ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
TL494是什么芯片?TL494工作原理及典型电路,十分钟带你快速搞懂TL494

TL494是什么芯片?TL494工作原理及典型电路,十分钟带你快速搞懂TL494今天讲的是TL494,主要分为以下几个方面:1. TL494是什么?2. TL494引脚图3. TL494主要特征4. TL494内部结构5. TL494工作原理6. TL494典型电路7. 总结1. TL494是什么?TL494是一种固定频率脉宽调制电路,它包含了开关电源控制所需的全部功能,广泛应用于桥式单端正激双管式、半、全桥式开关电源。
TL494器件集成了在单个芯片上构建脉冲宽度调制(PWM)控制电路所需的所有功能。
该器件主要设计用于电源控制,可灵活地为特定应用定制电源控制电路。
图 1 TL494 PWM控制芯片2. TL494引脚图图 2 TL494引脚图1脚/同相输入:误差放大器1同相输入端。
2脚/反相输入:误差放大器1反相输入端。
3脚/补偿/PWM比较输入:接RC网络,以提高稳定性。
4脚/死区时间控制:输入0-4VDC电压,控制占空比在0-45%之间变化。
同时该因脚也可以作为软启动端,使脉宽在启动时逐步上升到预定值。
5脚/CT:振荡器外接定时电阻。
6脚/RT:振荡器外接定时电容。
振荡频率:f=1/RTCT。
7脚/GND:电源地。
8脚/C1:输出1集电极。
9脚/E1:输出1发射极。
10脚/E2:输出2发射极。
11脚/C2:输出2集电极。
12脚/Vcc:芯片电源正。
7-40VDC。
13脚/输出控制:输出方式控制,该脚接地时,两个输出同步,用于驱动单端电路。
接高电平时,两个输出管交替导通,可以用于驱动桥式、推挽式电路的两个开关管。
14脚/VREF:5VDC电压基准输出。
15脚/反相输入:误差放大器2反相输入端。
16脚/同相输入:误差放大器2同相输入端。
3. TL494主要特征(1)具有两个完整的脉宽调制控制电路,是PWM芯片;(2)两个误差放大器。
一个用于反馈控制,一个定义为过流保护等保护控制;(3)带5VDC基准电源;(4)死区时间可以调节;(5)输出级电流500mA;(6)输出控制可以用于推挽、半桥或单端控制;(7)具有欠压封锁功能。
TL494LM339方案ATX电源电路工作原理和维修

LWT2005 [TL494(KA7500)+LM339] ATX电源电路工作原理与维修随着电脑的逐渐普及和深入到家庭,显示器已经成为维修界的一个亮点,ATX开关电源又将成为维修界的一个新的亮点。
本文以市面上最常见的LWT2005型开关电源供应器为例,详细讲解最新ATX开关电源的工作原理和检修方法,对其它型号的开关电源供应器,也借此起到一个抛砖引玉的作用。
一、概述ATX开关电源的主要功能是向计算机系统提供所需的直流电源。
一般计算机电源所采用的都是双管半桥式无工频变压器的脉宽调制变换型稳压电源。
它将市电整流成直流后,通过变换型振荡器变成频率较高的矩形或近似正弦波电压,再经过高频整流滤波变成低压直流电压的目的。
其外观图和部结构实物图见图1和图2所示。
ATX开关电源的功率一般为250W~300W,通过高频滤波电路共输出六组直流电压:+5V(25A)、—5V(0.5A)、+12V(10A)、—12V(1A)、+3.3V(14A)、+5VSB(0.8A)。
为防止负载过流或过压损坏电源,在交流市电输入端设有保险丝,在直流输出端设有过载保护电路。
二、工作原理ATX开关电源,电路按其组成功能分为:输入整流滤波电路、高压反峰吸收电路、辅助电源电路、脉宽调制控制电路、PS信号和PG信号产生电路、主电源电路及多路直流稳压输出电路、自动稳压稳流与保护控制电路。
参照实物绘出整机电路图,如图3所示。
1、输入整流滤波电路只要有交流电AC220V输入,ATX开关电源无论是否开启,其辅助电源就会一直工作,直接为开关电源控制电路提供工作电压。
如图4所示,交流电AC220V经过保险管FUSE、电源互感滤波器L0,经BD1—BD4整流、C5和C6滤波,输出300V左右直流脉动电压。
C1为尖峰吸收电容,防止交流电突变瞬间对电路造成不良影响。
TH1为负温度系数热敏电阻,起过流保护和防雷击的作用。
L0、R1和C2组成Π型滤波器,滤除市电电网中的高频干扰。
ATX电源中TL494各脚的作用

