在P 点相遇,P 点离地面的高度为h .已知重力加速度为g ,则( )图7A .两个小球一定同时抛出B .两个小球抛出的时间间隔为(3-2)h gC .小球A 、B 抛出的初速度之比v A v B =32 D .小球A 、B 抛出的初速度之比v Av B =23 答案 BD解析 平抛运动在竖直方向上做自由落体运动,由h =12gt 2,得t =2hg,由于A 到P 的竖直高度较大,所以从A 点抛出的小球运动时间较长,应先抛出.故A 错误;由t =2h g,得两个小球抛出的时间间隔为Δt =t A -t B =2×1.5hg-2hg=(3-2)hg .故B 正确;由x =v 0t 得v 0=xg 2h ,x 相等,则小球A 、B 抛出的初速度之比v A v B= h B h A= h 1.5h=23,故C 错误,D 正确.5.在水平地面上的O 点同时将甲、乙两块小石头斜向上抛出,甲、乙在同一竖直面内运动,其轨迹如图8所示,A 点是两轨迹在空中的交点,甲、乙运动的最大高度相等.若不计空气阻力,则下列判断正确的是( )图8A .甲先到达最大高度处B .乙先到达最大高度处C .乙先到达A 点D .甲先到达水平地面 答案 C解析 斜抛可以分解为水平匀速运动和竖直匀变速运动,由于甲、乙运动的最大高度相等,由v 2=2gh ,则可知其竖直方向初速度相同,则甲、乙同时到达最高点,故A 、B 错误;由前面分析,结合图像可知,乙到达A 点时,甲在上升阶段,故C 正确;由于甲、乙竖直方向运动一致,故会同时到达地面,故D 错误.6.如图9,斜面与水平面之间的夹角为45°,在斜面底端A 点正上方高度为10 m 处的O 点,以5 m/s 的速度水平抛出一个小球,则飞行一段时间后撞在斜面上时速度与水平方向夹角的正切值为(g =10 m/s 2)( )图9A .2B .0.5C .1 D. 2答案 A解析 如图所示,由三角形的边角关系可知, AQ =PQ所以在竖直方向上有, OQ +AQ =10 m所以有:v 0t +12gt 2=10 m ,解得:t =1 s. v y =gt =10 m/s 所以tan θ=v yv 0=21.平抛运动规律以抛出点为坐标原点,水平初速度v 0方向为x 轴正方向,竖直向下的方向为y 轴正方向,建立如图10所示的坐标系,则平抛运动规律如下.图10(1)水平方向:v x =v 0 x =v 0t (2)竖直方向:v y =gt y =12gt 2(3)合运动:合速度:v t =v 2x +v 2y =v 20+g 2t 2合位移:s =x 2+y 2合速度与水平方向夹角的正切值tan α=v y v 0=gtv 0合位移与水平方向夹角的正切值tan θ=y x =gt2v 02.平抛运动的两个重要推论推论Ⅰ:做平抛(或类平抛)运动的物体在任一时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移方向与水平方向的夹角为θ,则tan α=2tan θ.推论Ⅱ:做平抛(或类平抛)运动的物体,任意时刻的瞬时速度方向的反向延长线一定通过此时水平位移的中点.考题三 圆周运动问题的分析7.如图11所示,轻杆长3L ,在杆两端分别固定质量均为m 的球A 和B ,光滑水平转轴穿过杆上距球A 为L 处的O 点,外界给系统一定能量后,杆和球在竖直平面内转动,球B 运动到最高点时,杆对球B 恰好无作用力.忽略空气阻力.则球B 在最高点时( )图11A .球B 的速度为零 B .球A 的速度大小为2gLC .水平转轴对杆的作用力为1.5mgD .水平转轴对杆的作用力为2.5mg 答案 C解析 球B 运动到最高点时,杆对球B 恰好无作用力,即重力恰好提供向心力,有mg =mv 22L 解得v =2gL ,故A 错误;由于A 、B 两球的角速度相等,则球A 的速度大小v ′=2gL2,故B 错误;球B 到最高点时,对杆无弹力,此时球A 受重力和拉力的合力提供向心力,有F -mg =m v ′2L解得:F =1.5mg ,故C 正确,D 错误.8.如图12所示,质量为m 的竖直光滑圆环A 的半径为r ,竖直固定在质量为m 的木板B 上,木板B 的两侧各有一竖直挡板固定在地面上,使木板不能左右运动.在环的最低点静置一质量为m 的小球C .现给小球一水平向右的瞬时速度v 0,小球会在环内侧做圆周运动.为保证小球能通过环的最高点,且不会使木板离开地面,则初速度v 0必须满足( )图12A.3gr ≤v 0≤5grB.gr ≤v 0≤3grC.7gr ≤v 0≤3grD.5gr ≤v 0≤7gr答案 D解析 在最高点,速度最小时有:mg =m v 21r解得:v 1=gr .从最高点到最低点的过程中,机械能守恒,设最低点的速度为v 1′,根据机械能守恒定律,有: 2mgr +12mv 21=12mv 1′2解得v 1′=5gr . 要使木板不会在竖直方向上跳起,球对环的压力最大为:F =mg +mg =2mg 从最高点到最低点的过程中,机械能守恒,设此时最低点的速度为v 2′, 在最高点,速度最大时有:mg +2mg =m v 22r 解得:v 2=3gr .根据机械能守恒定律有:2mgr +12mv 22=12mv 2′2解得:v 2′=7gr .所以保证小球能通过环的最高点,且不会使木板在竖直方向上跳起,在最低点的速度范围为:5gr ≤v ≤7gr .9.如图13所示,光滑杆AB 长为L ,B 端固定一根劲度系数为k 、原长为l 0的轻弹簧,质量为m 的小球套在光滑杆上并与弹簧的上端连接.OO ′为过B 点的竖直轴,杆与水平面间的夹角始终为θ.图13(1)杆保持静止状态,让小球从弹簧的原长位置静止释放,求小球释放瞬间的加速度大小a 及小球速度最大时弹簧的压缩量Δl 1;(2)当球随杆一起绕OO ′轴匀速转动时,弹簧伸长量为Δl 2,求匀速转动的角速度ω; (3)若θ=30°,移去弹簧,当杆绕OO ′轴以角速度ω0=gL匀速转动时,小球恰好在杆上某一位置随杆在水平面内匀速转动,球受轻微扰动后沿杆向上滑动,到最高点A 时球沿杆方向的速度大小为v 0,求小球从开始滑动到离开杆过程中,杆对球所做的功W . 答案 见解析解析 (1)小球从弹簧的原长位置静止释放时,根据牛顿第二定律有 mg sin θ=ma 解得a =g sin θ 小球速度最大时其加速度为零,则 k Δl 1=mg sin θ 解得Δl 1=mg sin θk(2)设弹簧伸长Δl 2时,球受到杆的支持力为N ,水平方向上有N sin θ+k Δl 2cos θ=mω2(l 0+Δl 2)cos θ竖直方向上有N cos θ-k Δl 2sin θ-mg =0 解得ω=mg sin θ+k Δl 2ml 0+Δl 2cos 2θ(3)当杆绕OO ′轴以角速度ω0匀速转动时,设小球距离B 点L 0, 此时有mg tan θ=mω20L 0cos θ 解得L 0=2L 3此时小球的动能E k0=12m (ω0L 0cos θ)2小球在最高点A 离开杆瞬间的动能 E k A =12m [v 20+(ω0L cos θ)2]根据动能定理有W -mg (L -L 0)sin θ=E k A -E k0 解得W =38mgL +12mv 201.