自组织神经网络

合集下载

神经网络的发展历程与应用

神经网络的发展历程与应用

神经网络的发展历程与应用神经网络是一种仿生的人工智能技术,它模拟了人类大脑中神经元之间的连接和信息传递方式,具有自学习和适应性强的特点。

神经网络的发展历程可以追溯到上世纪50年代,经过了长期的理论研究和应用实践,如今已经成为了人工智能领域中的重要技术之一。

本文将从神经网络的发展历程、基本模型、优化算法以及应用领域等方面进行介绍。

一、神经网络的发展历程神经网络的发展历程可以分为三个阶段,分别是感知机、多层前馈神经网络和深度学习。

1. 感知机感知机是神经网络的起源,由美国心理学家罗森布拉特于1957年提出。

感知机是一种单层神经网络,由若干感知器(Perceptron)组成。

每个感知器接收输入信号并进行加权和,然后经过一个阈值函数得到输出。

该模型的最大缺点是只能处理线性可分问题,无法解决非线性问题。

2. 多层前馈神经网络为了克服感知机的局限性,科学家们开始尝试使用多层前馈神经网络来处理非线性问题。

多层前馈神经网络由输入层、隐藏层和输出层组成。

每个神经元都有一个激活函数,用于将输入信号转换为输出。

这种结构可以处理非线性问题,并且可以通过反向传播算法来训练网络参数。

多层前馈神经网络在图像识别、语音识别、自然语言处理等领域得到了广泛应用。

3. 深度学习深度学习是指使用多层神经网络来学习高层次特征表示的一种机器学习方法。

深度学习在计算机视觉、自然语言处理等领域有着广泛的应用。

其中最著名的就是卷积神经网络(CNN)和循环神经网络(RNN)。

卷积神经网络主要用于图像识别和分类问题,循环神经网络主要用于序列预测和语言建模。

二、神经网络的基本模型神经网络的基本模型可以分为三类,分别是前馈神经网络、反馈神经网络和自组织神经网络。

1. 前馈神经网络前馈神经网络是指信息只能从输入层到输出层流动的神经网络。

其中最常用的是多层前馈神经网络,它由多个隐藏层和一个输出层组成。

前馈神经网络的训练主要使用反向传播算法。

2. 反馈神经网络反馈神经网络是指信息可以从输出层到输入层循环反馈的神经网络。

自组织竞争神经网络

自组织竞争神经网络

第23页
3.搜索阶段:
由Reset信号置获胜阶段无效开始,网络进入搜索 阶段。此时R为全0,G1=1 ,在C层输出端又得到了此 次输入模式X。所以,网络又进入识别及比较阶段,得 到新获胜节点(以前获胜节点不参加竞争)。这么重 复直至搜索到某一个获胜节点K,它与输入向量X充分 匹配到达满足要求为止。模式X编制到R层K节点所连 模式类别中,即按一定方法修改K节点自下而上和自上 而下权向量,使网络以后再碰到X或与X相近模式时, R层K节点能很快取得竞争胜利。若搜索了全部R层输 出节点而没有发觉有与X充分靠近模式,则增设一个R 层节点以表示X或与X相近模式。
⑥ 警戒线检测。设向量X中不为0个数用||X||表示,可
有 n || X || xi
n
||C'|| w' j *iXi i1
(5.3.1)
i 1
n
||C'|| w' j *iXi
(5.3.2)
i1
若||C||/||X||>成立,则接收j*为获胜节点,转⑦。
不然发Reset信号,置j*为0(不允许其再参加竞争),
信号1:输入X第i个分量Xi。 信号2:R层第j个单元自上而下返回信号Rj。 信号3:G1控制信号。 设C层第i个单元输出为Ci。 Ci依据“2/3规则”产 生,即Ci含有三个信号中多数相同值。 网络开始运行时, G1 =1,R层反馈信号为0。
自组织竞争神经网络
第18页
2.R 层结构:
R层功效结构相当于一个前向竞争网络,假设输出 层有m个节点,m类输入模式。输出层节点能动态增加, 以满足设置新模式类需要。设由C层自下而上连接到R 层第j个节点权向量用Wj={w1j,w2j,..,wnj} 表示。C层输出向量C沿Wj向前馈送,经过竞争在R层 输出端产生获胜节点,指示此次输入向量类别。

