晶闸管可控整流和逆变电路.pdf

合集下载

斩波器与交流调压器、逆变

斩波器与交流调压器、逆变

晶闸管斩波器作为一种直流调 压装置.常用于直流电动机的调压 调速。目前,斩波器已广泛应用于 电力牵引方面,如地铁、电力机车、 城市电车、蓄电池电动车等。 晶闸管斩波器,主要有采用普 通晶闸管的逆阻型斩波器和采用逆 导型晶闸管的逆导型斩波器两种。 下面仅介绍逆阻型斩波器。
二、交流调压电路 交流调压器是接在交流电源与负载之 间的调压装置。晶闸管交流调压器,可以 通过控制晶闸管的通断,方便地调节输出 电压的有效值。在交流调压器中,晶闸管 元件一般为反并联的两只普通晶闸管或双 向晶闸管,并常采用以下两种控制方式。
逆变器根据其直流电源的滤波方式可分为电 压型和电流型两种。 电压型逆变器,其直流电源由电容滤波,可 近似看成恒压源;其输出的交流电压为矩形波, 输出的交流电流在电动机负载时近似为正弦波; 其抑制浪涌电压能力强,频率可向上或向下调节, 效率高,适用于不经常起动、制动和反转的拖动 装置。 电流型逆变器,其直流电源由电感滤波,可 近似看成恒流源,其输出的交流电流近似为矩形 波,输出的交流电压在电动机负载时近似为正弦 波;其抑制过电流能力强,适用于经常要求起动、 制动与反转的拖动装置。
上述两个条件必须同时具备才能实现有 源逆变。半控桥式晶闸管电路或有续流二极 管的电路,因它们不能输出负电压,也不允 许直流侧接上反极性的直流电源,故不能实 现有源逆变。
二、无源逆变 在工业生产中,常要求把直流电或某一固定 频率的交流电变换成一频率可变的交流电,供给 某些负载使用,这种变流技术称为变频技术。早 期采用旋转变频机组或离子器件组成的静止变频 器来实现变频,但它们存在体积大、效率低、噪 声大、响应时间长等缺点。晶闸管作为较理想的 无触点开关元件,具有体积小、管压降小、响应 时间短的优点,晶闸管组成的静止变频器已取代 了旧式变频装置,在各种工业领域获得广泛应用, 如感应加热的中频电源、交流电动机的变频调速 电源、不间断电源(UPS)等。

三相半波整流电路图

三相半波整流电路图
(一)晶闸管共阴极接法电路
从波形图可知,输出电压的平均值为
Ud 2U 2 (1 cosα )
π
失控现象
图2-9 单相桥式半控整流电路 失控时的波形
图2-8 单相桥式半控整流电路
及其L足够大时的工作波形
(二) 有续流二极管的晶 闸管共阴极接法电路
(三)晶闸管在同一桥臂的 电路
图2-10 有续流二极管的单相半控整流电 路及其L足够大时的工作波形
同理,对下组(共阳连接组) VT 2 的导通区间是 晶闸管,
90 ~ 210( A ~ B) , VT 的导通 4 区间是 210 ~ 330( B ~ C) , VT 的
330 ~ 450(C ~ A) 导通区间是
6

图2-18 电阻性负载三相桥式全控整流
六只晶闸管导通的顺序是VT1 →VT 2 → VT3→VT 4 → VT 5 → VT 6 → VT1 。
2
5.控制角的有效移相范围为
0 ~ π.6.晶闸管VT的元件导通角
θ π α。
2.2.3 电阻负载的单相桥式全控整流电路 (一)工作原理
图2-6的桥式整流电路与图2-3的单相半波整流电路相比, 桥式整流把电源电压的负半波也利用起来了,使输出电压 在一个电源周期中由原来的只有一个脉波变成了有二个脉 波,改善了波形,提高了输出。在变压器的副方绕组中, 绕组电流的波形如图2-6h)所示,两个半周期的电流方向 相反且波形对称,因此不再存在半波整流电路中的变压器 直流磁化问题,提高了变压器的绕组利用率。
2 2π
U 2 (1 cosα )
图2-5 有续流二极管的单相半波 可控整流电路及其工作波形
3.输出电流平均值 I d I Rd