圆周运动主要分为水平面内的圆周运动(转盘上的物体、汽车拐弯、火车拐弯、圆锥摆等)和竖直平面内的圆周运动(绳模型、汽车过拱形桥、水流星、内轨道、轻杆模型、管道模型). 3.注意有些题目中有“恰能”、“刚好”、“正好”、“最大”、“最小”、“至多”、“至少”等字眼,明显表明题述的过程存在着临界点.考题四 抛体运动与圆周运动的综合10.如图14所示,小球沿水平面以初速度v 0通过O 点进入半径为R 的竖直半圆弧轨道,不计一切阻力,则( )图14A .球进入竖直半圆弧轨道后做匀速圆周运动B .若小球能通过半圆弧最高点P ,则球在P 点受力平衡C .若小球的初速度v 0=3gR ,则小球一定能通过P 点D .若小球恰能通过半圆弧最高点P ,则小球落地点到O 点的水平距离为2R 答案 CD解析 不计一切阻力,小球机械能守恒,随着高度增加,E k 减少,故做变速圆周运动A 错误;在最高点P 需要向心力,故受力不平衡,B 错误.恰好通过P 点,则有mg =mv 2PR得v P =gR , mg ·2R +12mv 2P =12mv 2得v =5gR <3gR ,故C 正确; 过P 点 x =v P ·t 2R =12gt 2得:x =gR ·2Rg=2R ,故D 正确. 11.如图15所示,参加某电视台娱乐节目的选手从较高的平台以v 0=8 m/s 的速度从A 点水平跃出后,沿B 点切线方向进入光滑圆弧轨道,沿轨道滑到C 点后离开轨道.已知A 、B 之间的竖直高度H =1.8 m ,圆弧轨道半径R =10 m ,选手质量m =50 kg ,不计空气阻力,g =10 m/s 2,求:图15(1)选手从A 点运动到B 点的时间及到达B 点的速度; (2)选手到达C 点时对轨道的压力.答案 (1)0.6 s 10 m/s ,与水平方向的夹角为37° (2)1 200 N ,方向竖直向下 解析 (1)选手离开平台后做平抛运动,在竖直方向H =12gt 2解得:t =2Hg=0.6 s 在竖直方向 v y =gt =6 m/s 选手到达B 点速度为v B =v 20+v 2y =10 m/s与水平方向的夹角为θ,则tan θ=v yv 0=0.75,则θ=37°(2)从B 点到C 点:mgR (1-cos θ)=12mv 2C -12mv 2B 在C 点:N C -mg =m v 2C RN C =1 200 N由牛顿第三定律得,选手对轨道的压力 N C ′=N C =1 200 N ,方向竖直向下曲线运动的综合题往往涉及圆周运动、平抛运动等多个运动过程,常结合功能关系进行求解,解答时可从以下两点进行突破: 1.分析临界点对于物体在临界点相关的多个物理量,需要区分哪些物理量能够突变,哪些物理量不能突变,而不能突变的物理量(一般指线速度)往往是解决问题的突破口. 2.分析每个运动过程的运动性质对于物体参与的多个运动过程,要仔细分析每个运动过程做何种运动:(1)若为圆周运动,应明确是水平面的匀速圆周运动,还是竖直平面的变速圆周运动,机械能是否守恒.(2)若为抛体运动,应明确是平抛运动,还是类平抛运动,垂直于初速度方向的力是由哪个力、哪个力的分力或哪几个力提供的.专题综合练1.关于物体的运动,以下说法正确的是()A.物体做平抛运动时,加速度不变B.物体做匀速圆周运动时,加速度不变C.物体做曲线运动时,加速度一定改变D.物体做曲线运动时,速度一定变化答案AD解析物体做平抛运动时,物体只受到重力的作用,加速度为重力加速度,所以加速度是不变的,所以A正确;物体做匀速圆周运动时,要受到向心加速度的作用,向心加速度的大小不变,但是向心加速度的方向是在不断的变化的,所以加速度要变化,所以B错误;物体做曲线运动时,加速度不一定改变,比如平抛运动的加速度就为重力加速度,是不变的,所以C错误;物体既然做曲线运动,速度的方向一定在变化,所以速度一定变化,所以D正确.2.如图16所示,河水流动的速度为v且处处相同,河宽为a.在船下水点A的下游距离为b 处是瀑布.为了使小船渡河安全(不掉到瀑布里去)()图16A.小船船头垂直河岸渡河时间最短,最短时间为t=bv.速度最大,最大速度为v max=a vbB.小船轨迹沿y轴方向渡河位移最小.速度最大,最大速度为v max=a2+b2v bC .小船沿轨迹AB 运动位移最大、时间最长.速度最小,最小速度v min =a v bD .小船沿轨迹AB 运动位移最大、速度最小.则小船的最小速度v min =a va 2+b 2答案 D解析 小船船头垂直河岸渡河时间最短,最短时间为t =a v 船,不掉到瀑布里t =a v 船≤bv ,解得v 船≥a v b ,船最小速度为a vb ,A 错误;小船轨迹沿y 轴方向渡河应是时间最小,B 错误;小船沿轨迹AB 运动位移最大,但时间的长短取决于垂直河岸的速度,但有最小速度为a va 2+b 2,所以C 错误,而D 正确.3.如图17所示,水平光滑长杆上套有一个质量为m A 的小物块A ,细线跨过O 点的轻小光滑定滑轮一端连接A ,另一端悬挂质量为m B 的小物块B ,C 为O 点正下方杆上一点,定滑轮到杆的距离OC =h .开始时A 位于P 点,PO 与水平方向的夹角为30°.现将A 、B 同时由静止释放,则下列分析正确的是( )图17A .物块B 从释放到最低点的过程中,物块A 的动能不断增大B .物块A 由P 点出发第一次到达C 点的过程中,物块B 的机械能先增大后减小 C .PO 与水平方向的夹角为45°时,物块A 、B 速度大小关系是v A =22v BD .物块A 在运动过程中最大速度为 2m B ghm A答案 AD解析 物块B 从释放到最低点过程中,由机械能守恒可知,物块B 的机械能不断减小,则物块A 的动能不断增大,故A 正确;物块A 由P 点出发第一次到达C 点过程中,物块B 动能先增大后减小,而其机械能不断减小,故B 错误;PO 与水平方向的夹角为45°时,有:v A cos 45°=v B ,则:v A =2v B ,故C 错误;B 的机械能最小时,即为A 到达C 点,此时A 的速度最大,此时物块B 下落高度为h ,由机械能守恒定律得:12m A v 2A =m B gh ,解得:v A =2m B ghm A,故D 正确.4.如图18所示,从倾角为θ的足够长的斜面顶端P 以速度v 0抛出一个小球,落在斜面上某处Q 点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v 0,小球仍落在斜面上,则以下说法正确的是( )图18A .夹角α将变大B .夹角α与初速度大小无关C .小球在空中的运动时间不变D .PQ 间距是原来间距的3倍 答案 B解析 根据tan θ=12gt 2v 0t =gt 2v 0得,小球在空中运动的时间t =2v 0tan θg ,因为初速度变为原来的2倍,则小球在空中运动的时间变为原来的2倍.故C 错误.