自组织竞争神经网络

自组织竞争神经网络

dj =
n
∑ (x
i =1
i
− wi j ) 2
∆wi j = η h( j , j*)( xi − wi j )
j − j*2 h ( j , j *) = exp − σ2

自组织竞争神经网络算法能够进行有效的自适应分类,但它仍存在一些问题: 学习速度的选择使其不得不在学习速度和最终权值向量的稳定性之间进行折中。 有时有一个神经元的初始权值向量离输入向量太远以至于它从未在竞争中获胜, 因 此也从未得到学习,这将形成毫无用处的“死”神经元。
网络结构
%1.ÎÊÌâÌá³ö X=[0 1;0 1]; clusters=8; points=10; std_dev=0.05; P=nngenc(X,clusters,points,std_dev); plot(P(1,:),P(2,:),'+r'); title('ÊäÈëÏòÁ¿'); xlabel('P(1)'); ylabel('P(2)'); %2.ÍøÂçÉè¼Æ net=newc([0 1;0 1],8,.1) w=net.IW{1}; plot(P(1,:),P(2,:),'+r'); hold on; circle=plot(w(:,1),w(:,2),'ob') %3.ÍøÂçѵÁ· net.trainParam.epochs=7; net=train(net,P) w=net.IW{1}; delete(circle); plot(w(:,1),w(:,2),'ob'); %4.ÍøÂç²âÊÔ p=[0.5;0.2]; a=sim(net,p)

BP神经网络RBF神经网络自组织竞争型神经网络

BP神经网络RBF神经网络自组织竞争型神经网络

(3)如果在已被占用的输出端中找到一个优胜者,它的由顶向下矢量Z(k)与S(k)的相似度足够高,或者开辟了一个未被占用的新输出端,则对于该端相应的由底向上和由顶向下权重系数进行调整。设此端的编号为L,那么被调整的系数是 和 。下面给出系数调整的计算公式:
概括而言,按照ART(也就是以竞争学习和自稳机制为原则所建立的理论)构成的ANN有如下特点: (1)它能对任何输入观察矢量(包括非平衡输入)进行“实时学习”,这就是说,学习和工作是分不开的。这种学习保证能够达到稳定、可靠的结果,直至记忆容量全部用完为止。任何情况下都不会造成新记忆破坏老记忆的灾难性后果。 (2)学习是自治和自组织的,学习过程无需教师指导,因此是一种无监督(unsupervised)学习。
F2层(STM) 此层的作用是由矢量T计算输出矢量Y,其计算公式为 若 (5-3) 可以看出,在输出层F2进行的是一种竞争抉择运算: 在t0~tM-1之间,有一个最大的分量,其对应输出即定为1,而所有其它分量所对应的输出皆定为0。
下面讨论此系统用于分类时的学习策略 在学习开始以前,首先需要对LTM层中的各个权值系数置以随机初值wij(0),然后依次送入观察矢量X(k),随时按照下列公式将各个权重系数调整成一组新的数值: j=0~(N-1),i=0~(M-1) (5-4)
(5-8) 其中α是步幅, 其值取为一个小正实数。
可以看到, 按照上面给出的算法, 只有当新的输入矢量与已存入记忆中的某个矢量足够相似时, 两者才能互相融合, 即对有关的权重系数进行调整, 从而使长期记忆得以改变。这造成一种自适应谐振(adaptive resonance)状态, 这就是ART这个名称的来源。需要指出, 上面给出的(1)和(2)两项运算, 其运算速度相对而言是快的, 在运算时只有F1和F2这两个STM层的输出发生变化, 而LTM层中的系数不产生改变。当进入自适应谐振状态时(即进入第(3)项运算时)LTM层中的有关系数才发生变化。这类似于人的记忆过程, 当输入一个观察矢量时, 大脑必须在已有的记忆内容中搜索与之相似的矢量, 如果得到了印证, 那么对其记忆就会加强。另一方面, 如果输入的是一个完全新奇的矢量, 这也会造成深刻的印象并被植入长期记忆库之中。