三相桥式全控整流电路带电阻负载=时的波形

三相桥式全控整流电路带电阻负载=时的波形
@请注意编号顺序:1、3、5和4、6、2, 一般不特别说明,均采用这样的编号顺序。 @由于零线平均电流为零,所以可以不用零 线。 @对于每相二次电源来说,一个工作周期中, 即有正电流,也有负电流,所以不存在直流 磁化问题,提高了绕组利用率。
1
ua u2 = 0° ud 1
ub
uc
1. 带电阻负载时的工作情况 1) α =0时的情况 对于共阴极阻的 3 个晶闸 管,阳极所接交流电压值 最大的一个导通; 对于共阳极组的 3 个晶闸 管,阴极所接交流电压值 最低(或者说负得最多) 的导通; 任意时刻共阳极组和共阴 极组中各有 1 个 SCR 处于 导通状态。其余的 SCR 均 处于关断状态。 触发角 α 的起点,仍然是 从自然换相点开始计算, 注意正负方向均有自然换 相点。
13
u2 u d1 O u d2 u 2L ud
= 0° u a t1
Ⅰ u ab Ⅱ u ac Ⅲ u bc
ub
uc
t
Ⅳ u ba Ⅴ u ca uⅥ cb u ab u ac
O
t
i VT
1 1
O u VT
u ab
u ac
u bc
u ba
u ca
u cb
u ab
u ac
t
O
t
u ab
☞对触发脉冲的要求 √6个晶闸管的脉冲按VT1-VT2-VT3-VT4-VT5-VT6的顺序, 相位依次差60 。 √共阴极组VT1、VT3、VT5的脉冲依次差120,共阳极 组VT4、VT6、VT2也依次差120 。 √同一相的上下两个桥臂,即VT1与VT4,VT3与VT6, VT5与VT2,脉冲相差180 。
图3-21 三相桥式全控整流电路带电阻负载=60时的波形 16

电力电子技术整流电路总结

电力电子技术整流电路总结

电力电子技术整流电路总结篇一:电力电子技术常见的整流电路特点总结电力电子技术常见的整流电路特点总结篇二:电力电子技术重要公式总结单相半波可控整流带电阻负载的工作情况:au1iRdbcde电阻负载的特点:电压与电流成正比,两者波形相同。

触发延迟角:从晶闸管开始承受正向阳极电压起到施加触发脉冲止的电角度,用a表示,也称触发角或控制角。

导通角:晶闸管在一个电源周期中处于通态的电角度,用θ表示。

直流输出电压平均值:1Ud????2U21?cos?2U2sin?td(?t)?(1?cos?)?0.45U22?2(3-1)VT的a移相范围为180?通过控制触发脉冲的相位来控制直流输出电压大小的方式称为相位控制方式简称相控方式。

带阻感负载的工作情况:bcdef阻感负载的特点:电感对电流变化有抗拒作用,使得流过电感的电流不发生突变。

续流二极管数量关系:idVT????id2?(3-5)(3-6)(3-7)iVT?idVdR?????id(?t)?2?id?2d????id2?12?iVdR???2??????id(?t)?id(3-8)2?2dabcdifgV单相半波可控整流电路的特点:1.VT的a移相范围为180?。

2.简单,但输出脉动大,变压器二次侧电流中含直流分量,造成变压器铁芯直流磁化。

3.实际上很少应用此种电路。

4.分析该电路的主要目的建立起整流电路的基本概念。

单相桥式全控整流电路带电阻负载的工作情况:bucdV图3-5单相全控桥式带电阻负载时的电路及波形数量关系:1?22U21?cos?1?cos?Ud??2U(:电力电子技术整流电路总结)2sin?td(?t)??0.9U2???22a角的移相范围为180?。

