多元统计分析——对应分析ppt课件
对应分析ppt课件

精选课件ppt
35
§7.2 对应分析的基本理论
7.2.4 需要注意的问题
需要注意的是,同对应分析生成的二维 图上的各状态点,实际上是两个多维空间上 的点的二维投影,在某些特殊的情况下,在 多维空间中相隔较远的点,在二维平面上的 投影却很接近。此时,我们需要对二维图上 的各点做更深的了解,即哪些状态对公因子 的贡献较大,这与在因子分析中判断原始变 量对公因子贡献的方法类似 。
精选课件ppt
26
§7.2 对应分析的基本理论
精选课件ppt
27
§7.2 对应分析的基本理论
精选课件ppt
28
§7.2 对应分析的基本理论
精选课件ppt
29
§7.2 对应分析的基本理论
精选课件ppt
30
§7.2 对应分析的基本理论
精选课件ppt
31
§7.2 对应分析的基本理论
精选课件ppt
§7.2 对应分析的基本理论
7.2.1 有关概念 1. 行剖面与列剖面
精选课件ppt
16
§7.2 对应分析的基本理基本理论
精选课件ppt
18
§7.2 对应分析的基本理论
精选课件ppt
19
§7.2 对应分析的基本理论
2. 距离与总惯量
精选课件ppt
20
精选课件ppt
4
§7.1列联表及列联表分析
在研究经济问题的时候,研究者也往往用列联表的形式把 数据呈现出来。比如说横栏是不同规模的企业,纵栏是不同 水平的获利能力,通过这样的形式,可以研究企业规模与获 利能力之间的关系。更为一般的,可以对企业进行更广泛的 分类,如按上市与非上市分类,按企业所属的行业分类,按 不同所有制关系分类等。同时用列联表的格式来研究企业的 各种指标,如企业的盈利能力、企业的偿债能力、企业的发 展能力等。这些指标即可以是简单的,也可以是综合的,甚 至可以是用因子分析或主成分分析提取的公因子;把这些指 标按一定的取值范围进行分类,就可以很方便地用列联表来
对应分析课件

《对应分析课件》一、对应分析概述对应分析法是一种多元统计分析方法,可用于研究多组数据之间的关系。
使用对应分析,可以将复杂的数据转换为二维图形,以便对数据进行可视化解释和分析。
对应分析法的目标是构建一个图形模型,该模型显示了原始数据的主要变量和因素之间的关系。
这种分析方法可以用于多种数据类型,包括数值数据、计数数据和分类数据。
二、对应分析的实施步骤对应分析法的实施步骤包括以下几个方面:1. 数据收集和预处理。
在进行对应分析之前,首先需要收集和准备好数据。
这包括选择要使用的数据集和进行必要的预处理步骤,例如数据清理和归一化。
2. 构建对应分析模型。
在收集和准备好数据之后,下一步是构建对应分析模型。
这涉及选择要分析的主变量和因素,并确定如何对这些变量进行编码。
3. 绘制对应分析图表。
在选择要分析的变量和因素,并将其编码后,可以使用对应分析方法将数据转换为二维图表。
这个图表显示了数据中各个变量之间的相互关系。
4. 解释对应分析图表。
对应分析图表提供了数据的可视化模型。
解释此模型是理解数据之间关系的关键。
因此,数据分析人员需要详细解释图形模型上的每一个部分,包括每个变量和因素的含义,它们如何相互作用以及它们的重要性等。
三、对应分析的应用对应分析法在业务应用方面有广泛的应用,如市场研究、食品和酒类生产、文化遗产保护等。
以下是几个常见的应用领域:1. 市场研究。
对应分析可以帮助企业了解目标市场及其竞争对手。
通过对分析结果的解释和理解,企业可以更好地定位自身在市场上的位置,并改进其营销战略,以更好地满足客户需求。
2. 食品和酒类生产。
对应分析可用于分析消费者对产品口味、质量、价格和材料等方面的偏好。
这可以帮助企业制定更具有竞争力的产品策略,并提高销量。
3. 文化遗产保护。
对应分析可用于分析不同文化和历史时期的建筑、艺术品和文物,以了解它们是否与其他文化形式和艺术品存在联系。
这可以帮助文化机构和保护人员更好地了解和保护文化遗产。
多元统计分析知识点_多元统计分析课件

多元统计分析(1)题目: 多元统计分析知识点研究生专业指导教师完成日期 2021年 12月目录第一章绪论................................................... 错误!未定义书签。
§什么是多元统计分析 ..................................... 错误!未定义书签。
§多元统计分析能解决哪些实际问题 ......................... 错误!未定义书签。
§要紧内容安排 ........................................... 错误!未定义书签。
