TL494开关电源设计--BUCK电路

合集下载

TL494开关电源毕业设计(12V5A)毕业设计1

TL494开关电源毕业设计(12V5A)毕业设计1

开关电源设计摘要随着电力电子技术的发展和新型功率元器件的不断出现,开关电源技术得到了飞速的发展,在计算机、通讯、电力、家用电器、航空航天等领域得到广泛应用,取得了显。

开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制和场效应管构成。

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。

开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

目前世界各国都有广泛的应用,特别是对大容量高频开关电源的研究和开发已成为当今电力电子学的主要研究领域,并派生了很多新的研究方向。

本文详细分析了高性能、大功率直流开关电源的工作原理,并提出了主电路和控制电路的详细设计方案。

在此基础上,完成了整个系统的硬件电路设计和软件程序的编制,并对电源装置的硬件和软件进行了调试和修改。

在分析原理的基础上,本文从三相桥式不控整流、全桥变换器、高频变压器、滤波电路等环节对该系统的主电路进行了阐述,同时探讨了该电源系统实现大功率的解决方案,即采用多个电源模块并联运行。

在电压调节环节上,详细分析了基于TL494电源管理芯片。

本文研制的直流开关电源具有输出电压可调、输出电流大、纹波小等特点。

关键词:开关电源,TL494,高频变压器,PWM控制Switching power supply designAbstractWith the development of power electronic technology and new type power components appear continuously, switching power supply technology obtained the rapid development, the computer, communications, power, household appliances, aerospace and other fields are widely used, and achieved significant results. Switching power supply with high efficiency, small volume, light weight and other significant characteristics.Switching power supply is the use of modern electronic technology, the control switch transistor turn-on and turn-off time ratio, to maintain the stability of the output voltage of a power supply, switching power supply is usually consists of pulse width modulation and a field effect tube. Switch power supply and linear power supply, the two's cost as the output power increases, but the two growth rate of different. Switching power supply than ordinary linear power supply efficiency is high, the power switch in the development and application in saving energy, saving resource and protect environment has important significance. At present, all the countries in the world have a wide range of applications, particularly for large capacity high frequency switching power supply research and development have become the main research field of power electronics, and derive a lot of new research direction.This paper presents a detailed analysis of a high performance, high power DC power supply and working principle, and has proposed the main circuit and control circuit of the detailed design scheme. On this basis, the system hardware circuit design and software program, and the power supply device hardware and software debugging and modification. Based on the analysis of the principle, this article from the three-phase bridge uncontrolled rectifier, a full bridge converter, a high frequency transformer, filter circuit of the main circuit of the system are described, and discussed the power supply system of high power solutions, the use of multiple power supply modules operating in parallel. In the voltage regulating link, a detailed analysis of the power management chip based on TL494. This paper designed DC switching power supply with adjustable output voltage, output current, ripple is small wait for a characteristic.Keywords: Switching Power Supply, TL494, High-frequency Transformer, PWM control目录开关电源设计 (I)摘要 (I)第1章绪论 (3)第一章开关电源基础技术 (4)1.1 开关电源概述 (4)1.1.1 开关电源的概念及工作原理 (4)1.1.2 开关电源的特点 (5)1.2 开关电源的分类 (5)1.3 开关电源典型结构............................................................... 错误!未定义书签。

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)

开关电源TL494控制芯片的电路设计及调试(开关电源课程设计)
开关电源TL494控制芯片是一种常用的控制芯片,它能够实现开关电源的电压和电流稳定控制,是开关电源的核心控制部件。

下面是TL494控制芯片的电路设计及调试步骤:
1. 电路设计
根据开关电源的需要,设计电源的输入电压、输出电压和输出电流等参数,并选择合适的开关管、电感和电容等元件。

2. 搭建电路原型
根据电路设计图,搭建电路原型,注意元件的布局和连接方式,保证电路的稳定性和可靠性。

3. 编写程序并调试
将TL494控制芯片与MSP430单片机相连接,并编写程序。

在调试过程中,可以先将电源的输出电压和电流设定为目标值,然后逐步调整控制芯片的参数,如占空比、频率等,观察输出是否稳定和符合要求。

如果出现问题,可以通过示波器等工具进行检测和分析,找出问题所在并进行调整。

4. 完善电路和程序
在调试完成后,可以对电路和程序进行完善,如加入保护电路、优化控制算法等,以提高电源的性能和稳定性。

需要注意的是,在设计和调试过程中,应注意安全问题,如避免高压触电、防止电路短路等,以确保人身安全和电路的正常运行。

TL494开关电源设计--BUCK电路解析

TL494开关电源设计--BUCK电路解析

+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极

TL494控制BUCK型开关电源电路

TL494控制BUCK型开关电源电路

TL494控制BUCK型开关电源电路摘要1、引言电源的优劣直接影响到各类电子设备的性能。

因此设计出性能良好的电源意义重大。

广义的讲,能够提供电能的设备称为电源。

我们这里所指的电源是把身边现有的电源转化成我们电子设备所需要的某种类型电源的一种电子装置。

开关电源是直流稳压电源的一种,自问世以来,以其轻小高效越来越受到人们的青睐,在直流电源的大多场合已取代了传统的线性开关电源,并且正不断发展,其市场广阔。

2、DC/Dc变换器主电路及其控制方式开关电源功率调整管都工作在开关状态下,而线性稳压电源的功率管工作在线性放大状态下,这是开关电源与线性稳压电源的显著区别,也是开关电源这个名字由来的原因。

