电力电子技术课程设计---三相半波整流电路
电力电子技术课程设计---三相半波整流电路

11 三相半波整流电路的负载分析1.1 引言单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
又因为它接在三相电网的一相上,当容量较大时易造成三相电网不平衡,因而只用在容量较小的地方。
一般负载功率超过4kw要求直流电压脉动较小时,可以采用三相可控整流电路。
半波整流电路是一种实用的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。
图1 半波整流电路变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负。
此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图所示,达到了整流的目的,但是,负载电压Usc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流。
不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
图2 正弦波图形1.2 设计任务设计指标:输入电压:三相交流380伏、50赫兹;输出功率:2KW;输出电压:DC110V;用集成电路芯片或分立元件组成触发电路;负载性质:电阻(10Ω)、电阻(10Ω)电感(10mH)。
电力电子课程设计---三相半波可控整流电路电阻性负载

摘要整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
关键词:整流,变压,触发,晶闸管,额定。
The ac power rectifier circuit is converted to dc can circuit. Most by rectifier circuit transformer, rectifier main circuit and filters etc. It in dc motor speed, the motives of generator excitation adjustment, electrolysis, electroplating and other areas to be widely applied. Usually by rectifier circuit main circuit, filter and transformers group. Since 1970s, main circuit multi-purpose silicon rectifier diode and the brake canal composition. Filters connect in the main circuit and load between filter, used in the dc voltage ripple exchange component. Transformer Settings or not inspect particular case and decide。
电力电子技术基础课程设计-三相半波可控整流电路的设计(电阻性负载)

课程设计任务书图1三相半波可控整流电路原理图对于VS1、VS2、VS3,只有在1、2、3点之后对应于该元件承受正向电压期间来触发脉冲,该晶闸管才能触发导通,1、2、3点是相邻相电压波形的交点,也是不可控整流的自然换相点。
对三相可控整流而言,控制角α就是从自然换相点算起的。
控制角0<α£2π/3,导通角0<θ£2π/3。
晶闸管承受的最大正向电压.承受的最大反向电压:2.1.2负载电压当0 ≤ α ≤ π/6时图2电路输出电压波形在一个周期内三相轮流导通,负载上得到脉动直流电压Ud,其波形是连续的。
电流波形与电压波形相似,这时,每只晶闸管导通角为120°,负载上电压平均值为:当π/6 < α ≤ 5π/6时图3电路输出电压波形2.2带阻感负载时的工作情况2.2.1原理说明电感性负载由于电感的存在使得电流始终保持连续,所以每只晶闸管导通角为2π/3,输出电压的平均值为:当α=π/2时,Ud =0,因此三相半波整流电感负载时的控制角为0~ π/2正向承受的最大电压为反向承受的最大电压为图4是电路接线图图4阻感负载接线图图5输出电压波形3.设计结果与分析3.1仿真模型根据原理图利用MATLAB/SIMULINK软件中,电力电子模块库建立相应的仿真模型如图5图6仿真模型图3.2 仿真参数设置晶闸管参数:I vt=I/√3=0.577I d=0.577×6.04=3.46AI fav=I VT/1.57=2.2A额定值一般取正向电流的1.5-2倍,所以取3.3-4.4A之间的数值。
UFM=URM=2.45U2=245V晶闸管额定电压选值一般为最大承受电压的2-3倍,所以额定电压取值为490-735V之间。