速度与水平方向的夹角的正切值tan β=gtv 0=2tan θ,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A 错误,B 正确.PQ 的间距s =x cos θ=v 0t cos θ=2v 20tan θg cos θ,初速度变为原来的2倍,则PQ 的间距变为原来的4倍,故D 错误.5.如图19所示,水平地面附近,小球B 以初速度v 斜向上瞄准另一小球A 射出,恰巧在B 球射出的同时,A 球由静止开始下落,不计空气阻力.则两球在空中运动的过程中( )图19A .A 做匀变速直线运动,B 做变加速曲线运动 B .相同时间内B 的速度变化一定比A 的速度变化大C .两球的动能都随离地竖直高度均匀变化D .A 、B 两球一定会相碰 答案 C解析 A 球做的是自由落体运动,是匀变速直线运动,B球做的是斜抛运动,是匀变速曲线运动,故A 错误.根据公式Δv =a Δt ,由于A 和B 的加速度都是重力加速度,所以相同时间内A 的速度变化等于B 的速度变化,故B 错误.根据动能定理得:W G =ΔE k ,重力做功随离地竖直高度均匀变化,所以A 、B 两球的动能都随离地竖直高度均匀变化,故C 正确.A 球做的是自由落体运动,B 球做的是斜抛运动,在水平方向匀速运动,在竖直方向匀减速运动,由于不清楚具体的距离关系,所以A 、B 两球可能在空中不相碰,故D 错误.6.如图20所示,一个质量为0.4 kg 的小物块从高h =0.05 m 的坡面顶端由静止释放,滑到水平台上,滑行一段距离后,从边缘O 点水平飞出,击中平台右下侧挡板上的P 点.现以O 为原点在竖直面内建立如图所示的平面直角坐标系,挡板的形状满足方程y =x 2-6(单位:m),不计一切摩擦和空气阻力,g =10 m/s 2,则下列说法正确的是( )图20A .小物块从水平台上O 点飞出的速度大小为1 m/sB .小物块从O 点运动到P 点的时间为1 sC .小物块刚到P 点时速度方向与水平方向夹角的正切值等于5D .小物块刚到P 点时速度的大小为10 m/s 答案 AB解析 从坡面顶端到O 点,由机械能守恒,mgh =12m v 2,v =1 m/s ,故A 正确;O 到P 平抛,水平方向x =v t ,竖直方向h ′=12gt 2;由数学知识y =x 2-6,-h ′=x 2-6,即-12gt 2=(v t )2-6,解得t =1 s ,则B 正确;tan α=gtv =10,故C 错误;到P 的速度v P =v 2+(gt )2=101 m/s ,D 错误.7.如图21所示,一根质量不计的轻杆绕水平固定转轴O 顺时针匀速转动,另一端固定有一个质量为m 的小球,当小球运动到图中位置时,轻杆对小球作用力的方向可能( )图21A.沿F1的方向B.沿F2的方向C.沿F3的方向D.沿F4的方向答案 C解析因小球做匀速圆周运动,故小球所受的合力方向指向圆心,小球受竖直向下的重力作用,故轻杆对小球作用力的方向与重力的合力方向指向圆心,故杆对小球作用力的方向可能在F3的方向,故选C.8.如图22所示,粗糙水平圆盘上,质量相等的A、B两物块叠放在一起,随圆盘一起做匀速圆周运动,则下列说法正确的是()图22A.B的向心力是A的向心力的2倍B.盘对B的摩擦力是B对A的摩擦力的2倍C.A、B都有沿半径向外滑动的趋势D.若B先滑动,则B与A间的动摩擦因数μA小于盘与B间的动摩擦因数μB答案BC解析因为A、B两物体的角速度大小相等,根据F n=mrω2,因为两物块的角速度大小相等,转动半径相等,质量相等,则向心力相等,故A错误;对A、B整体分析,f B=2mrω2,对A 分析,有:f A=mrω2,知盘对B的摩擦力是B对A的摩擦力的2倍,故B正确;A所受的静摩擦力方向指向圆心,可知A有沿半径向外滑动的趋势,B受到盘的静摩擦力方向指向圆心,,有沿半径向外滑动的趋势,故C正确;对A、B整体分析,μB×2mg=2mrω2B,解得ωB=μB gr,因为B先滑动,可知B先达到临界角速度,可对A分析,μA mg=mrω2A,解得ωA=μA gr知B的临界角速度较小,即μB<μA,故D错误.9.如图23所示,水平的粗糙轨道与竖直的光滑圆形轨道相连,圆形轨道间不相互重叠,即小球离开圆形轨道后可继续沿水平轨道运动.圆形轨道半径R=0.2 m,右侧水平轨道BC长为L=4 m,C点右侧有一壕沟,C、D两点的竖直高度h=1 m,水平距离s=2 m,小球与水平轨道间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.小球从圆形轨道最低点B以某一水平向右的初速度出发,进入圆形轨道.试求:图23(1)若小球通过圆形轨道最高点A 时给轨道的压力大小恰为小球的重力大小,求小球在B 点的初速度多大?(2)若小球从B 点向右出发,在以后的运动过程中,小球既不脱离圆形轨道,又不掉进壕沟,求小球在B 点的初速度大小的范围.答案 (1)2 3 m/s (2)v B ≤2 m/s 或10 m /s≤v B ≤4 m/s 或v B ≥6 m/s 解析 (1)小球在最高点A 处,根据牛顿第三定律可知轨道对小球的压力 N =N ′=mg ①根据牛顿第二定律N +mg =mv 2A R②从B 到A 过程,由动能定理可得-mg ·(2R )=12mv 2A -12mv 20③ 代入数据可解得v 0=2 3 m/s ④(2)情况一:若小球恰好停在C 处,对全程进行研究,则有: -μmgL =0-12mv 21⑤得v 1=4 m/s ⑥ 若小球恰好过最高点A mg =mv A ′2R⑦从B 到A 过程-mg ·(2R )=12mv A ′2-12mv 22⑧得v 2=10 m/s ⑨所以当10 m/s≤v B ≤4 m/s 时,小球停在BC 间.⑩情况二:若小球恰能越过壕沟,则有-μmgL =12mv 2C -12mv 23⑪ h =12gt 2⑪ s =v C t ⑬得v 3=6 m/s ⑭所以当v B ≥6 m/s 时,小球越过壕沟.⑮情况三:若小球刚好能运动到与圆心等高位置,则有 -mgR =0-12mv 24⑯得v 4=2 m/s ⑰所以当v B ≤2 m/s 时,小球又沿圆轨道返回.⑱综上,小球在B 点的初速度大小的范围是v B ≤2 m/s 或10 m/s≤v B ≤4 m/s 或v B ≥6 m/s 10.如图24所示,半径R =2.5 m 的光滑半圆轨道ABC 与倾角θ=37°的粗糙斜面轨道DC 相切于C 点,半圆轨道的直径AC 与斜面垂直.质量m =1 kg 的小球从A 点左上方距A 点高h =0.45 m 的P 点以某一速度v 0水平抛出,刚好与半圆轨道的A 点相切进入半圆轨道内侧,之后经半圆轨道沿斜面刚好滑到与抛出点等高的D 点.已知当地的重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:图24(1)小球从P 点抛出时的速度大小v 0;(2)小球从C 点运动到D 点过程中摩擦力做的功W ; (3)小球从D 点返回经过轨道最低点B 的压力大小. 答案 (1)4 m/s (2)-8 J (3)56 N 解析 (1)在A 点有: v 2y =2gh ① v yv 0=tan θ② 由①②式解得:v 0=4 m/s ③(2)整个运动过程中,重力做功为零,根据动能定理得知:小球沿斜面上滑过程中克服摩擦力做的功等于小球做平抛运动的初动能: W =-12mv 20=-8 J。