目前开关电源中目前常用的半导体开关管有GTR、MOSFET、IGBT等,通过控制信号控制其导通与关断,实现将一种直流电转换成另外一种大小的直流电,配上电感电容滤波器件能输出稳定。

DC/DC变换器是开关电源中最主要的功率变换环节。

DC/DC变换器有输入输出无隔离(即“直通”)型和输人输出隔离型两种类型。

“直通”型DC/oC变换器典型的电路有Buck(降压)型、Boost(升压)型、Buck一Boost(升降压)式和Cuk型等几种类型;输人与输出隔离型的DC/DC变换器典型的电路有单端正激式、单端反激式、推挽式、半桥式和全桥式等几种类型。

但无论哪种类型的DC/DC变换器的开关电源,其基本原理都是开关管工作于开关状态下,通过改变开关管导通与关断的时间关系来改变输出电压的。

开关电源要实现输出稳定少不了相应的控制电路,其电路有三种:(l)由分立元件构成;(2)通过软件编程由单片机系统来实现;(3)由专用的集成控制器来实现。

其中专用集成控制器实现方式以其使用方便、无需编程、所需元件数量少等优点,是开关电源常用的一种控制方式。

TL494就是其中常见的一种专用集成控制器。

3、TL494介绍TL494由德州仪器公司设计并推出,推出后立刻得到市场的广泛接受,尤其是在PC机的ATx半桥电源上。

基于TL494的同步整流Buck稳压电源设计

基于TL494的同步整流Buck稳压电源设计

基于TL494的同步整流Buck稳压电源设计
蒋冠东;龙顺宇;胡柏威;刘世杰
【期刊名称】《工业控制计算机》
【年(卷),期】2024(37)4
【摘要】设计了一款基于TL494的同步整流Buck稳压电源。

该设计通过控制单片机端PWM占空比,经LPF滤波器将PWM信号转变为直流电压信号,从而由TL494产生PWM信号控制同步整流管的占空比,实现电压0至30 V稳定连续可调输出。

输出采样电路将电流值经放大后传送给单片机和TL494,当电流超过5 A 后,MOS管关断,实现过流保护。

经实验测量表明,在输入电压48 V、输出电压30 V、输出电流5 A的情况下,该设计负载调整率小于1%、输出纹波低于50 mV、效率高于96%,满足基本数控要求。

【总页数】3页(P152-154)
【作者】蒋冠东;龙顺宇;胡柏威;刘世杰
【作者单位】海南热带海洋学院
【正文语种】中文
【中图分类】TM4
【相关文献】
1.基于STM32F334双向同步整流BUCK-BOOST数字电源设计
2.基于TL494控制的同步整流BUCK恒流源的设计∗
3.基于LTC3879高效同步整流BUCK变换器
的设计4.基于同步整流Buck变换器的高精度数控电源设计5.基于单片机的同步整流Buck稳压开关电源设计
因版权原因,仅展示原文概要,查看原文内容请购买。

基于TL494开关电源设计

基于TL494开关电源设计

基于TL494的DC-DC开关电源设计摘要随着电子技术的高速发展,电子系统的应用领域越来越广泛,电子设备的种类也越来越多,电子设备与人们的工作、生活的关系日益密切。

近年来 ,随着功率电子器件(如IGBT、MOSFET)、PWM技术以及电源理论发展 ,新一代的电源开始逐步取代传统的电源电路。

该电路具有体积小,控制方便灵活,输出特性好、纹波小、负载调整率高等特点。

开关电源中的功率调整管工作在开关状态,具有功耗小、效率高、稳压范围宽、温升低、体积小等突出优点,在通信设备、数控装置、仪器仪表、视频音响、家用电器等电子电路中得到广泛应用。

开关电源的高频变换电路形式很多, 常用的变换电路有推挽、全桥、半桥、单端正激和单端反激等形式。

本论文采用双端驱动集成电路——TL494输的PWM脉冲控制器设计小汽车中的音响供电电源,利用MOSFET管作为开关管,可以提高电源变压器的工作效率,有利于抑制脉冲干扰,同时还可以减小电源变压器的体积。