第二章多元正态散布 ........................................... 错误!未定义书签。
§大体概念 ............................................... 错误!未定义书签。
§多元正态散布的概念及大体性质 ........................... 错误!未定义书签。
1.(多元正态散布)概念 ............................... 错误!未定义书签。
2.多元正态变量的大体性质 ............................. 错误!未定义书签。
§多元正态散布的参数估量12(,,,)p X X X X '=............. 错误!未定义书签。
1.多元样本的概念及表示法 ............................. 错误!未定义书签。
2. 多元样本的数值特点 ................................ 错误!未定义书签。
3.μ和∑的最大似然估量及大体性质 ................. 错误!未定义书签。
多元统计分析-(4)_PPT课件

多元数据
x11 x12 x13
X {xij}x 21
x22
x23
xp1 xp2 xp3
i 1, 2, ,P;
x1N
x2N
xPN
j 1,2,N
2
多元数据基本方法
聚类(cluster)
排序 (ordination)
3
4
Doubs鱼类数据集
法国和瑞士边境的Jura山脉的Doubs河
#这个UPGMA聚合聚类树看起来介于单连接聚类和完全连接聚类之间。这种 #情况经常发生。
#计算鱼类数据的形心聚类 # *********************** spe.ch.centroid <- hclust(spe.ch, method="centroid") plot(spe.ch.centroid)
# 删除无物种数据的样方8
spe <- spe[-8,]
env <- env[-8,]
spa <- spa[-8,]
10
#物种多度数据:先计算样方之间的弦距离矩阵,然后进行单连 #接聚合聚类 spe.norm <- decostand(spe, "normalize") spe.ch <- vegdist(spe.norm, "euc") spe.ch.single <- hclust(spe.ch, method="single") par(mfrow=c(2,2)) # 使用默认参数选项绘制聚类树 plot(spe.ch.single)
17
# k-均值划分,2组到10组 # ************************ spe.KM.cascade <- cascadeKM(spe.norm, inf.gr=2, sup.gr=10, iter=100,
多元统计对应分析

车主de车型及车主特征
产地 1 = "American" 2 = "Japanese" 3 = "European";
轿车的尺寸 1 = "Small" 2 = "Medium" 3 = "Large";
车型 1 = "Family" 2 = "Sporty" 3 = "Work";
拥有方式 1 = "Own" 2 = "Rent";
代码 Name1 Name2 Name3 Name4 Name5 Name6 Name7 Name8
含义 玉泉 雪源 春溪 期望 波澜 天山绿 中美纯 雪浪花
代码 Product1 Product2 Product3 Product4 Product5 Product6 Product7 Product8
两个定类或定序变量分布的描述和分析通常使用列联表, 并采用 检验检验变量之间是否幸福独立。
(2) 列联表(contingency table)的构造
1)由两个或两个以上变量进行交叉分类的频数分布表。
2)行变量的类别数用 r 表示, 列变量的类别数用 c
表示。 3)由行变量和列变量的所有可能组合的频数构成的表 格,称为列联表。
这项研究是为了考察汉字具有的抽象图形符 号的特性能否会促进儿童空间和抽象思维能力。 该数据以列联表形式展示在表中:
人们可以对这个列联表进行前面所说的c2检验来考 察行变量和列变量是否独立。结果在下面表中(通过 Analyze-Descriptive Statistics-Crosstabs)
如何用象因子分析的载荷图那样的直观 方法来展示这两个变量各个水平之间的关 系呢?这就是本章要介绍的对应分析 (correspondence analysis)方法。
应用多元统计分析.ppt

多元统计分析研究 的对象就是多 维随机向量.