自组织神经网络概述

自组织神经网络概述

针对自组织神经网络的计算密集型特 性,硬件加速技术如GPU、FPGA等 正被广泛应用于提升自组织神经网络 的计算效率和实时性。
大规模数据的应用
随着大数据技术的不断发展,自组织 神经网络在大规模数据上的应用也日 益广泛,能够从海量数据中提取有用 的特征和模式。
未来展望
01
更高效的自组织学习机制
未来的研究将致力于开发更高效、更灵活的自组织学习算法,以适应不
它利用神经元之间的连接权重进 行学习,使得相似的输入数据能 够被映射到相近的神经元输出。
自组织映射能够自动识别输入数 据的内在结构和规律,从而对数
据进行分类、聚类和可视化。
竞争学习
01
竞争学习是自组织神经网络中 的一种重要机制,通过竞争的 方式选择最佳的神经元来表示 输入数据。
02
在竞争过程中,每个神经元根 据其与输入数据的相似度进行 响应,相似度最高的神经元将 获得胜利并更新其连接权重。
它不需要预先定义输入数据的类别或 结构,而是通过学习输入数据的内在 规律和模式,自动对数据进行分类或 聚类。
自组织神经网络的应用场景
图像识别
语音识别
自组织神经网络可以用于图像识别任务, 自动提取图像中的特征并进行分类。
在语音识别领域,自组织神经网络可以用 于自动提取语音中的特征,提高语音识别 的准确率。
总结词
通过最小化预测误差的方式,学习输入样本的映射关系,用于预测和函数逼近。
详细描述
回归型自组织神经网络采用最小化预测误差的规则,通过调整神经元权重,使得 神经元的输出能够逼近输入样本的目标值。这种类型的自组织神经网络常用于时 间序列预测和函数逼近。
概率型自组织神经网络
总结词
基于概率密度函数,学习输入样本的概 率分布,用于概率建模和异常检测。

自组织特征映射神经网络(SOM)

自组织特征映射神经网络(SOM)

二、学习算法
1 算法 I: (i) 初始化:
- 各权矢量
W j 的确定
wji (0) ← Small random numbers(也可根据先验知识); , k ← 0; (ii) 输入 X(k) , 对 W 做下述操作: j c 求出 与 X(k) 最接近的权矢量 W , q 2 1/ 2 min{ W j − X (k ) = Wq − X (k ) = d q , ( X − Y = ( ∑ i ( xi − yi ) ) ) j d 定义单元 q 所在的邻域为 Nq (tk ), 将 Nq (tk ) 中各单元的权进行修改, 其它权值不变:
的改进使其与当前单元对应的权值修改次数有关随修改次数增加使关于算法的收敛性简述设可将输入样本集合划分为每个中有一个中心矢量聚类中心在物理上竞争学习算法competitivelearningcl典型的无教师学习unsupervisedlearning算法
CH.6
自组织特征映射神经网络
Neural Network
⎡P ⎢ 1,1 ⎢ P2,1 ⎢ P ⎢ ⎣ 3,1
共7396个训练矢量。 码本规模:N=512 用 SOM 网络进行矢量量化,实现图像数据压缩
(3) 学习算法
(取定 L、N) (i) 初始化: Wj (0) ← [0,255] 之间的随机数; (ii) 构造图像矢量样本集 { X(k) }, (iii) 输入 X(k), 由各 U j计算出 (iv) 由输出单元 U 在所有 out (v) (vi)
d1 U1

dj
Uj
Wj
… U N
dN
SOM
xn
dj
中,找出最小距离
(3) 于是令:
⎧1 , if j = q yj = ⎨ ⎩0 , if j ≠ q

自组织神经网络

自组织神经网络


PR
- Rx2 矩阵确定输入范围

Di
- 第i层神经元个数,缺省为5× 8
❖ TFCN
- 拓扑函数,缺省为 'hextop'.
❖ DFCN
- 距离函数,缺省为 'linkdist'.

OLR
- 排序阶段学习率,缺省为0.9.
❖ OSTEPS - 排序阶段最大学习步骤,缺省为1000.