ATX电源中TL494各脚的作用第(1)脚为第一组误差放大器的同相输入端。
由+5V输出电压经R35、VR、R13取样送入第(1)脚。
第(2)脚为第一组误差放大器的反相输入端。
从第(14)脚输出的5V基准电压经R14、R20分压得到约4V的电压,与第(1)脚电压进行比较。
由于输+5V电压升高时第(1)脚取样电压成比例升高,当此电压超过4V时,误差放大器输出高电平,通过IC内部比较器控制输出脉宽减小,以使5V电压下降,达到稳压的目的。
第(3)脚为第一误差放大器输出的引出端。
外接C19、C20、C21、R11组成的频率校正网路,以防止放大器发生自激。
第(4)脚为死区控制端。
当IC工作在推挽状态时,其两组输出脉冲使两只推挽开关管依次导通和关断。
为了避免开关管的滞事效应造成瞬间导通而击穿开关管,在脉冲的序列之间留有一定的空隙,称为死区。
改变第(4)脚的电压,可改变死区时间。
当第(4)脚电压大于5V基准电压时,输出脉冲关断。
在0-5V,死区时间成比例增大。
利用此功能,第(4)脚在维亚开关电源中作为输出过压保护。
次级输出的12V电压,经R26、D7和R10分压后加到第(4)脚上,与TR3、TR4共同构成+-5V和+12V的过压保护电路。
正常情况下,TR4的基极由R28接在+5V输出端,R29接在输出端,R28和R29的分压使TR4偏置电压小于0.6V,TR4截止,其集电极经R36呈现近似5V的高电平,因而使TR3导通,由12V电压接出R26与地短路,二极管D7反偏截止,因而此部分电路与第三者第(4)脚电压无关。
第(4)脚电压为第(14)脚的5V基准电压经R12和R16分压的0.5V左右电压,设定末级半桥式开磁电路必要的死区时间。
当电源取样系统发生故障时,+5V电压升高或-5V电压因负载短路而降低时,TR4将导通,其集电极为低电平,使TR3截止。
12V电压经R26,使D7导通,第(4)脚电压被R10分压后仍为5V左右,使输出脉冲关断,电源保护,各组无输出。
软启动保护、过压保护、过流保护、欠压掉电保护设计实例

开关电源电路负责为整个机床数控系统各部分设备提供电源。
文中主要介绍了一种机床数控系统用开关电源各种保护电路的工作原理和实现方法,通过实际研制,使得该系统开关电源稳定性大大提高,保护功能稳定可靠,满足了批量生产要求。
1 保护电路工作原理分析机床数控用开关电源包含有软启动保护、过压保护、过流保护、欠压掉电保护等电路。
(1) 软启动电路由于开关电源输入整流电路后级大多采用电容性滤波电路滤波,在电源合闸瞬间,往往会产生电流幅值高达几十甚至几百安培的浪涌电流,此种浪涌电流十分有害,会造成开关电源启动故障甚至损坏。
常用的软启动电路有可控硅和限流电阻组成的防浪涌软启动保护、继电器触点组成的软启动保护、负温度系数电阻组成的软启动保护电路等。
本系统开关电源采用负温度系数电阻组成的软启动保护电路,简单实用,工作可靠。
如图1, 220 V 交流电经线圈L1滤波共模干扰后,整流产生约三百伏左右直流电压, RT 电阻为负温度系数热敏电阻,型号为M02-7Ω。
当电源合闸瞬间,浪涌电流使得热敏电阻发热,阻值迅速减小,输出直流电压逐渐建立,可有效防止浪涌电流对电源电路的冲击,使得整个电源半桥变换电路稳定可靠。
图1 负温度系数电阻组成的输入软启动电路在开关电源启动时,由于脉宽调制器尚未建立稳定的驱动脉冲,需采取措施使得驱动脉冲逐渐建立起来,该开关电源脉宽调制器采用性价比较高的脉宽调制器T L494。
如图2, TL494 的第四脚为死区控制,它既可以为变换功率管提供安全的死区时间控制,也可以作为驱动芯片的软启动控制。
开机瞬间,电容器C1上未建立电压, + 5 V 通过电容C1 送TL494: 4 脚,封锁脉宽调制器的输出脉冲。
随着电容C1 两端电压逐渐升高, T L494: 4 脚电压逐渐下降,驱动脉冲宽度逐渐展宽。
当辅助电源+ 15 V 出现故障时,三级管V1迅速导通, + 5 V 电压经三极管V1 送T L494: 4 脚,切断驱动脉冲,使开关电源停止工作而不致损坏。
TL494中文资料及应用电路