变压器参数计算Ud=100V变压器二次侧采用星形接法,所以变压器二次侧峰值为141.4V变压器一次侧采用三角形接法,因此每相接入电压峰值为380V一次侧电压接电网电压220V电压器变比则约为2.693.3仿真结果U2波形仿真图图7 U2波形仿真图U波形图vt1图8 U vt1波形图波形图Ivt1Ivt图9 I vt1波形图u波形图d图10 u d波形图i波形图d图11 i d波形图设置触发脉冲α分别为0°。
电力电子技术课程设计指导书样本

电力电子技术课程设计指引书一、课程设计总体目的《电力电子技术》课程是一门专业技术基本课,电力电子技术课程设计是电力电子技术课程理论教学之后一种实践教学环节。
其目是训练学生综合运用学过变流电路原理基本知识,独立完毕查找资料、选取方案、设计电路、撰写报告能力,使学生进一步加深对变流电路基本理论理解和基本技能运用,为此后学习和工作打下坚实基本。
《电力电子技术》课程设计是配合变流电路理论教学,为自动化专业开设专业基本技术技能设计,课程设计对自动化专业学生是一种非常重要实践教学环节。
通过设计可以使学生巩固、加深对变流电路基本理论理解,提高学生运用电路基本理论分析和解决实际问题能力,培养学生创新精神和创新能力。
二、合用专业、答疑地点及时间合用专业:自动化。
答疑地点:01517教室答疑时间:二本:1月4、5、7日8-12时三本:1月4、5、7日13-17时三、先修课程电路、电子技术、电机拖动四、课程设计学时分派课程设计时间为1 周:调研,查资料1 天。
总体方案设计 1 天。
单元电路设计 3 天(画原理图,参数计算)。
撰写设计阐明书及验收 1 天。
五、课程设计总体规定⑴熟悉整流和触发电路基本原理,可以运用所学理论知识分析设计任务。
⑵掌握基本电路数据分析、解决;描绘波形并加以判断。
⑶能对的设计电路,画出线路图,分析电路原理。
⑷准时参加课程设计指引,定期报告课程设计进展状况。
⑸广泛收集有关技术资料。
⑹独立思考、刻苦钻研、禁止抄袭。
⑺准时完毕课程设计任务,认真、对的地书写课程设计报告。
⑻培养实事求是、严谨工作态度和认真工作作风。
六、课程设计内容⑴明确设计任务,对所要设计任务进行详细分析,充分理解系统性能、指标内容及规定。
⑵制定设计方案⑶进行详细设计①单元电路设计②参数计算③器件选取④绘制电路原理图⑷撰写课程设计报告(阐明书):课程设计报告是对设计全过程系统总结,也是培养综合科研素质一种重要环节。
课程设计报告详细规定如下:(1)格式(字体、字号、字形、图号、表号)必要符合模版规定。
三相半波可控整流电路实验报告

实验目的:1. 了解三相半波可控整流电路的原理和工作方式;2. 学习使用数字电压表和示波器等仪器进行电路参数测量;3. 掌握实验中的电路搭建及参数调试方法。
实验器材和仪器:1. 三相变压器2. 三相全控桥整流电路模块3. 三相电阻负载4. 数字电压表5. 示波器6. 电缆和连接器等实验原理:三相半波可控整流电路是一种常用的电能调节电路,通过控制可控硅实现对三相交流电信号的半波整流,可以实现对电源输出功率的控制,被广泛应用于电力调节和电机控制等领域。
实验中,我们需要了解三相交流电信号的波形特性、半波整流电路的工作原理和控制方法,以及数字电压表和示波器的使用方法。
实验步骤:1. 将三相变压器连接至三相交流电源,并接入三相全控桥整流电路模块和三相电阻负载。
保证接线正确并紧固端子。
2. 分别连接数字电压表和示波器至电路中,用于测量电压和波形。
3. 打开电源,调节三相变压器输出电压为合适数值,确保电路工作在正常工作范围。
4. 通过控制可控硅触发脉冲信号,实现对半波整流电路的控制,观察电压和电流波形的变化。
5. 使用数字电压表和示波器分别测量并记录输出电压、输出电流和波形特性,包括峰值、均值、谐波含量等参数。
实验结果与分析:1. 经过实验,我们得到了三相半波可控整流电路的电压和电流波形数据,通过分析这些数据,可以得到电路的输出功率、效率和电流谐波等重要参数,为后续电路设计和控制提供了参考依据。
2. 通过调节可控硅触发角,我们观察到了电路输出电压的变化规律,进一步验证了半波整流电路的控制特性。
3. 实验数据的测量准确性和稳定性对实验结果的分析具有重要意义,确保了实验结果的可信度和准确性。
结论:三相半波可控整流电路的实验结果表明,该电路可以实现对三相交流电信号的半波整流和功率控制,通过控制可控硅的触发信号,实现对输出电压和电流波形的调节和监测。
这为电能调节和电机控制等领域的应用提供了重要参考。
在实验中,我们还学习了数字电压表和示波器等仪器的使用方法,提高了实验操作和数据处理的能力,为今后的实验研究奠定了基础。
电力电子技术课程设计--三相可控整流技术的工程应用

课程设计报告题目三相可控整流技术的工程应用学院名称电气信息学院专业班级 xxxxxxxxxxxxxxx学号 xxxxxxxxxx学生姓名 xxxxx指导教师 xxxxxxx2012年1月12日摘要电力电子技术在电力系统中有着非常广泛的应用。
据估计,发达国家在用户最终使用的电能中,有60%以上的电能至少经过一次以上电力电子变流装置的处理。
电力系统在通向现代化的进程中,电力电子技术是关键技术之一。
可以毫不夸张地说,如果离开电力电子技术,电力系统的现代化就是不可想象的。