【专题3】平抛运动与圆周运动(含答案)
高考定位平抛运动和圆周运动是典型的曲线运动,而处理平抛运动的方法主要是运动的合成与分解,因此运动的合成与分解、平抛运动、圆周运动是每年必考的知识点.复习中要注意理解合运动与分运动的关系,掌握平抛运动和圆周运动问题的分析方法,能运用平抛运动知识和圆周运动知识分析带电粒子在电场、磁场中的运动.考题1对运动的合成和分解的考查例1(单选)(2014·四川·4)有一条两岸平直、河水均匀流动、流速恒为v的大河.小明驾着小船渡河,去程时船头指向始终与河岸垂直,回程时行驶路线与河岸垂直.去程与回程所用时间的比值为k,船在静水中的速度大小相同,则小船在静水中的速度大小为()A.k vk2-1B.v1-k2C.k v1-k2D.vk2-1审题突破根据去程时船头指向始终与河岸垂直,结合运动学公式,可列出河宽与船速的关系式,当回程时路线与河岸垂直,可求出船过河的合速度,从而列出河宽与船速度的关系,进而即可求解.解析设大河宽度为d,小船在静水中的速度为v0,则去程渡河所用时间t1=dv0,回程渡河所用时间t 2=dv20-v2.由题知t1t2=k,联立以上各式得v0=v1-k2,选项B正确,选项A、C、D错误.答案 B1.(单选)如图1所示,细绳一端固定在天花板上的O点,另一端穿过一张CD光盘的中央小孔后拴着一个橡胶球,橡胶球静止时,竖直悬线刚好挨着水平桌面的边沿.现将CD光盘按在桌面上,并沿桌面边缘以速度v匀速移动,移动过程中,CD光盘中央小孔始终紧挨桌面边线,当悬线与竖直方向的夹角为θ时,小球上升的速度大小为()图1A.v sin θB.v cos θC.v tan θD.v cot θ答案 A解析由题意可知,线与光盘的交点参与两个运动,一是逆着线的方向运动,二是垂直线的方向运动,则合运动的速度大小为v,由数学三角函数关系,则有:v线=v sin θ;而沿线方向的速度大小,即为小球上升的速度大小,故A正确,B、C、D错误.2.(单选)质量为2 kg的质点在竖直平面内斜向下做曲线运动,它在竖直方向的速度图象和水平方向的位移图象如图2甲、乙所示.下列说法正确的是()图2A.前2 s内质点处于超重状态B.2 s末质点速度大小为4 m/sC.质点的加速度方向与初速度方向垂直D.质点向下运动的过程中机械能减小答案 D解析由题图甲知,质点在竖直方向向下加速运动,即加速度的方向向下,故处于失重状态,所以A错误;2 s末v y=4 m/s,水平方向匀速运动v x=43m/s,故此时质点的速度v=v2x+v2y=4103m/s,可得B错误;质点的加速度竖直向下,初速度斜向下,故不垂直,所以C错误;由题图甲可求加速度a =1 m/s 2,根据牛顿第二定律可得mg -F f =ma ,即质点在下落的过程中受竖直向上的力,该力做负功,所以质点的机械能减小,所以D 正确.1.分运动与合运动具有等时性和独立性.2.运动的合成与分解属矢量的合成分解,满足平行四边形、三角形和正交分解.3.分析运动的合成与分解问题,要注意运动的分解方向,一般情况按实际运动效果进行分解,切记不可按分解力的思路来分解运动.考题2 对平抛运动的考查例2 (2014·浙江·23)如图3所示,装甲车在水平地面上以速度v 0=20 m/s 沿直线前进,车上机枪的枪管水平,距地面高为h =1.8 m .在车正前方竖直立一块高为两米的长方形靶,其底边与地面接触.枪口与靶距离为L 时,机枪手正对靶射出第一发子弹,子弹相对于枪口的初速度为v =800 m/s.在子弹射出的同时,装甲车开始匀减速运动,行进s =90 m 后停下.装甲车停下后,机枪手以相同方式射出第二发子弹.(不计空气阻力,子弹看成质点,重力加速度g =10 m/s 2)图3(1)求装甲车匀减速运动时的加速度大小;(2)当L =410 m 时,求第一发子弹的弹孔离地的高度,并计算靶上两个弹孔之间的距离; (3)若靶上只有一个弹孔,求L 的范围.审题突破 (1)由匀变速直线运动规律求解.(2)子弹做平抛运动,选地面为参考系,求解第一发子弹的弹孔离地的高度;数学关系结合平抛规律求解靶上两个弹孔之间的距离;(3)若靶上只有一个弹孔,说明第一颗子弹没有击中靶,第二颗子弹能够击中靶,平抛运动规律求解L 的范围.解析 (1)装甲车的加速度a =v 202s =209 m/s 2(2)第一发子弹飞行时间t 1=Lv +v 0=0.5 s第一个弹孔离地高度h 1=h -12gt 21=0.55 m第二个弹孔离地的高度h 2=h -12g (L -sv )2=1.0 m两弹孔之间的距离Δh =h 2-h 1=0.45 m(3)若使第一发子弹恰好打到靶的下沿,装甲车离靶的距离为L 1L 1=(v 0+v ) 2hg =492 m若使第二发子弹恰好打到靶的下沿,装甲车离靶的距离为L 2L 2=v 2hg+s =570 m为使靶上只有一个弹孔,则此弹孔一定是第二发子弹在靶上留下的弹孔 故L 的范围为492 m<L ≤570 m答案 (1)209 m/s 2 (2)0.55 m 0.45 m(3)492 m<L ≤570 m3.(单选)如图4所示,可视为质点的小球位于半圆柱体左端点A 的正上方某处,以初速度v 0水平抛出,其运动轨迹恰好与半圆柱体相切于B 点,过B 点的半圆柱体半径与水平面夹角为30°,则半圆柱体的半径为(不计空气阻力,重力加速度为g )( )图4A.23v 203gB.23v 209gC.(43-6)v 20gD.(4-23)v 20g答案 C解析 在B 点,据题可知小球的速度方向与水平方向成60°角,由速度的分解可知,竖直分速度大小v y =v 0tan 60°=3v 0,v 0t =R +R cos 30°,v y =gt ,得R =(43-6)v 20g ,故选C.4.(单选)(2014·新课标Ⅱ·15)取水平地面为重力势能零点.一物块从某一高度水平抛出,在抛出点其动能与重力势能恰好相等.不计空气阻力.该物块落地时的速度方向与水平方向的夹角为( ) A.π6 B.π4 C.π3 D.5π12答案 B解析 设物块水平抛出的初速度为v 0,高度为h ,由题意知12m v 20=mgh ,得:v 0=2gh .物块在竖直方向上的运动是自由落体运动,落地时的竖直分速度v y =2gh =v x =v 0,则该物块落地时的速度方向与水平方向的夹角θ=π4,故选项B 正确,选项A 、C 、D 错误.5.(单选)如图5所示,某人向对面的山坡上水平抛出两个质量不等的石块,分别落到A 、B 两处.不计空气阻力,则落到B 处的石块( )图5A .初速度大,运动时间短B .初速度大,运动时间长C .初速度小,运动时间短D .