向负载输出的平均电流值为:(3-9)Ud22U21?cos?U21?cos?id???0.9R?R2R2流过晶闸管的电流平均值只有输出直流平均值的一半,即:(3-11)idVT1U21?cos??id?0.452R2(3-10)流过晶闸管的电流有效值:iVT1?2???1?(2U2U1???sin?t)2d(?t)?2sin2??R?2R2?(3-12)变压器二次测电流有效值i2与输出直流电流i有效值相等:2U2U22?1???。

电力电子技术复习题 _含答案)

电力电子技术复习题 _含答案)

12、 在单相全控桥整流电路中,晶闸管的额定电压应取 U2()
13、 在单相桥式全控整流电路中,带大电感负载,不带续流二极管时,输出电压波形中没有负面积。
()
14、 单相全控晶闸管整流电路中,带电感性负载,没有续流二极管时,导通的晶闸管在电源电压过零时不关断。
()
15、 三相半波可控整流电路也必需要采用双窄脉冲触发。( )
2 晶闸管整流电路
2、 给晶闸管加上正向阳极电压它就会导通。 ( )
3、 晶闸管导通后其电流趋向无穷大。
()
4、 已经导通的晶闸管恢复阻断的唯一条件是 AK 极电源电压降到零或反向。( )
5、 晶闸管并联使用时,必须采取均压措施。 ( )
6、 晶闸管串联使用时,必须注意均流问题。 ( )
7、 触发普通晶闸管的触发脉冲,也能触发可关断晶闸管。( )
合型 的 PWM 控制方法。 3、 正激电路和反激电路属于 13 励磁,半桥电路和全桥电路属于 14 励磁。 4、 开关电源大都采用 15 PWM 控制器.其原理方案分为 16 、 17 和 18 三类。 5、 试填写下列电路的名称
3 / 14
半桥电路 反激电路
正激电路 全桥电路
推挽电路
4、逆变电路
中,通常采用 规则采样法 来代替上述方法,在计算量大为减小的情况下得到的效果能够满足工程需要。
3. PWM 逆变电路3种目标控制: 7 电压、 8
电流和圆形磁链的 9 压 比较、 滞环电流比较 和 三角波比较。
5. 相电压正弦波叠加 3 次谐波构成 13 与三角波比较产生 PWM,可以提高 14 利用率并降低 15 。
2 / 14
致集电极电流增大,造成器件损坏。这种电流失控现象被称这 擎住 效应。 11、 IGBT 往往与 反并联 的快速二极管封装在一起,制成模块,成为逆导器件 。 12、电力电子器件是在电力电子电路中是作为可控开关来用。电力电子器件是一种半导体开关,实际上是一种单 向单极开关。它不是理想开关,存在开关时间和开关暂态过程。开关时间尤其是关断时间限制了电力电子器件的 开关频率。 13、电力电子应用系统一般由控制电路、驱动电路和主电路组成一个系统。为了提高系统可靠性,还应加入电 压、电流检测电路和过压、过流保护电路并构成反馈闭环控制。 14.几乎所有的电力半导体器件均为 单向极性 开关。电力二极管(Power Diode)、晶闸管(SCR)、门极可 关断晶闸管(GTO)、电力晶体管(GTR)、电力场效应管(Power MOSFET)、绝缘栅双极型晶体管(IGBT)中, 在可控的器件中,功率范围最大的是 SCR 晶体管 ,开关频率最高的是_PMOS 电力场效应管