整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路尤其是三相桥式可控整流电路是电力电子技术中最为重要也是应用得最为广泛的电路,不仅应用于一般工业,也广泛应用于交通运输、电力系统、通信系统、能源系统及其他领域。
因此对三相桥式可控整流电路的相关参数和不同性质负载的工作情况进行对比分析与研究具有很强的现实意义,这不仅是电力电子电路理论学习的重要一环,而且对工程实践的实际应用具有预测和指导作用。
关键词:电力电子三相桥式可控电路整流AbstractPower electronics technology has a very wide range of applications in the power system. It is estimated that in developed countries more than 60% of the electrical energy at least through the end-use of electricity, more than once device processing power electronic converters. Power system in the process leading to the modern power electronics technology is one of the key technologies. It is no exaggeration to say that, if you leave power electronics technology, the modernization of the electric power system is unthinkable.Rectifier circuit technology has very wide application in industrial production. Such as voltage variable speed DC power supply, electrolysis and electroplating DC power. The rectifying circuit is the AC power is converted to DC power circuit. Most of the rectifier circuit by the transformer, rectifier circuit, and filters. It has been widely used in the field of DC motor speed control, generator excitation regulator, electrolysis, electroplating.Rectifier circuit, especially the three-phase bridge controlled rectifier circuit is the most important and the most widely used application circuit in the power electronics technology is not only used in general industrial, is also widely used in the transportation, electric power systems, communication systems, energy systems and other fields. Comparative analysis and study of the three-phase bridge controlled rectifier circuit parameters and the different nature of the work load has great practical significance, this is not only an important part of the learning power electronic circuit theory and engineering practice The practical application of predictive and guiding role.Key words:Power electronic Three-phase bridge controlled circuit Rectifier目录摘要 (2)一.设计任务书 (5)二.设计说明 (6)2.1设计目的 (6)2.2作用 (6)2.3技术指标 (6)三.设计方案的选择 (7)3.1三相桥式可控整流电路原理 (7)3.2三相桥式可控整流电路原理图 (7)3.3三相桥式可控整流电路工作波形 (8)3.4总设计框图 (10)四.触发电路的设计 (11)五.保护电路的设计 (12)5.1过电压保护 (12)5.2过电流保护 (13)六.参数的计算 (14)七.器件选择清单 (15)八.三相桥式可控整流电路的工程应用 (16)九.心得体会 (16)参考文献 (17)一.设计任务书院系:xxxxxxxxx年级:xxxxxx专业班级:xxxxxxxxxx二.设计说明2.1设计目的合理运用所学知识,进行电力电子电路和系统设计的能力,理解和掌握常用的电力电子电路及系统的主电路、控制电路和保护电路的设计方法,掌握元器件的选择计算方法。