初速度小,运动时间长 答案 A解析 由于B 点在A 点的右侧,说明水平方向上B 点的距离更远,而B 点距抛出点的高度较小,故运动时间较短,二者综合说明落在B 点的石块的初速度较大,故A 正确,B 、C 、D 错误.1.平抛运动、类平抛运动处理的方法都是采用运动分解的方法,即分解为沿初速度方向的匀速直线运动和垂直于初速度方向的初速度为零的匀加速直线运动. 2.在平抛(类平抛)运动中要注意两个推论,在解答选择题时常用到:(1)做平抛(类平抛)运动的物体任意时刻速度的反向延长线一定通过此时水平位移的中点,如图甲所示.(2)如图乙,设做平抛(类平抛)运动的物体在任意时刻、任意位置处瞬时速度与水平方向的夹角为θ,位移与水平方向的夹角为φ,则有tan θ=2tan φ.考题3 对圆周运动的考查例3 如图6所示,在竖直平面内有xOy 坐标系,长为l 的不可伸长细绳,一端固定在A 点,A 点的坐标为(0,l2),另一端系一质量为m 的小球.现在x 坐标轴上(x >0)固定一个小钉,拉小球使细绳绷直并呈水平位置,再让小球从静止释放,当细绳碰到钉子以后,小球可以绕钉子在竖直平面内做圆周运动.图6(1)当钉子在x =54l 的P 点时,小球经过最低点时细绳恰好不被拉断,求细绳能承受的最大拉力;(2)为使小球释放后能绕钉子在竖直平面内做圆周运动,而细绳又不被拉断,求钉子所在位置的范围.审题突破 (1)由数学知识求出小球做圆周运动的轨道半径,由机械能守恒定律求出小球到达最低点时的速度,然后由牛顿第二定律求出绳子的拉力.(2)由牛顿第二定律求出小球到达最高点的速度,由机械能守恒定律求出钉子的位置,然后确定钉子位置范围.解析 (1)当钉子在x =54l 的P 点时,小球绕钉子转动的半径为:R 1=l - (l2)2+x 2小球由静止到最低点的过程中机械能守恒:mg (l 2+R 1)=12m v 21在最低点细绳承受的拉力最大,有:F -mg =m v 21R 1联立求得最大拉力F =7mg .(2)小球绕钉子做圆周运动恰好到达最高点时,有:mg =m v 22R 2运动中机械能守恒:mg (l 2-R 2)=12m v 22钉子所在位置为x ′= (l -R 2)2-(l2)2联立解得x ′=76l 因此钉子所在位置的范围为76l ≤x ≤54l . 答案 (1)7mg (2)76l ≤x ≤54l6.(2014·新课标Ⅰ·20)如图7所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图7A .b 一定比a 先开始滑动B .a 、b 所受的摩擦力始终相等C .ω= kg2l 是b 开始滑动的临界角速度D .当ω= 2kg3l 时,a 所受摩擦力的大小为kmg答案 AC解析 小木块a 、b 做圆周运动时,由静摩擦力提供向心力,即f =mω2R .当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a :f a =mω2a l ,当f a =kmg 时,kmg =mω2a l ,ωa = kg l ;对木块b :f b =mω2b ·2l ,当f b =kmg 时,kmg =mω2b ·2l ,ωb= kg 2l ,所以b 先达到最大静摩擦力,选项A 正确;两木块滑动前转动的角速度相同,则f a =mω2l ,f b=mω2·2l ,f a <f b ,选项B 错误;当ω= kg 2l 时b 刚开始滑动,选项C 正确;当ω= 2kg3l时,a 没有滑动,则f a =mω2l =23kmg ,选项D 错误.7.(单选)(2014·新课标Ⅱ·17)如图8所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图8A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg 答案 C解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12m v 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =m v 2R,所以在最低点时大环对小环的支持力F N =mg +m v 2R =5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件,轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C 正确,选项A 、B 、D 错误.1.圆周运动的基本规律(1)向心力:F =mω2r =m v 2r =m (2πT )2r =m (2πf )2r =m (2πn )2r .(2)向心加速度①大小:a =ω2r =v 2r =(2πT)2r =(2πf )2r =(2πn )2r .②注意:当ω为常数时,a 与r 成正比;当v 为常数时,a 与r 成反比;若无特定条件,不能说a 与r 成正比还是成反比.考题4 平抛与圆周运动组合问题的综合分析例4 (17分)如图9所示,一小物块自平台上以速度v 0水平抛出,刚好落在邻近一倾角为α=53°的粗糙斜面AB 顶端,并恰好沿该斜面下滑,已知斜面顶端与平台的高度差h =0.032 m ,小物块与斜面间的动摩擦因数为μ=0.5,A 点离B 点所在平面的高度H =1.2 m .有一半径为R 的光滑圆轨道与斜面AB 在B 点相切连接,已知cos 53°=0.6,sin 53°=0.8,g 取10 m/s 2.求:图9(1)小物块水平抛出的初速度v 0是多少;(2)若小物块能够通过圆轨道最高点,圆轨道半径R 的最大值.解析 (1)小物块自平台做平抛运动,由平抛运动知识得:v y =2gh =2×10×0.032 m/s =0.8 m/s(2分)由于物块恰好沿斜面下滑,则tan 53°=v y v 0(3分)得v 0=0.6 m/s.(2分)(2)设小物块过圆轨道最高点的速度为v ,受到圆轨道的压力为F N .则由向心力公式得:F N +mg =m v 2R(2分)由动能定理得:mg (H +h )-μmgH cos 53°sin 53°-mg (R +R cos 53°)=12m v 2-12m v 20(5分)小物块能过圆轨道最高点,必有F N ≥0(1分) 联立以上各式并代入数据得:R ≤821 m ,即R 最大值为821m .(2分)答案 (1)0.6 m/s (2)821m(2014·福建·21)(19分)如图10所示为某游乐场内水上滑梯轨道示意图,整个轨道在同一竖直平面内,表面粗糙的AB 段轨道与四分之一光滑圆弧轨道BC 在B 点水平相切.点A 距水面的高度为H ,圆弧轨道BC 的半径为R ,圆心O 恰在水面.一质量为m 的游客(视为质点)可从轨道AB 的任意位置滑下,不计空气阻力.图10(1)若游客从A 点由静止开始滑下,到B 点时沿切线方向滑离轨道落在水面D 点,OD =2R ,求游客滑到B 点时的速度v B 大小及运动过程轨道摩擦力对其所做的功W f ;(2)某游客从AB 段某处滑下,恰好停在B 点,又因受到微小扰动,继续沿圆弧轨道滑到P 点后滑离轨道,求P 点离水面的高度h .