PWM脉宽调制变频电路

PWM脉宽调制变频电路

PWM脉宽调制变频电路
在图4-2b、c两种电路结构中,因采用不可控整流 器,功率因数高。而在图4-2a电路中,由于采用可控 整流,输出电压有换相电压降产生,谐波的无功功率 使得输入端功率因数降低。在图4-2a、b两种电路结构 中,独立的调压调频环节使之容易分开调试,但系统 的动态反应慢。图4-2c所示的电路结构则具有动态响 应快,功率因数高的特点。
PWM脉宽调制变频电路
变频器的分类与交—直—交变频器 的结构框图。图4-1a所示的交—交变频器在结构上没有 明显的中间滤波环节,来自电网的交流电被直接变换为 电压、频率均可调的交流电,所以称为直接变频器。而 图4-1b所示的交—直—交变频器有明显的中间滤波环节, 其工作时首先把来自电网的交流电变换为直流电,经过 中间滤波环节之后,再通过逆变器变换为电压、频率均 可调的交流电,故又称为间接变频器。
图4-10 分段同步调制
PWM脉宽调制变频电路
4.1.2 SPWM波形的开关点算法
在SPWM系统中,通常是利用三角载波与正弦参 考波进行比较以确定逆变器功率器件的开关时刻, 从而控制逆变器输出可调正弦波形。这一功能可由 模拟电子电路、数字电子电路、专用的大规模集成 电路等装置来实现,也可由计算机编程实现。SPWM 系统开关点的算法,主要分为两类:一是采样法, 二是最佳法。
形成不可调的直流电压Ud。而逆变环节则以六只功率开关
器件和辅助元件构成,这些开关器件可以选用功率晶体管 GTR,功率场效应晶体管MOSFET,绝缘门极晶体管IGBT等。 控制逆变器中的功率开关器件按一定规律导通或断开,逆 变器的输出侧即可获得一系列恒幅调宽的输出交流电压, 该电压为可调频、可调压的交流电——VVVF。
PWM脉宽调制变频电路
4.1.1 PWM脉宽调制原理

直流-交流变换电路

直流-交流变换电路
得到制动力矩,由于晶闸管的单向导电性,这只有利用反
组N的逆变。为此,只要降低 U d β 且使 EU dβ(U dα),
则N组产生逆变,流过电流Id2,电机电流Id反向,反组有 源逆变将电势能E通过反组N送回电网,实现回馈制动。 (3)反组整流 N组整流,使电动机反转,其过程与正组整流类似。 (4)正组逆变 P组逆变,产生反向制动转矩,其过程与组反逆变类似。
逆变状态时的控制角称为逆变角β,规定以α=π处作为计量
β角的起点,大小由计量起点向左计算。满足如下关系:
4.2.2 逆变失败与最小逆变角的限制
1、逆变失败
可控整流电路运行在逆变状态时,一旦发生换相失败,电 路又重新工作在整流状态,外接的直流电源就会通过晶闸 管电路形成短路,使变流器的输出平均电压Ud和直流电 动势E变成顺向串联,由于变流电路的内阻很小,将出现 很大的短路电流流过晶闸管和负载,这种情况称为逆变失 败,或称为逆变颠覆。
4.3 无源逆变(变频)电路
4.3.1 变频概述及变频器的种类
将直流电能变换成交流电能供给无源负载的过程称为无逆 变。用于逆变的直流电能通常是由电网提供的交流电整流 得来的。我们把“将电网提供的恒压恒频CVCF(Constant Voltage Constant Frequency)交流电变换为变压变频 VVVF(Variable Voltage Variable Frequency)交流电供给 负载”的过程称为变频,实现变频的装置叫变频器。
造成逆变失败的原因:
(1)触发电路工作不可靠。不能适时、准确地给各晶闸 管分配触发脉冲,如脉冲丢失、脉冲延时等。
(2)晶闸管发生故障。器件失去阻断能力,或器件不能 导通。
(3)交流电源异常。在逆变工作时,电源发生缺相或突 然消失而造成逆变失败。