的 13 脚将立即从+5V 下跳到零电平,关机时 PG 输出信号比 ATX 开关电源+5V 输出电压提前几百毫秒消失, 通知主机触发系统在电源断电前自动关闭,防止突然掉电时硬盘的磁头来不及归位而划伤硬盘。 5、主电源电路及多路直流稳压输出电路 如图 8 所示,微机受控启动后,PS 信号由主板启动控制电路的电子开关接地,允许 IC2 的⑧、11 脚输出脉 宽调制信号,去控制与推动三极管 Q3、Q4 的 c 极相连接的 T2 推动变压器次级绕组产生的激励振荡脉冲。 T2 的初级绕组由它激振荡产生的感应电动势作用于 T1 主电源开关变压器的初级绕组,从 T1 次级①②绕组 产生的感应电动势经 D20、D28 整流、L2(功率因素校正变压器,也称低电压扼流线圈。以它为主来构成功 率因素校正电路,简称 PFC 电路,起自动调节负载功率大小的作用。当负载要求功率很大时,则 PFC 电路 就经过 L2 来校正功率大小,为负载输送较大的功率;当负载处于节能状态时,要求的功率很小,PFC 电路 通过 L2 校正后为负载送出较小的功率,从而达到节能的作用。)第④绕组以及 C23 滤波后输出—12V 电压; 从 T1 次级③④⑤绕组产生的感应电动势经 D24、D27 整流、L2 第①绕组及 C24 滤波后输出—5V 电压;从 T1 次级③④⑤绕组产生的感应电动势经 D21、L2 第②③绕组以及 C25、C26、C27 滤波后输出+5V 电压;从 T1 次级③⑤绕组产生的感应电动势经 L6、L7、D23、L1 以及 C28 滤波后输出+3.3V 电压;从 T1 次级⑥⑦绕 组产生的感应电动势经 D22、L2 第⑤绕组以及 C29 滤波后输出+12V 电压。其中,每两个绕组之间的 R (5Ω/1/2W)、C(103)组成尖峰消除网络,以降低绕组之间的反峰电压,保证电路能够持续稳定地工作。 ATX 微机开关电源维修教程 3 6、自动稳压稳流控制电路 (1)+3.3V 自动稳压电路 IC5(精密稳压电路 TL431)、Q2、R25、R26、R27、R28、R18、R19、R20、D30、D31、D23(场效应管)、 R08、C28、C34 等组成+3.3V 自动稳压电路。如图 9 所示。 当输出电压(+3.3V)升高时,由 R25、R26、R27 取得升高的采样电压送到 IC5 的 G 端,使 UG 电位上升,UK 电位下降,从而使 Q2 导通,升高的+3.3V 电压通过 Q2 的 ec 极,R18、D30、D31 送至 D23 的 S 极和 G 极, 使 D23 提前导通,控制 D23 的 D 极输出电压下降,经 L1 使输出电压稳定在标准值(+3.3V)左右,反之, 稳压控制过程相反。 (2)+5V、+12V 自动稳压电路 IC2 的①、②脚电压取样比较器正、负输入端,取样电阻 R15、R16、R33、R35、R68、R69、R47、R32 构成 +5V、+12V 自动稳压电路。如图 10 所示。 当输出电压升高时(+5V 或+12V),由 R33、R35、R69 并联后的总电阻取得采样电压,送到 IC2 的①脚和② 脚,与 IC2 内部的基准电压相比较,输出误差电压与 IC2 内部锯齿波产生电路的振荡脉冲在 PWM(比较器) 中进行比较放大,使⑧、11 脚输出脉冲宽度降低,输出电压回落至标准值的范围内。 反之稳压控制过程相反,从而使开关电源输出电压保持稳定。 (3)+3.3V、+5V、+12V 自动稳压电路 IC4(精密稳压电路 TL431)、IC3、Q1、R01、R02、R03、R04、R05、R005、D7、C09、C41 等组成+3.3V、 +5V、+12V 自动稳压电路。如图 11 所示。 当输出电压升高时,T3 次级绕组产生的感应电动势经 D50、C04 整流滤波后一路经 R01 限流送至 IC3 的① 脚,另一路经 R02、R03 获得增大的取样电压送至 IC4 的 G 端,使 UG 电位上升,UK 电位下降,从而使 IC4 内发光二极管流过的电流增加,使光敏三极管导通,从而使 Q1 导通,同时经负反馈支路 R005、C41 使开关 三极管 Q03 的 e 极电位上升,使得 Q03 的 b 极分流增加,导致 Q03 的脉冲宽度变窄,导通时间缩短,最终 使输出电压下降,稳定在规定范围之内。 反之,当输出电压下降时,则稳压控制过程相反。 (4)自动稳流电路 IC2 的 15、16 脚电流取样比较器正、负输入端,取样电阻 R51、R56、R57 构成负载自动稳流电路。如图 12 所示。 负端输入端 15 脚接稳压+5V,正端输入端 16 脚, 该脚外接的 R51、R56、R57 与地之间形成回路,当负载
TL494开关电源设计 BUCK电路解析