(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F 向=m v 2R)答案 (1)2gR -(mgH -2mgR ) (2)23R解析 (1)游客从B 点做平抛运动,有 2R =v B t ①R =12gt 2②由①②式得v B =2gR ③ 从A 到B ,根据动能定理,有mg (H -R )+W f =12m v 2B -0④由③④式得W f =-(mgH -2mgR )⑤(2)设OP 与OB 间夹角为θ,游客在P 点时的速度为v P ,受到的支持力为N ,从B 到P 由机械能守恒定律,有mg (R -R cos θ)=12m v 2P -0⑥过P 点时,根据向心力公式,有mg cos θ-N =m v 2PR ⑦N =0⑧cos θ=hR⑨由⑥⑦⑧⑨式解得h =23R ⑩知识专题练 训练3题组1 运动的合成和分解1.(单选)如图1所示的曲线是某个质点在恒力作用下的一段运动轨迹.质点从M 点出发经P 点到达N 点,已知弧长MP 大于弧长PN ,质点由M 点运动到P 点与从P 点运动到N 点所用的时间相等.则下列说法中正确的是( )图1A .质点从M 到N 过程中速度大小保持不变B .质点在这两段时间内的速度变化量大小相等,方向相同C .质点在这两段时间内的速度变化量大小不相等,但方向相同D .质点在M 、N 间的运动不是匀变速运动 答案 B解析 由题图知,质点在恒力作用下做一般曲线运动,不同地方弯曲程度不同,即曲率半径不同,所以速度大小在变,所以A 错误;因是在恒力作用下运动,根据牛顿第二定律F =ma ,所以加速度不变,根据Δv =a Δt 可得在相同时间内速度的变化量相同,故B 正确,C 错误;因加速度不变,故质点做匀变速运动,所以D 错误.2.(单选) 公交车是人们出行的重要交通工具,如图2所示是公交车内部座位示意图,其中座位 A 和 B 的边线和车前进的方向垂直,当车在某一站台由静止开始匀加速启动的同时,一个乘客从A 座位沿 AB 连线相对车以2 m/s 的速度匀速运动到 B ,则站在站台上的人看到该乘客( )图2A .运动轨迹为直线B .运动轨迹为抛物线C .因该乘客在车上匀速运动,所以乘客处于平衡状态D .当车速度为5 m/s 时,该乘客对地速度为7 m/s 答案 B解析 人相对地面参与了两个方向的运动,一个是垂直于车身方向的匀速运动,一个是沿车身方向的匀加速直线运动,类似于一个物体做平抛运动,所以运动轨迹是抛物线,故A 错误,B 正确;乘客受到沿车身方向的合外力,处于非平衡状态,C 错误;速度的合成遵循平行四边形定则,当车速为5 m/s 时,乘客对地速度为29 m/s ,D 错误. 题组2 平抛运动3.(单选)如图3所示,x 轴在水平地面上,y 轴竖直向上,在y 轴上的P 点分别沿x 轴正方向和y 轴正方向以相同大小的初速度抛出两个小球a 和b ,不计空气阻力,若b 上升的最大高度等于P 点离地的高度,则从抛出到落地,有( )图3A .a 的运动时间是b 的运动时间的2倍B .a 的位移大小是b 的位移大小的2倍C .a 、b 落地时的速度相同,因此动能一定相同D .a 、b 落地时的速度不同,但动能可能相同 答案 D解析 设P 点离地面高度为h ,两小球的初速度大小为v 0,则a 落地的时间t a =2hg,a 的位移x a =h 2+(v 0t a )2;对b 分段求时间t b =v 0g +4h g ,又有h =v 202g,解得t a =(2-1)t b ,b 的位移x b =h ,a 的位移x a =5h ,故x ax b=5,所以A 、B 错误.由机械能守恒可知,a 、b 落地时速度大小相等,方向不同,若a 、b 质量相等,则动能相等,选项C 错误,D 正确. 4.(单选)如图4所示,一小球从一半圆轨道左端A 点正上方某处开始做平抛运动(小球可视为质点),飞行过程中恰好与半圆轨道相切于B 点.O 为半圆轨道圆心,半圆轨道半径为R ,OB 与水平方向夹角为60°,重力加速度为g ,则小球抛出时的初速度为()图4A. 3gR2 B. 33gR2C.3gR2D. 3gR3答案 B解析 飞行过程中恰好与半圆轨道相切于B 点,知速度与水平方向的夹角为30°设位移与水平方向的夹角为θ,则tan θ=tan 30°2=36因为tan θ=y x =y 32R ,则竖直位移y =3R 4,v 2y =2gy =3gR2.所以tan 30°=v yv 0,v 0=3gR 233=33gR2,故B 正确,A 、C 、D 错误. 5.如图5所示,水平地面上有一个坑,其竖直截面为半圆,O 为圆心,AB 为沿水平方向的直径.若在A 点以初速度v 1沿AB 方向平抛一小球,小球将击中坑壁上的最低点D 点;若A 点小球抛出的同时,在C 点以初速度v 2沿BA 方向平抛另一相同质量的小球并也能击中D 点.已知∠COD =60°,且不计空气阻力,则( )图5A .两小球同时落到D 点B .两小球在此过程中动能的增加量相等C .在击中D 点前瞬间,重力对两小球做功的功率不相等 D .两小球初速度之比v 1∶v 2=6∶3 答案 CD解析 由于两球做平抛运动下落的高度不同,则知两球不可能同时到达D 点;重力做功不等,则动能的增加量不等;在击中D 点前瞬间,重力做功的功率为P =mg v y =mg ·gt ,t 不等;设半圆的半径为R .小球从A 点平抛,可得R =v 1t 1,R =12gt 21,小球从C 点平抛,可得R sin 60°=v 2t 2,R (1-cos 60°)=12gt 22,联立解得v 1v 2=63,故D 正确.6.(单选)静止的城市绿化洒水车,由横截面积为S 的水龙头喷嘴水平喷出水流,水流从射出喷嘴到落地经历的时间为t ,水流落地点与喷嘴连线与水平地面间的夹角为θ,忽略空气阻力,以下说法正确的是( )A .水流射出喷嘴的速度为gt tan θB .空中水柱的水量为Sgt 22tan θC .水流落地时位移大小为gt 22cos θD .水流落地时的速度为2gt cot θ 答案 B解析 由题意知,水做平抛运动,θ为总位移与水平方向的夹角,tan θ=y x =gt2v x,可得水流射出喷嘴的速度为v x =gt 2tan θ,故A 错误;下落的高度y =12gt 2,水流落地时位移s =y sin θ=gt 22sin θ,所以C 错误;空中水柱的体积V =S v x t =Sgt 22tan θ,所以B 正确;水流落地时的速度v =(gt )2+v 2x=gt 1+14tan 2θ,所以D 错误.7.