电力电子习题

电力电子习题

电力电子习题一选择题1、单相半控桥整流电路的两只晶闸管的触发脉冲依次应相差度。

A、180°,B、60°,c、360°,D、120°2、α为度时,三相半波可控整流电路,电阻性负载输出的电压波形,处于连续和断续的临界状态。

A,0度,B,60度,C,30度,D,120度,3、晶闸管触发电路中,若改变的大小,则输出脉冲产生相位移动,达到移相控制的目的。

A、同步电压,B、控制电压,C、脉冲变压器变比。

4、可实现有源逆变的电路为。

A、三相半波可控整流电路,B、三相半控桥整流桥电路,C、单相全控桥接续流二极管电路,D、单相半控桥整流电路。

5、在一般可逆电路中,最小逆变角βmin选在下面那一种范围合理。

A、30o-35o,B、10o-15o,C、0o-10o,D、0o。

6晶闸管内部有()PN结。

A 一个,B 二个,C 三个,D 四个7单结晶体管内部有()个PN结。

A 一个,B 二个,C 三个,D 四个8晶闸管可控整流电路中的控制角α减小,则输出的电压平均值会()。

A 不变,B 增大,C 减小。

9单相半波可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。

A 1,B ,C ,D .10单相桥式可控整流电路输出直流电压的平均值等于整流前交流电压的()倍。

A 1,B ,C ,D .11为了让晶闸管可控整流电感性负载电路正常工作,应在电路中接入()。

A 三极管,B 续流二极管,C 保险丝。

12晶闸管可整流电路中直流端的蓄电池或直流电动机应该属于()负载。

A 电阻性,B 电感性,C 反电动势。

13直流电动机由晶闸管供电与由直流发电机供电相比较,其机械特性()。

A 一样,B 要硬一些,C 要软一些。

14带平衡电抗器的双反星型可控整流电路适用于()负载。

A 大电流,B 高电压,C 电动机。

15晶闸管在电路中的门极正向偏压()愈好。

A 愈大,B 愈小,C 不变16晶闸管两端并联一个RC电路的作用是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超越这一区间,使元件导通或阻断的条件变化, 等效电路相应改变。 3)等效电路的直线性 ¾ 假定元件具有理想输出特性,则电路为线性。
在整流电路中与元件导通条件有关的因素
电网状态(电网电压的分布情况) 门极脉冲状态(门极脉冲的分布情况) 电路结构 负载性质
2. 波形分析
3. 定量分析
如:
uBA =
6U2 sin ωt
=பைடு நூலகம்
2Lκ
di dt
解出
∫ i = 6U2
2ω Lκ
sin ωtdωt = −Im cosωt + K
根据式(2-19)初值并考虑到 i(α)=0,确定积分常数K为 K=Imcosα I = Im (cosα − cosωt)
Im
=
6U 2
2ω LK
iT1 = iT1(α ) − i = Id − Im (cosα − cosωt)
最常用的数学方法是选择适当的变量, 根据电路列微分方程并求解方程变量。
从T1通,T2通,T3断向T1断,T2通,T3通转换过程中, T1、T2、T3均导通时电量状态变化分析:
电路初始条件:
¾ 为简化分析,设在该工况中负载电流 id= Id = const 。 ¾ 由于T1T3均处通态,线电压uBA沿电感LK(LK=La=Lb) 建立导电回路,并产生环流 i ,即:



∑ ∑ ∑ ud = Ud + an sin nωt + bn cos nωt = Ud + Cn cos(nωt −θn )
n=1
n=1
n=1
式中
cn2 = an2 + bn2
∫ an
=
1
π
2π 0
ud
sin
nωtdωt
θn
=
tg −1
an bn
∫ bn
=
1
π
2π 0
ud
cos
nωtdωt
∫ U d
1. 根据元件的导通条件来判断电路中哪些元件 在什么时间内处于导通状态(或者说任一瞬间 电路中导通元件的数目和每一工作循环中导通 元件的导通时间)
2. 通过定性分析,确定出电路各处的波形。 3. 对电路做定量分析。其主要内容是确定工作
指标与电路参数之间的数学关系。 在分析的基础上便有可能进行电路的综合(设