死区时间控制
反馈/PWM比较器输入
图二:TL494时序图
3.功能描述
? 含有控制开关式电源所需的主要功能块。 ? 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) ? 输出开关管导通时间由“死区时间控制”和“反馈/PWM比
较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 ? 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。 ? “输出控制”=5V为推挽输出,最小死区2%,最大占空比 48%; “输出控制” =0为单端输出,最小死区4%。
五、 TL494 的工作条件
1. 工作条件
条件
符号
最小
电源电压
VCC
7.0
集电极电压
VC1,VC2
--
集电极输出电流(每个三极管) IC1,IC2
--
误差放大器输入共模电压
Vin
-0.3
典型 15 30 ---
最大 单位
40
V
40
V
200
mA
VCC-2 V
反馈/PWM比较器输入端电流
Ifb
--
--
0.3
mA
基准输出电流 计时电阻 计时电容 振荡器频率
Iref RT CT Fosc
--
--
1.8
30
0.0047 0.01
1.0
40
10
mA
500
kΩ
10
μF
200
kHz
六、原理图 3A/400 IN5399*4
3300u/35V C1
L1 270uH/2.0A
T2
ATX电源常见故障检修

ATX电源常见故障检修电源是计算机的重要组成部件,它是计算机正常工作的基础。
当今微机绝大多数配置ATX 电源,它是AT电源发展而来,主变换电路和AT电源相似,并增加了一些辅助电路,除给主机提供稳定可靠的工作电源外,还可配合ATX主板实现软件开关主机的功能。
ATX电源除经常发生和AT电源共有的故障外,还有一些特有的故障。
下面简要介绍ATX电源的常见故障,仅供参考。
1.ATX电源的工作原理方框图从图1可以看出,ATX电源的主变换电路和AT电源相似,采用双管半桥它激式电路。
整个电路的核心是脉宽调制(PWM)控制芯片,多数ATX电源都采用TL494(或其替代芯片),利用TL494的④脚“死区控制”功能来实现主变换电路的开启和关闭。
2.如何判定故障范围由于微机电源都设置了过压、过流保护电路,电源发生故障时,大多表现为主机加电无任何指示,主机不启动,显示器无任何显示,电源风扇不转。
由于ATX主板上有一部分电路称为“电源检测模块”,它可以控制电源的开启和关闭,这部分电路出现了故障,也表现为上述故障现象。
那么,怎样判定是ATX电源故障还是主板故障呢?ATX电源和主板之间是通过一个20脚长方形双排综合插件连接的,如图2所示,其中14脚(绿色线)为PS-ON信号,主板就是通过这个信号来控制电源的开启和关闭的。
当主板电源的“电源检测部件”使PS-ON信号为高电平时,电源关闭;当主板使PS-ON信号为低电平时,电源工作,向主板供电。
当ATX电源不和主板相连时,电源内部提供PS-ON信号高电平,ATX电源不工作,处于待机状态。
当计算机通电后无法开启时,可将所有供电插头拔下,将14脚和地线(黑色线)用导线短接,若电源风扇转动,各路输出正确,即可判定电源是正常的,否则是电源故障。
3.ATX电源常见故障维修(l)无300V直流电压。
这种故障,首先从交流输入插座查起,保险管、整流二极管(桥)、滤波电容是常坏的元件。
找到损坏元件后,还要检查主变换电路大功率开关管及其附属电路,在保证其正常时,才可以加电,因为这种故障通常是山大功率元件损坏后引起的。
TL494开关电源设计 BUCK电路解析

L1 270uH/2.0A
T2
TIP127 (100V/5A/Darl-L)
R1 10K
R2
104 3K C3 R6
FR307 D4
1K
103 570
2
1
1
1
8
C VC
2
1
C
C
0
1
9
2
1
E
E
PW M
3
C4
682
C5R10R133K220u/25V
IN1- 2 R12 1M
IN1+
序(续)
触发器
时钟
? 当输出控制电压
=H时, Q和时钟 Q
信号均为0时, Q
Q1基极高电平导
通, /Q和时钟信 Q1射极
号均为0时, Q2
基极高电平导通, Q2射极
两管轮流导通,
称为推挽工作方 输出控制
式。
? 当输出控制电压 =L时,时钟信号 为0时, Q1和Q2 基极获高电平导 通,两管同时导 通,称为单端工 作方式。
t
(tON)min (tOFF)max
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO
2IOC
VIN-VSTA
IOC
(tON)min
(tOFF)max
-VF
t
临界连续状态
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA
VO
IO<IOC
-VF
t
(tON)min (tOFF)max
3300u/35V C1
L1 270uH/2.0A
T2
TIP127 (100V/5A/Darl-L)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。