(单选)如图6所示,位于同一高度的小球A 、B 分别以v 1和v 2的速度水平抛出,都落在了倾角为30°的斜面上的C 点,小球B 恰好垂直打到斜面上,则v 1、v 2之比为( )图6A .1∶1B .2∶1C .3∶2D .2∶3 答案 C解析 小球A 做平抛运动,根据分位移公式,有: x =v 1t ① y =12gt 2② 又tan 30°=yx③联立①②③得:v 1=32gt ④ 小球B 恰好垂直打到斜面上,则有:tan 30°=v 2v y =v 2gt ⑤则得v 2=33gt ⑥由④⑥得:v 1∶v 2=3∶2.8.如图7所示,ab 为竖直平面内的半圆环acb 的水平直径,c 为环上最低点,环半径为R .将一个小球从a 点以初速度v 0沿ab 方向抛出,设重力加速度为g ,不计空气阻力,则( )图7A .当小球的初速度v 0=2gR2时,掉到环上时的竖直分速度最大 B .当小球的初速度v 0<2gR2时,将撞击到环上的圆弧ac 段C .当v 0取适当值,小球可以垂直撞击圆环D .无论v 0取何值,小球都不可能垂直撞击圆环 答案 ABD解析 当下落的高度为R 时,竖直分速度最大,根据R =12gt 2得,t =2R g ,则v 0=R t =2gR 2,故A 、B 正确;设小球垂直击中环,则其速度反向沿长线必过圆心,设其速度与水平方向的夹角为θ,R sin θ=12gt 2,R (1+cos θ)=v 0t ,且tan θ=gtv 0,可解得θ=0,但这是不可能的,故C错误,D 正确,故选A 、B 、D. 题组3 圆周运动9.(单选)如图8所示,质量相同的钢球①、②分别放在A 、B 盘的边缘,A 、B 两盘的半径之比为2∶1,a 、b 分别是与A 盘、B 盘同轴的轮,a 、b 轮半径之比为1∶2.当a 、b 两轮在同一皮带带动下匀速转动时,钢球①、②受到的向心力大小之比为( )图8A .2∶1B .4∶1C .1∶4D .8∶1 答案 D解析 皮带传送,边缘上的点线速度大小相等,所以v a =v b ,因为a 轮、b 轮半径之比为1∶2,根据线速度公式v =ωr 得:ωa ωb =21,共轴的点,角速度相等,两个钢球的角速度分别与共轴轮子的角速度相等,则ω1ω2=21.根据向心加速度a =rω2,则a 1a 2=81,由F =ma 得F 1F 2=81,故D 正确,A 、B 、C 错误.10.(单选)利用双线可以稳固小球在竖直平面内做圆周运动而不易偏离竖直面,如图9所示,用两根长为L 的细线系一质量为m 的小球,两线上端系于水平横杆上的A 、B 两点,A 、B 两点相距也为L ,若小球恰能在竖直面内做完整的圆周运动,则小球运动到最低点时,每根线承受的张力为( )图9A .23mgB .3mgC .2.5mg D.73mg2答案 A解析 小球恰好过最高点时有:mg =m v 21R解得v 1=32gL ① 根据动能定理得:mg ·3L =12m v 22-12m v 21② 由牛顿第二定律得:3F T -mg =m v 2232L ③联立①②③得,F T =23mg 故A 正确,B 、C 、D 错误.11.(单选)(2014·安徽·19)如图10所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定角速度ω转动,盘面上离转轴距离2.5 m 处有一小物体与圆盘始终保持相对静止.物体与盘面间的动摩擦因数为32(设最大静摩擦力等于滑动摩擦力),盘面与水平面的夹角为30°,g 取10m/s 2.则ω的最大值是( )图10A. 5 rad/sB. 3 rad/s C .1.0 rad/s D .0.5 rad/s 答案 C解析 当小物体转动到最低点时为临界点,由牛顿第二定律知,μmg cos 30°-mg sin 30°=mω2r 解得ω=1.0 rad/s ,故选项C 正确.12.如图11所示,一块足够大的光滑平板放置在水平面上,能绕水平固定轴MN 调节其与水平面的倾角.板上一根长为l =0.6 m 的轻细绳,它的一端系住一质量为m 的小球P ,另一端固定在板上的O 点.当平板的倾角固定为α时,先将轻绳平行于水平轴MN 拉直,然后给小球一沿着平板并与轻绳垂直的初速度v 0=3 m/s.若小球能在板面内做圆周运动,倾角α的值应在什么范围内?(取重力加速度g =10 m/s 2)图11答案 α≤30°解析 小球在板面上运动时受绳子拉力、板面弹力、重力的作用.在垂直板面方向上合力为0,重力在沿板面方向的分量为mg sin α,小球在最高点时,由绳子的拉力和重力分力的合力提供向心力:F T +mg sin α=m v 21l①研究小球从释放到最高点的过程,据动能定理:-mgl sin α=12m v 21-12m v 20② 若恰好通过最高点绳子拉力F T =0,联立①②解得:sin α=v 203gl =323×10×0.6=12.故α最大值为30°,可知若小球能在板面内做圆周运动,倾角α的值应满足α≤30°. 题组4 平抛与圆周运动组合问题的综合13.(2014·天津·9(1))半径为R 的水平圆盘绕过圆心O 的竖直轴匀速转动,A 为圆盘边缘上一点.在O 的正上方有一个可视为质点的小球以初速度v 水平抛出时,半径OA 方向恰好与v的方向相同,如图12所示.若小球与圆盘只碰一次,且落在A 点,重力加速度为g ,则小球抛出时距O 的高度h =________,圆盘转动的角速度大小ω=________.图12答案gR 22v 2 2n πv R(n =1,2,3,…) 解析 小球做平抛运动,在竖直方向:h =12gt 2①在水平方向R =v t ②由①②两式可得h =gR 22v2③小球落在A 点的过程中,OA 转过的角度 θ=2n π=ωt (n =1,2,3,…)④由②④两式得ω=2n πvR(n =1,2,3,…)14.一长l =0.80 m 的轻绳一端固定在O 点,另一端连接一质量m =0.10 kg 的小球,悬点O 距离水平地面的高度H =1.00 m .开始时小球处于A 点,此时轻绳拉直处于水平方向上,如图13所示.让小球从静止释放,当小球运动到B 点时,轻绳碰到悬点O 正下方一个固定的钉子P 时立刻断裂.不计轻绳断裂的能量损失,取重力加速度g =10 m/s 2.求:图13(1)当小球运动到B 点时的速度大小;(2)绳断裂后球从B 点抛出并落在水平地面上的C 点,求C 点与B 点之间的水平距离; (3)若OP =0.6 m ,轻绳碰到钉子P 时绳中拉力达到所能承受的最大拉力断裂,求轻绳能承受的最大拉力.答案 (1)4 m/s (2)0.80 m (3)9 N解析 (1)设小球运动到B 点时的速度大小为v B ,由机械能守恒定律得 12m v 2B=mgl 解得小球运动到B 点时的速度大小v B =2gl =4 m/s(2)小球从B 点做平抛运动,由运动学规律得 x =v B t y =H -l =12gt 2解得C 点与B 点之间的水平距离x =v B 2(H -l )g=0.80 m(3)若轻绳碰到钉子时,轻绳拉力恰好达到最大值F m ,由牛顿定律得F m -mg =m v 2Brr =l -OP由以上各式解得F m =9 N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
v0 v0 v0 v0
圆周运动测试