三相半波、桥式(全波)整流及六脉冲整流电路

三相半波、桥式(全波)整流及六脉冲整流电路1.三相半波整流滤波当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。
图1所示就是三相半波整流电路原理图。
在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差1200叠加,并且整流输出波形不过0点,其最低点电压一叫叩/2(恸。
-120加1/2。
式中up——是交流输入电压幅值。
并且在一个周期中有三个宽度为1200的整流半波。
因此它的滤波电容器的容量可以比单相半波整流和单相全波整流时的电容量都小。
图1三相半波整流电路原理图2.三相桥式(全波)整流滤波图2所示是三相桥式全波整流电路原理图。
图3是它们的整流波形图。
图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。
在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。
图2三相桥式全波整流电路原理图由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。
(1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管;(2)三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。
由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。
1/二由交葆电反波电।一三相半波整潼电压波彤u)三柏至波赘灌电屈漉影图3三相整流的波形图①三相半波整流波形的脉动周期是1200而三相全波整流波形的脉动周期是600;②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是:t/=y/l-sin30°)⑴式中U——脉动幅度电压;UP是正弦半波幅值电压,比如有效值为380V的线电压,其半波幅值电压为:二-'口:;」二一⑵那么其脉动幅度电压就是:「L‘输出电压平均值U是从30o~150o积分得,%=1/(%/3)J包sin成必以)=1.7^=220x17=3747(3)L"一式中Ud——输出电压平均值;U A——相电压有效值。
三相半波可控整流电路(阻感负载)

1引言整流电路技术在工业生产上应用极广。
如调压调速直流电源、电解及电镀的直流电源等。
整流电路就是把交流电能转换为直流电能的电路。
大多数整流电路由变压器、整流主电路和滤波器等组成。
它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。
整流电路通常由主电路、滤波器和变压器组成。
20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。
滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。
变压器设置与否视具体情况而定。
变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。
整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。
把交流电变换成大小可调的单一方向直流电的过程称为可控整流。
整流器的输入端一般接在交流电网上。
为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。
由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。
以上负载往往要求整流能输出在一定范围内变化的直流电压。
为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。
2 三相可控整流电路当整流负载较大,或要求直流电压脉动较小,易铝箔时,应采用三相整流电路,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波的基础上进行分析。
3 三相半波可控整流电路(阻感性负载)3.1 工作原理如果负载为阻感负载,且L 值很大,则整流电路Id 的波形基本是平直的,流过晶闸管的电流接近矩形波。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力电子技术课程设计---三相半波整流电路————————————————————————————————作者:————————————————————————————————日期:1 三相半波整流电路的负载分析1。