TLR
- 调整阶段学习率,缺省为0.02;
例:LVQ网络的设计
❖ 设定输入样本和期望输出 ❖ 构建并设置网络参数 ❖ 根据训练样本对网络进行训练 ❖ 用训练样本测试网络 ❖ 用新样本测试网络 ❖ 讨论比例的影响
小结
❖ 何谓自组织:没有答案的学习
❖ 自组织竞争神经网络的基本概念
神经元:输入与权值的负距离加上阈值 网络结构:竞争网络 学习方法:Kohonen和阈值学习规则 用途:聚类

TND
- 调整阶段最大学习步骤,缺省为1
例八:SOFM网络的构建和训练
❖ 构建网络 ❖ 设置训练样本 待聚类样本 ❖ 观察训练前网络的状态 ❖ 根据样本进行训练
排序阶段 粗调 调整阶段 细调
❖ 观察训练后网络的状态
例九:一维SOFM网络设计
❖ 输入为二维向量,神经元分布为一维 ❖ 将二维空间的特征映射到一维拓扑结构 ❖ 步骤
* IW 1 ,1 ( q 1 )
若分类不正确:
修正第 i个神经元的权值更远离
该样本
i i - ( p ( q ) i ) * IW 1,1 ( q )
* IW 1 ,1 ( q 1 )
* IW 1 ,1 ( q 1 )

人工神经网络原理第7章习题参考答案

人工神经网络原理第7章习题参考答案

1.试述自组织神经网络中“自组织”的含义。

自组织神经网络采用类似于人类大脑生物神经网络的无指导学习方式,能够对外界未知环境进行学习或模拟,并对自身的网络结构进行调整,实现对输入模式的自动分类。

在调整网络结构时,网络按照预定的规则和输入模式,不断调整网络连接权值直至形成一种全局有序的结构,而这种全局有序的结构是通过网络中许多相邻神经元的局部相互作用形成的,这些相邻神经元之间的相互作用最终会使网络在空间模式或时间节奏上达成一致,这也是自组织的本质。

2. 若某一基本竞争神经网络的输入层有5个节点,竞争层有3个节点。

网络的6个学习模式为X 1=(1,0,0,0,0)T ,X 2=(1,0,0,0,1)T ,X 3=(1,1,0,1,0)T ,X 4=(1,1,0,1,1)T ,X 5=(0,0,1,1,0)T ,X 6=(0,0,1,1,1)T ,试计算这6个学习模式的汉明距离。

6个学习模式的汉明距离X 1 X 2 X 3 X 4 X 5 X 6 X 1 0 1 2 3 3 4 X 2 1 0 3 2 4 3 X 3 2 3 0 1 3 4 X 4 3 2 1 0 4 3 X 5 3 4 3 4 0 1 X 6434313. 采用竞争学习规则,通过训练将第2题中的6个学习模式进行分类,试比较训练后的分类结果和通过汉明距离得到分类结果。