一、单项选择题
13.关于匀速圆周运动,下列说法中不正确的是
A.匀速圆周运动是匀速率圆周运动
B.匀速圆周运动是向心力恒定的运动
C.匀速圆周运动是加速度的方向始终指向圆心的运动
D.匀速圆周运动是变加速运动
14.若已知物体运动的初速度v0的方向及物体受到的恒定合外力F的方向,则下列图中正
确的是( )
15.一辆卡车装载着货物在丘陵地匀地匀速行驶,地形如下图所示,由于轮胎已旧,出现爆
胎可能性最大的位置应是( )
A.a ; B.b ; C.C ; D. d ;
16.如图所示,轻绳一端系一小球,另一端固定于O点,在O点正下方的P点钉一颗钉子,
使悬线拉紧与竖直方向成一角度θ,然后由静止释放小球,当悬线碰到钉子时错误的是
( )
A、小球的瞬时速度突然变大;
B、小球的加速度突然变大;
C、小球的所受的向心力突然变大;
D、悬线所受的拉力突然变大;
二、双项选择题。
17.关于物体的运动状态与受力关系,下列说法中正确的是( )
A.物体的运动状态发生变化,物体的受力情况一定变化
B.物体在恒力作用下,一定做匀变速直线运动
A F B F C F D F
θ
O
P
2
C.物体的运动状态保持不变,说明物体所受的合外力为零
D.物体做曲线运动时,受到的合外力可以是恒力
18.甲、乙两球做匀速圆周运动,向心加速度a随半径r变化的关系图如图所示,其中乙图
是双曲线的一支,由图像可以知道( )
A.甲球运动时,线速度大小保持不变;
B.甲球运动时,角速度大小保持不变;
C.乙球运动时,线速度大小保持不变;
D.乙球运动时,角速度大小保持不变;
19.如图所示,一圆球绕通过球心O点的固定轴转动,下列说法正确
的是( )
A.A、B两点的角速度相等;
B.A、B两点的线速度相等;
C.A、B两点转动半径相等;
D.A、B两点转动周期相等;
20.在倾角为30o的斜面上有一重为10N物体,被平行与斜面、大小为8N的恒力推着沿斜面
匀速运动,如图2所示.推力F突然取消的瞬间,物体运动的加速度为( )
(g取10m/s2)
A.8 m/s2 B.5 m/s2
C. 方向沿斜面向上 D. 方向沿斜面向下
21.某物体做平抛运动时,它的速度方向与水平方向的夹角为θ,其正切
值tanθ随时间t变化的图像如图所示,则( )
A、 第1s物体下落的高度为5m B、第1s物体下落的高度为10m
C、物体的初速度是5m/s D、物体的初速度是10m/s
三、实验
34.(1)“验证力的平行四边形定则”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,
O为橡皮筋与细绳的结点,OB和OC为细绳。图乙是在白纸上根据实验结果画出的图。
①图乙中的F与F′ 两力中,方向一定沿AO方向的是_____。
t/s
tanθ
0
1
2 3
1
2
3
②本实验采取的科学方法是______(填字母代号)
A. 理想实验法 B. 等效替代法
C. 控制变量法 D. 建立物理模型法
③ 以下可以减小实验误差的说法是 (填字母代号)
A. 两细绳必须等长
B. 弹簧秤、细绳、橡皮条都应与木板平行
C. 用两弹簧秤同时拉细绳时两弹簧秤示数之差应尽可能大
D. 拉橡皮条的细绳要长些,标记同一细绳方向的两点要远些
(2)某同学在实验室用如图所示的装置来研究牛顿第二定律的问题。
①关于实验中平衡摩擦阻力操作说法正确的是:
A. 悬挂小桶,但桶内不能装有沙子
B. 用手给小车一个初速度0v
C. 小车应连着纸带,且接通打点计时器电源
D. 以上说法均正确
②在____________条件下,可以认为绳对小车的拉力近似等于沙和沙桶的总重力,在控制
_________不变的情况下,可以探究加速度与合力的关系。
③在此实验中,此同学先接通计时器的电源,再放开纸带,如图是在m=100g,M=1kg情况
下打出的一条纸带,O为起点,A、B、C为过程中的三个相邻的计数点,相邻的计数点之
间有四个点没有标出,有关数据如图所示,其中hA=42.05cm, hB=51.55cm, hC=62.00cm则
小车的加速度为a= m/s2,打B点时小车的速度为VB=_______ m/s。(均保留2位有
效数字)
4
四.计算题
35. 如图所示,质量为m的木块(可视为质点)沿倾角为θ的足够长的固定斜面以初速度0v
向上运动,已知木块与斜面间的动摩擦因数为μ(分析计算时认为木块与斜面间的最大静摩
擦力与动摩擦力相等)
求:(1)木块上滑的加速度;
(2)木块上升到最高点的时间
(3)分析木块上升到最高点时可能出现的情况,每种情况摩擦力f的大小、方向各有什么
特点?
36. 如图所示,轨道ABCD的AB段为一半径R=0.2m的光滑1/4圆形轨道,BC段为高为
h=5m的竖直轨道,CD段为水平轨道。一质量为0.1kg的小球由A点从静止开始下滑到B
点时速度的大小为2m/s,离开B点做平抛运动(g取10 m/s2),求:
①小球离开B点后,在CD轨道上的落地点到C的水平距离;
②小球到达B点时对圆形轨道的压力大小?
③如果在BCD轨道上放置一个倾角=45°的斜面(如图中虚线所示),那么小球离开B
点后能否落到斜面上?如果能,求它第一次落在斜面上的位置。
v
0
m
θ
5
英德中学2013届高三圆周运动测试答题卡(2012-10-09用)命题:第5组
题号
13 14 15 16 17 18 19 20 21
答案
B A D A CD BC AD AD AD
34.(双选的3分/空,其余2分/空)(1)① F′ ② B ③ BD
(2)① BC ② m《M (沙和沙桶的总质量远小于小车的质量) M(小车的质量)
③ 0.95 1.0
35.(1)木块所受到的动摩擦力 f=μN=μmgcosθ
由F=ma得 cossin1gga,方向沿斜面向下
(2)t=0v/a=0v/(gsinθ+μmgcosθ)
(3)有三种情况:
第一种:sincosmgmg 木块静止,sinmgf,沿斜面向上;
第二种:sincosmgmg 木块静止,此时sinmgf,沿斜面向上;
第三种:sincosmgmg 木块沿斜面匀加速下滑,cosmgf,沿斜面向上。
36、解:⑴设小球离开B点做平抛运动的时间为t1,落地点到C点距离为s
由h =21gt12 得: t1=gh2=1052s = 1 s
s = vB·t1 = 2×1 m = 2 m
⑵小球达B受重力G和向上的弹力F作用,由牛顿第二定律知
R
mG F2==向F
解得F=3N
由牛顿第三定律知球对B的压力FF,即小球到达B点时对圆形轨道的压力大小
为3N,方向竖直向下。
⑶如图,斜面BEC的倾角θ=45°,CE长d = h = 5m
因为d > s,所以小球离开B点后能落在斜面上假设小球第一次落在斜面上F点,BF
长为L,小球从B点到F点的时间为t2
Lcosθ= vBt2 ①
Lsinθ=21gt22 ②
联立①、②两式得
t2 = 0.4s
L =cos2tvB=2/24.02m = 0.82m = 1.13m 说明:关于F点的
位置,其它表达正确的同样给分。