电路



控 组 工
制方 成器 作范
式 件 围
斩 控 式 电 路





半 控 型 整 流 电 路







单 象 限 电 路






合整







路 换
联 级
接 数
串 并 联 电 路





一 次 转 换 电 路






二、可控整流电路的基本分析步骤
6 n −1
−1)
π
6
式中n=6k, k=1,2,3 …
在线性电路的条件下,负载电流id可以视为ud中各次谐 波分别作用于负载电路所产生谐波电流的总和。
设电路已处稳定工作阶段,则输出电流

∑ id = Id + Inm cos(nωt −θn − φn ) n=1
式中直流分量 Id=Ud/Rd
π
cos(n
−1)
5π sin(n
6 n −1
−1)
π
6

cos(n
+1)
5π sin(n
6 n +1
+1)
π
6
∫ bn
=
6
π
π 2π 3
6Un sin ωt cos nωtdωt
=6
6U 2
π
sin(n
+ 1)
5π sin(n
6 n +1
+ 1)
π
6

sin(n
−1)
5π sin(n
二、整流电路的基本分析方法
1. 谐波分析法
图示波形特点: ¾ 1)是非正弦周期函数,每一工作循环
(2π)包含六次脉动,即脉波数m=6, 因此包含多次谐波。 ¾ 2)在每一脉动区,按正弦规律变化,并 与电网线电压相等。即对于每一脉冲区 间而言,其数学表达式是确定的。
傅里叶分析
将ud用傅里叶级数表示:
iT 3 = i = Im (cosα − cosωt)
iT1按余弦规律下降,iT3上升. 在经过角度γ之后,iT1=0,iT3=Id .
计),即根据给定的工作指标选择电路参数。
三相桥式整流电路的主电路
1. 元件通断状态分析,建立等效电路
1)等效电路构成的条件 ¾ 晶闸管导通的条件:同时满足ugk>0和uak>0 ¾ 凡不满足这些条件的元件便不能由阻断转为导
通 2)等效电路的时间性 ¾ 等效电路只在工作循环的某一区间是正确的,
整流系数
DB =
U do Um
Udo:整流电路最高输出平均电压
Um:输入交流电压峰值
Um = 2UAC = 6U2
U2:电网相电压有效值
对三相桥式电路:
Udo = 2.34U2 = 0.956Um
DB =
U do Um
= 0.956
4. 电路的综合(设计)
如由 Udo = 2.34U2 可根据要求的输出电压确定U2
=
1

2π 0
ud

t
由于各脉动区间ud的变化规律相同, ud中不含奇次 谐波;偶次谐波中最低次为六次,高次谐波为六的整数
倍,上式组可改写为:
∫ U d
=
3
π
π 2π 3
6U 2
sin ω tdω t
=
3
6U 2

∫ an
=
6
π
π 2π 3
6U2 sinωt sin nωtdωt
=6
6U 2
n次谐波电流幅度
I nm
=
Cn | Zn
|
=
Cn
Rd2 + (nω Ld )2
式是|Zn|为n次谐波阻抗幅值
n次谐波电流相角
φn
=
tg −1
nω Ld
Rd
¾ 若Ld=∞,则Inm=0,id=Id。Ld具有电流滤波作用。
2. 微分方程法
当整流电路未达稳态时(如起动时), 或是被分析的过程各物理量的变化规律 并不清楚的条件下,便不能采用上述谐 波分析,而必须采用过程分析法。
第二章 晶闸管可控整流和逆变电路
第一节、晶闸管可控整流电路概述
工频交流电源
整流主电路
滤波器
负载
控制电路
主要依籍晶闸管的两种特性: ¾ (1)单向导电性 ¾ (2)可控性
一、整流电路的分类


路结



式 式
电路 电路
按 电 网 相 数
单 相 电 路








可控
相关文档
最新文档