按照前面描述的竞争学习规则对第2题的6个学习模式进行记忆训练,假定学习速率为0.5,网络的初始连接权值如下:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=2.03.02.02.02.03.01.02.02.02.01.02.03.02.01.0W网络的学习过程如下:t =1 X 1=(1,0,0,0,0)T 竞争层各个神经元的净输入为 s 1=w 11x 1+w 21x 2+w 31x 3+w 41x 4+w 51x 5=0.1*1+0.2*0+0.2*0+0.3*0+0.2*0=0.1 s 2=w 12x 1+w 22x 2+w 32x 3+w 42x 4+w 52x 5=0.2*1+0.1*0+0.2*0+0.2*0+0.3*0=0.2 s 3=w 13x 1+w 23x 2+w 33x 3+w 43x 4+w 53x 5=0.3*1+0.2*0+0.1*0+0.2*0+0.2*0=0.3因此,竞争层各个神经元的输出为 y 1=0 y 2=0 y 3=1调整后的连接权如下 w 13=0.3+0.5*(1/1-0.3)=0.65 w 23=0.2+0.5*(0/1-0.2)=0.1 w 33=0.1+0.5*(0/1-0.1)=0.05 w 43=0.2+0.5*(0/1-0.2)=0.1 w 53=0.2+0.5*(0/1-0.2)=0.1t =2 X 2=(1,0,0,0,1)T 竞争层各个神经元的净输入为 s 1=w 11x 1+w 21x 2+w 31x 3+w 41x 4+w 51x 5=0.1*1+0.2*0+0.2*0+0.3*0+0.2*1=0.3 s 2=w 12x 1+w 22x 2+w 32x 3+w 42x 4+w 52x 5=0.2*1+0.1*0+0.2*0+0.2*0+0.3*1=0.5 s 3=w 13x 1+w 23x 2+w 33x 3+w 43x 4+w 53x 5=0.65*1+0.1*0+0.05*0+0.1*0+0.1*1=0.75因此,竞争层各个神经元的输出为 y 1=0 y 2=0 y 3=1 调整后的连接权如下w 13=0.65+0.5*(1/2-0.65)=0.575 w 23=0.1+0.5*(0/2-0.1)=0.05 w 33=0.05+0.5*(0/2-0.05)=0.025 w 43=0.1+0.5*(0/2-0.1)=0.05 w 53=0.1+0.5*(1/2-0.1)=0.3 t =3 X 3=(1,1,0,1,0)T 竞争层各个神经元的输入为 s 1=w 11x 1+w 21x 2+w 31x 3+w 41x 4+w 51x 5=0.1*1+0.2*1+0.2*0+0.3*1+0.2*0=0.6 s 2=w 12x 1+w 22x 2+w 32x 3+w 42x 4+w 52x 5=0.2*1+0.1*1+0.2*0+0.2*1+0.3*0=0.5 s 3=w 13x 1+w 23x 2+w 33x 3+w 43x 4+w 53x 5=0.575*1+0.05*1+0.025*0+0.05*1+0.3*0=0.675 因此,竞争层各个神经元的输出为y 1=0 y 2=0 y 3=1 调整后的连接权如下w 13=0.575+0.5*(1/3-0.575)=0.4542 w 23=0.05+0.5*(1/3-0.05)=0.1917 w 33=0.025+0.5*(0/3-0.025)=0.0125 w 43=0.05+0.5*(1/3-0.05)=0.1917 w 53=0.3+0.5*(0/3-0.3)=0.15 ……按照上述过程经过多次学习后,网络会得到如下分类结果,与通过汉明距离分析的结果完全一致。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 自组织神经网络
采用有导师学习规则的神经网络是以网络的误差或能量 函数作为算法准则。而在很多情况下,人在认知过程中没有 预知的正确模式,人获得大量知识常常是靠“无师自通”, 即通过对客观事物的反复观察,分析与比较,自行揭示其内 在规律,并对具有共同特征的事物进行正确归类。对于人的 这种学习方式,基于有导师学习策略的神经网络是无能为力 的。
4.2自组织特征映射(SOM)神经网络
4.2.1SOM网络的生物学基础
生物学研究表明:人的大脑皮层中,存在许多不同功能的神经网络区 域,每个功能区域完成各自的特定功能,如视觉、听觉、语言理解和运动 控制等等。
当人脑通过感官接受外界的特定时空信息时,将引起大脑皮层的特定 区域兴奋。每个区域有若干神经元组成,当该区域兴奋时,总是以某一个 神经元(细胞)为兴奋中心,呈现出墨西哥帽(Mexican Hat)式兴奋分 布。
样本); 分类:将待识别的输入模式划分为各自的模式中去; 聚类:无导师指导的分类称为聚类,聚类的目的是将相似的模式样本划
归一类; 相似性:输入模式的聚类依据。 4.1.1.2 相似性测量
神经网络的输入模式用向量表示,比较不同模式的相似性可转化为比 较两个向量的距离,因而可用模式向量间的距离作为聚类判据。
这种权值(或说侧抑制关系)一般是 固定的,训练过程中不需要调整,在各类 自组织网络拓朴图中一般予以省略。(不 省略时,也只看成抑制关系的表示,不作 为网络权来训练)。
最强的抑制关系是竞争获胜者“惟我独兴”,不允许其它神经元兴 奋,这种抑制方式也称为胜者为王。
4.1.1.4 向量归一化 不同的向量有长短和方向区别,向量归一化的目的是将向量变成方向
(3)网络输出与权值调整
胜者为王竞争学习算法规定,获
胜神经元输出为1,其余输出为零。