第一章
§1.1
绪
论
引言--多元分析的研究对象和内容
研究的内容既包括一元统计学中某 些方法的直接推广,也包括多个随机 变量特有的一些问题。
多元统计分析是一类范围很广 的理论和方法。
第一章
§1.1
绪
论
引言--多元分析的研究对象和内容
就以学生成绩为例,我们可以研究很多 问题:用各科成绩的总和作为综合指标来 比较学生学习成绩的好坏(如成绩好的与成 绩差的,又如文科成绩好的与理科成绩好 的);研究各科成绩之间的关系(如物理 与数学成绩的关系,文科成绩与理科成绩 的关系);……等等。所有这些都属于多 元统计分析的研究内容。
课程其它事项
教学软件: R 课程主页: 课程评估:
作业 : 期中 : 期末 :
10% 40% 50%
答疑时间: 周二 9:30—11:30
第一章
§1.1
绪
引 言
论
在实际问题中,很多随机现象涉及到 的变量不止一个,而经常是多个变量,而 且这些变量间又存在一定的联系。我们常 常需要处理多个变量的观测数据。例如考 察学生的学习情况时,就需了解学生在几 个主要科目的考试成绩。 下表给出从某年级随机抽取的12名学 生中5门主要课程期末考试成绩。
0 . 1025 X 0 . 2852 X 4 12 Z1是12个变量的线性组合,且系数都是正数, 数值有大有小。显然数值大的变量对综合指标 (主成分)的贡献大;数值小的变量对综合指 标(主成分)的贡献小。
教育学-主成分分析在学生学习成绩排序中的应用
12个原始变量(课程)提供的信息各为多少?用什 么量来表达?最经典的方法是用变量的方差Var(Xi)为 多少来表达。 如果某课程全班学生的成绩都差不多,比如都是80 分左右,则这门课程在学生成绩的排序中不起什么作 用。这反映在原始变量的线性组合Z1 (第一主成分) 上该变量对应的系数会很小(如0.1025). 如果另一门课程全班学生的成绩相差很大,有的 100分,有的只有30多分,则这门课程在学生成绩的 排序中起的作用很大。这反映在原始变量的线性组合 Z1 (第一主成分)上该变量对应的系数会很大(比如 0.4525).
多元统计分析——基于R 语言 PPT课件-聚类分析
(1)把样品粗略分成K个初始类。
(2)进行修改,逐个分派样品到其最近均值类中(通常用标准化数据或非标准化数据计算欧氏距
离)。重新计算接受新样品的类和失去样品的类的形心(均值)。
(3)重复第2步,直到各类无元素进出。
注意:
样品的最终聚类在某种程度上依赖于最初的划分或种子点的选择。
为了检验聚类的稳定性,可用一个新的初始分类重新检验整个聚类算法。如果最终分类与原来
✓有序样品的聚类:n个样品按某种原因(时间、地层深度等)排成次序,必须是
次序相邻的样品才能聚成一类。
✓分解法:首先所有的样品均在一类,然后用某种最优准则将它分为两类,再试
图用同种准则将这两类各自分裂为两类,从中选一个使目标函数较好者,这样
由两类变成三类,如此下去,一直分裂到每类只有一个样品为止(或采用其他停
1. 可能的分类数目
′
对于有序样品,n个样品分成k类的一切可能的分法有: , =
−
−
2. 最优分割法(又称Fisher算法)
(1)定义类的直径
设某一类 是{ , +1 , … , }( > ),均值为ഥ
,ഥ
=
σ= 。
−+
(2)定义目标函数
= ≤≤ { − , − + , }
当我们要分k类时,首先找 使上式达到最小,即
(2)最长距离法: , = max{ | ∈ , ∈ },表示类 与类 最邻近的两个样本距
离。
定义
(3)类平均法: , =
σ∈ σ∈
,表示类 与类 任两个样品距离的平均。
(4)重心法: , = ഥpഥ ,表示两个重心ഥ
多元统计分析:第二章 多元正态分布及ppt课件
性质3 若X~Np(μ,Σ),E(X)=μ,D(X)=Σ. 证明 因Σ≥0,Σ可分解为:Σ=AA′,
则由定义2.2.1可知
X =d AU+μ (A为p×q实矩阵)
其中U=(U1,…,Uq)′,且U1,…,Uq相互独立同 N(0,1)分布,故有
E(U )=0, D(U )=Iq .