1 引言单相整流电路线路简单,价格便宜,制造、调整、维修都比较容易,但其输出的直流电压脉动大,脉动频率低。
又因为它接在三相电网的一相上,当容量较大时易造成三相电网不平衡,因而只用在容量较小的地方.一般负载功率超过4kw要求直流电压脉动较小时,可以采用三相可控整流电路。
半波整流电路是一种实用的整流电路。
它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。
变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电.图1 半波整流电路变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图所示。
在0~K时间内,e2为正半周即变压器上端为正下端为负.此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。
这时D承受反向电压,不导通,Rfz,上无电压。
在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削”掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图所示,达到了整流的目的,但是,负载电压Usc。
以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。
这种除去半周、图下半周的整流方法,叫半波整流.不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。
图2 正弦波图形1。
2 设计任务设计指标:输入电压:三相交流380伏、50赫兹;输出功率:2KW;输出电压:DC110V;用集成电路芯片或分立元件组成触发电路;负载性质:电阻(10Ω)、电阻(10Ω)电感(10mH).当整流负载容量较大,或要求直流电压脉动较小时,应采用三相整流电路,其交流侧由三相电源供电。
三相可控整流电路中,最基本的是三相半波可控整流电路。
2 三相半波整流电路阻感负载2.1三相半波整流电路带电阻负载为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流入电网.三个晶闸管分别接入a,b,c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有共端连接方便假设将电路中的晶闸管换作二极管并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。
此时,三个二极管对应的相电压中哪一个的值较大,则该相对应的二级管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相的相电压。
在一个周期中,器件工作情况如下:在wt1~wt2期间,a相电压最高,VD1导通;在wt2~wt3期间,b相电压最高,VD2导通,在wt3~w t4期间,c相电压最高,VD3导通。
此后,在下一周期相当于wt1的位置即 wt4的时刻,VD1又导通,如此重复前一周期的工作情况。
因此,一周中 VD1,VD2,VD3轮流导通。
每管各导通120°.在相电压的交点wt1,wt2,wt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。
对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0°,要改变触发角只能在此基础上增大,即沿时间坐标轴右移。
若在自然换相点处触发相应的晶闸管导通,则电路的工作情况与以上分析的二极管整流工作情况一样。
当α=0°时,变压器二次侧a相绕组和晶闸管VT1的电流波形如图所示,另两相电流波形形状相同,相位依次滞后120°,可见变压器二次绕组电流有直流分量。
增大α的值,将脉冲后移,整流电路的工作情况发生相应的变化。
对于α=30°的波形,从输出电压电流的波形可以看出,这时负载电流处于连接和断续的临界状态,各相仍导电120°。
如果α﹥30°,例如α=60°时,整流电压的波形如图所示,当导通一相的相电压过零变负时,该相晶闸管关断。
此时下一相晶闸管虽承受正电压,但它的触发脉冲还未到,不会导通,因此输出电压电流均为零,直到触发脉冲出现为止。
这种情况下,负载电流断续,各晶闸管导通角为90°小于120°。
若α角继续增大,整流电压将越来越小,α=150°时,整流输出电压为零。
固电阻负载时α角的移相范围为 150°.2。
2 阻感负载如果负载为阻感负载,且L值很大,则整流电路Id的波形基本是平直的,流过晶闸管的电流接近矩形波。
α≤30°时,整流电压波形与电阻负载时相同,因为两种负载情况下,负载电流均连续。