1 j j*
o j (t 1) 0
j j*
只有获胜神经元才有权调整其权向量,调整后权向量为
W
j*
(t
1)
Wˆ j* (t) W j* Wˆ j* (t) W j (t 1) Wˆ j (t)
( Xˆ
竞争层负责对该模式进 行“分析比较”,找出规律以 正确分类。
这种功能是通过下面要介 绍的竞争机制实现的。
输出模式
竞争层
输入模式
4.1 竞争学习的概念与原理
竞争学习是自组织网络中最常用的一种学习策略,首先说明与之相关 的几个基本概念。 4.1.1 基本概念 4.1.1.1 模式、分类、聚类与相似性 模式:一般当网络涉及识别、分类问题时,常用输入模式(而不称输入
自组织神经网络的无导师学习方式更类似于人类大脑中 生物神经网络的学习,其最重要特点是通过自动寻找样本中 的内在规律和本质属性,自组织自适应地改变网络参数与结 构。这种学习方式大大拓宽神经网络在模式识别与分类方面 的应用。
自组织网结构上属于层次型网络,有多种类型。 如:自组织特征映射(Self Organizing Feature Map)网络—SOM);
WˆJ* )
j j* j j*
式中 (0,1] 为学习章,一般其值随着学习的进展而减小。可以看出,
当 j j* 时,对应神经无的权值得不到调整,其实质是“胜者”对它们 进行了强测抑制,不允许它们兴奋。
应注意,归一化后的权向量经过调整后得到的新向量不再是单位向 量,需要重新归一化。步骤(3)完成后回到步骤(1)继续训练,直到 学习率 衰减到零。
不变长度为1的单位向量。单位向量进行比较时,只需比较向量的夹角。
X向量的归一化: Xˆ X [ x1
X
n
x
2 j
j
x2
n
x
2 j
j
xn ]T
n
x
2 j
j
4、1、2竞争学习原理(规则)
竞争学习采用的规则是胜者为王,该算法可分为3个步骤。
(1)向量归一化 将自组织网络中的当前输入模式向量X 和竞争层中各神经元对应的内星权向量 Wj(j=1,2,…m)全部进行归一化处理。
得到 :

Wˆ j ( j 1,2, m)
(2)寻找获胜神经元
此式看出,欲两单位向量的欧式距离最小,须使两向量的点积最大。 即
Wˆ j*Xˆ max (Wˆ j Xˆ ) j(1,2, m)
因此,求最小欧式距离的问题就转化为按此式求最大点积的问题, 而且权向量与输入向量的点积正是竞争层神经元的净输入。
模式识别中常用到的两种聚类判据是欧式最小距离法和余弦法。
(1)欧式距离法 X和Xi 两向量欧式距离 :
X Xi (X Xi )T (X Xi )
两个模式向量的欧式距离越小,两个模式越相似,当两个模式完全相 同时,其欧式距离为零。如果对同一类内各个模式向量间的欧式距离作 出规定,不允许超过某一最大值 T,则最大欧式距离 T 就成为一种聚类 判据。
对偶(向)传播(Counter Propagation Network)网络—CPN); 自适应共振理论(Adaptive Resonance Theory)网络—ART等。 其共同特点是都具有竞争层。 最简单的网络结构具有一个输入层和一个竞争层。
输入层负责接受外界信息 并将输入模式向竞争层传递, 起观察作用。
自组织网络(竞争型神经网络)构成的基本思想是网络的竞争层 各神经元竞争对输入模式响应的机会,最后仅有一个神经元成为竞争的 “胜者”,这一获胜神经元则表示对输入模式的识别。——体现了物生 神经细胞的侧抑制竞争机制。
自组织网络在竞争层神经元之间的连 线,它们是模拟生物神经网络层内神经元 相互抑制现象的权值,这类抑制性权值满 足一定的分布关系,如距离近的抑制强, 距离远的抑制弱。
(2)余弦法 计算两个模式向量夹角的余弦:
cos
XT Xi
X Xi
两个模式向量越接近,其类角越小,余弦越大。当两个模式向量完全
相同时,其夹角余弦为1。 若同类内各模式向量间的夹角规定不大于ΨT,则Ψ成为一种聚类判据。
余弦法适合模式向量长度相同或模式特征只与向量方向相关的相似性测量。
4.1.1.3 侧抑制与竞争
实验表明,人眼的视网膜、脊髓和海马中存一种侧抑制现象,即, 当一个神经细胞兴奋后,会对其周围的神经细胞产生抑制作用。
这种侧抑制使神经细胞之间呈现出竞争,开始时可能多个细胞同 时兴奋,但一个兴奋程度最强的神经细胞对周围神经细胞的抑制作用 也最强,其结果使其周围神经细胞兴奋程度减弱,从而该神经细胞是 这次竞争的“胜者”,其它神经细胞在竞争中失败。
相关文档
最新文档