Z=BX+d d= B(AU+μ)+d
= (BA)U+(Bμ+d) 由定义2.2.1可知
Z ~Ns(Bμ+d, (BA)(BA)),
Z ~Ns(Bμ+d, BΣB). (这里Σ=AA).
ppt精选版
21
第二章 多元正态分布及参数的估计
§2.2 多元正态分布性质2
推论
分为
设X=
X(1) X(2)
r p-r
§2.2
在一元统计中,若U~N(0,1),则U的任意 线性变换X=σU+μ~N(μ,σ2)。利用这一性质, 可以从标准正态分布来定义一般正态分布:
若U~N(0,1),则称X =σU+μ的分布为 一般正态分布,记为X ~N(μ, σ2 )。
此定义中,不必要求σ>0,当σ退化为0时仍 有意义。把这种新的定义方式推广到多元情况
本课程所讨论的是多变量总体.把 p个随机变量放在一起得
X=(X1,X2,…,Xp)′ 为一个p维随机向量,如果同时对p维 总体进行一次观测,得一个样品为 p 维数据.常把n个样品排成一个n×p矩 阵,称为样本资料阵.
ppt精选版
4
第二章 多元正态分布及参数的估计
§2.1 随 机 向
X xx1211
其L 中
第九讲 对应分析 PPT课件
name3
27 272 93 149 45 112 54 17 167 142 185 128 106 9 10 19
name4
21 51 36 41 302 146 64 36 53 41 105 47 166 72 78 107
name5
14 83 71 36 37 113 365 29 57 34 123 38 81 94 248 63
2 = 'Rent';
车主的性别 1 = 'Male'
2 = 'Female';
收入
1 = '1 Income' 2 = '2 Incomes';
婚姻状况 1 = 'Single with Kids' 2 = 'Married with Kids'
3 = 'Single'
4 = 'Married';
pi1 pi
,
pi 2 pi
,
,
piq pi
ni1 ni
,
ni 2 ni
,
,
niq ni
其各元素之和等于1 ,即ri1 1, i 1, 2,
第 j 列轮廓:
cj
p1 j p j
,
p2 j p j
,
,
p pj p j
n1 j n j
,
n2 j n j
,
,
npj n j
,p 。
其各元素之和等于1 ,即 1c j 1, j 1, 2, , q。
若 2 2 p 1, q 1,则拒绝独立性的原假设, 其中 2 p 1, q是1 2 p 1, q的1上 分位点。
《多元统计分析》第七章 对应分析
《多元统计分析》7.1 引言v例1(书中习题9.2)下表包含在美国西南部7个考古场所挖掘出来的4种不同类型陶器的频数。
陶器类型A B C D合计考古场所P03010103989P153416275P2731411116P3*******P446363713132P54565910120P616281695218合计2839133374781陶器类型A B C D 考古场所P00.3370.1120.1120.438P10.7070.0530.2130.027P20.6290.0090.3530.009P30.6450.1940.0320.129P40.3480.2730.2800.099P50.3750.0500.4920.083P60.0730.1280.7750.023行轮廓马赛克图陶器类型A B C D 考古场所P00.1060.1100.0300.527P10.1870.0440.0480.027P20.2580.0110.1230.014P30.0710.0660.0030.054P40.1630.3960.1110.176P50.1590.0660.1770.135P60.0570.3080.5070.068列轮廓马赛克图对应分析图对应分析图陶器类型A B C D考古场所P030(32.2)10(10.4)10(37.9)39(8.4)P153(27.2)4(8.7)16(32.0)2(7.1)P273(42.0)1(13.5)41(49.5)1(11.0)P320(11.2)6(3.6)1(13.2)4(2.9)P446(47.8)36(15.4)37(56.3)13(12.5)P545(43.5)6(14.0)59(51.2)10(11.4)P616(79.0)28(25.4)169(93.0)5(20.7)列联表《多元统计分析》7.2 行轮廓和列轮廓一、列联表列12⋯q合计行1n11n12⋯n1q n1∙2n21n22⋯n2q n2∙⋮⋮⋮⋮⋮p n p1n p2⋯n pq n p∙合计n∙1n∙2⋯n∙q n二、对应矩阵列12⋯q 合 计行1p 11p 12⋯p 1q p 1∙2p 21p 22⋯p 2q p 2∙⁝⁝⁝⁝⁝p p p 1p p 2⋯p pq p p ∙合 计p ∙1p ∙2⋯p ∙q11qi i ij j n p p n ⋅⋅===∑111p qi ji j p p⋅⋅====∑∑1pj j ij i n p p n⋅⋅===∑ij ij n p n=v对应矩阵:行边缘频率构成的列向量:其中。