α﹥30°时,例如α=60°时的波形如图,当U2过零时,由于电感的存在,阻止电流下降,因而VT1继续导通,直到下一相晶闸管VT2的触发脉冲到来,才发生换流,由VT2导通向负载供电,同时向VT1施加反压使其关断。
这种情况下Ud波形中出现负的部分,若α增大,Ud 波形中负的部分将增多,至α=90°。
3 设计方案选择及论证3.1电阻性负载如图3三只整流二极管换成三只晶闸管,如果在wtl、wt3、wt5时刻,分别向这三只晶闸管VT1、VT3、VT5施加触发脉冲,ug1,ug3,ug5,则整流电路输出电压波形与整流二极管时完全一样,如图5所示,为三相相电压波形正向包络线.从图中可以看出,三相触发脉冲的相位间隔应与三相电源的相位差一致,即均为120°。
每个晶闸管导通120°,在每个周期中,管子依次轮流导通,此时整流电路的输出平均电压为最大.如果在wtl、wt3、wt5时刻之前送上触发脉冲,晶闸管因承受反向电压而不能触发导通,因此把它作为计算控制角的起点,即该处的a=0。
若分析不同控制角的波形,则触发脉冲的位置距对应相电压的原点为30°+a图4是三相半波可控整流电路电阻性负载口a =30。
时的波形.设电路图5己在工作,w相的VT5已导通,当经过自然换相点l点时,虽然u相所接的VTl己承受正向电压,但还没有触发脉冲送上来,它不能导通,因此VT5继续导通,直到过1点即a=30。
时,触发电路送上触发脉冲Ug1,VTl被触发导通,才使VT5承受反向电压而关断,输出电压Ud波形由Uw波形换成Uu波形.同理在触发电路送上触发脉冲ug3时,VT3被触发导通,使VT1承受反向电压而关断,输出电压Ud波形由Uu波形换成Uv波形,各相就这样依次轮流导通,便得到如图4所示输出电Ud的波形。
整流电路的输出端由于负载为电阻性,负载流过的电流波形站与电压波形相似,而流过VTl管的电流波形iTl仅是id波形的1/3区间,如图4所示。
U相所接的VTl阳极承受的电压波形uT1可以分成三个部分:(1)VTl本身导通,忽略管压降,UTl=0:(2)VT3导通,VTl承受的电压是U相和V相的电位差,UT1=Uuv:(3)VT5导通,VTl承受的电压是u相和w相的电位差,UTI=Uuw。
从图4可以看出每相所接的晶闸管各导通120°,负载电流处于连续状态,一旦控制角a大于30°,则负载电流断续。
如图5所示,a=60°,设电路己工作,w相的VT5己导通,输出电压Ud波形为Uw波形。
当w相相电压过零变负时,UT5立即关断,此时U相的vTl虽然承受正向电压,但它的触发脉冲还没有来,因此不能导通,三个晶闸管都不导通,输出电压Ud为零。
直到U相的触发脉冲出现,VTl导通,输出电压Ud波形为Uu波形.其他两相亦如此,便得到如图5输出电压Ud波形。
VTl阳极承受的电压波形UTl除上述三部分与前相同外,还有一段是三只晶闸管都都不导通,此时UT1波形承受本相相电压Uu波形,如图5所示。
述分析可得出如下结论:(1)当控制角a为零时输出电压最大,随着控制角增大,整流输出电压减小,到a=150。
时,输出电压为零.所以此电路的移相范围是0°~150°.(2)当a≤30°时,电压电流波形连续,各相晶闸管导通角均为120°;当a〉30°时电压电流波形间断,各相晶闸管导通角为150°一a°由此整流电路输出的平均电压Ud的计算分两段:(1)当0°≤a≤30°时(2)当30°〈a≤150°时负载平均电流: Id=Ud/Rd每个晶闸管的平均电流:Idt = 1/3 Id晶闸管承受的最大电压:Utm=√6U2对三相半波可控整流电路电阻性负载而言,通过整流变压器二次绕组电流的波形与流过晶闸管电流的波形完全一样。
图3 电路图图4三相半波可控整流电路电阻性负载口a =30°时的波形图5三相相电压波形正向包络线3。
2 电感性负载电路如图6所示,设电感Ld的值足够大,满足Ld〉>Rd,则整流电路的输出电流id连续且基本平直。
以a=60°为例,在分析电路工作情况时,认为电路已经进入稳态运行.在wt=0时,w相所接晶闸管VT5已经导通,直到wtl时,其阳极电源电压Hw等于零并开始变负,这时流过电感性负载的电流开始减小,因在电感上产生的感应电动势是阻止电流减小的,从而使电感上产生的感应电动势对晶闸管来说仍然为正,VT5继续导通.直到wt2时刻,即a=60°时,触发电路送上触发脉冲Ugl,VTl被触发导通,才使VT5承受反向电压而关断,输出电压Ud波形由Uw波形换成Uu波形.如此下去,得到输出电压Ud,如图所示,Ud波形电压出现负值,但只要Ud波形电压的平均值不等于零,电路可正常工作,电流id连续平直,波形如图7所示.三只晶闸管依次轮流导通,各导通120°,流过晶闸管的电流波形为矩形波,如图7所示。
UTI波形仍由三段曲线组成,和电阻负载电流连续时相同.当a〈=30°时,Ud波形和电阻性负载时一样,不过输出电流id是平直的直线.随着控制角的增大超过30°时,整流电压波形出现负值,导致平均电压Ud降。
当a=90°时Ud波形正、负面积相等,平均电压Ud为零,所以三相半波电感性负载的有效移相范围是0°-—90°。
电路各物理量的计算如下Id=Ud/Rd 因为电流连续平直,负载电流有效值I即是负载电流平均值Id。