关键词:IGBT,PWM,推挽电路,半桥电路,单端正激BASED ON THE DC-DC TL494 SWITCHING POWER SUPPLYABSTRACTWith the rapid development of electronic technology, electronic systems, more and more extensive applications, the types of electronic equipment, more and more electronic equipment and people work and live closer and closer. In recent years, with the power electronic devices (such as IGBT, MOSFET), PWM switching power supply technology and development of the theory, a new generation of power began to gradually replace the traditional power supply circuits. The circuit is small, flexible to control the output characteristics of a good, ripple, load adjustment rate and so on.Switching power supply in the power adjustment control work in the off state, with low power consumption, high efficiency, wide voltage range, low temperature rise, and other outstanding advantages of small size, the communication equipment, CNC equipment, Instrumentation, video audio, home appliances so widely used in electronic circuits. High frequency converter switching power supply so many forms of commonly used with push-pull converter, full bridge, half bridge, single-ended forward and the form of single-ended flyback. In this thesis, two-side driver IC - TL494 PWM pulse output of the controller design car audio power supply in use as a switch MOSFET, can improve the efficiency of the power transformer, is conducive to impulse noise suppression, but also can reduce the size of the power transformer.KEY WORDS: IGBT,MOSFET,Push-pull circuit,Half bridge circuit, Single-ended forward目录前言 (1)第1章开关电源基础技术 (6)1.1 开关电源概述 (6)1.1.1 开关电源的工作原理 (6)1.1.2 开关电源的组成 (7)1.1.3 开关电源的特点 (7)1.2 电源电路组成 (8)1.3开关电源典型结构 (5)1.3.1串联开关电源结构 (5)1.3.2并联开关电源结构 (5)1.4 电力场效应晶体管MOSFET (11)1.5 开关电源的技术指标 (8)第2章开关变换电路 (10)2.1 推挽开关变换电路 (10)2.1.1 推挽开关变换基本电路 (14)2.1.2 自激推挽式变换器 (15)2.2 半桥变换电路 (18)2.3 正激变换电路 (19)2.4 DC/DC升压模块设计 (20)第3章双端驱动集成电路TL494 (19)3.1 TL494简介 (19)3.2 TL494的工作原理 (20)3.3 TL494内部电路 (240)3.4 TL494构成的PWM控制器电路 (22)第4章 TL494 在汽车音响供电电源中的应用 (28)4.1 汽车音响电源简述 (28)4.2 汽车音响供电电源的组成 (30)4.2.1 TL494的辅助电路设计 (30)4.2.2 主电路的设计 (32)结论 (29)谢辞 (30)参考文献 (35)附录 (36)外文资料翻译 (37)前言电源是实现电能变换和功率传递的主要设备、在信息时代,农业、能源、交通运输、信息、国防教育等领域的迅猛发展,对电源产业提出了更多、更高的要求,如:节能、节电、节材、缩体、减重、环保、可靠、安全等。

基于TL494的双向Buck-Boost BDC高效开关电源设计

基于TL494的双向Buck-Boost BDC高效开关电源设计

基于TL494的双向Buck-Boost BDC高效开关电源设计黄仲平;徐航;沈烨【摘要】该文双向DC-DC变换器(BDC)的设计由PWM控制、驱动、功率变换及测控4大部分组成.PWM控制以TL494为控制核心,闭环调节电路占空比;PWM驱动由IR2111构成,驱动同步整流电路的开关管;功率变换采用同步整流电路为功率变换拓扑,实现DC-DC双向高效功率变换;测控电路以MSP430单片机为控制器,结合电流、电压采样电路,控制电路输出参数并显示.系统具有过流、过压保护功能,并能通过MSP430单片机实现高精度的程控.测试结果表明,采用同步整流电路能较好完成DC-DC功率双向变换,双向功率变换效率均达到95%以上,同时还具有很强的抗扰动能力.【期刊名称】《实验科学与技术》【年(卷),期】2017(015)001【总页数】5页(P12-16)【关键词】双向DC-DC变换器;TL494;IR2111;MSP430单片机【作者】黄仲平;徐航;沈烨【作者单位】四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065;四川大学电气信息学院,四川成都610065【正文语种】中文【中图分类】TN702开关电源一般由脉冲宽度调制(pulse width modulation, PWM)控制IC和MOSFET构成,具有效率高、体积小、质量轻以及功耗小等特点,尤其是电源效率一般都超过了80,比传统的线性电源提高近一倍[1-3]。

随着自动化产业的发展,开关电源技术也得到了不断地提高,应用领域也逐渐扩大[4]。

不仅包括仪器仪表、测控系统以及计算机内部各供电系统,也适应各种消费类电子产品。

开关电源逐步取代了传统的线性电源成为主流的电源产品,并且不断地向集成化、智能化、模块化发展[5]。

在一个直流供电系统中,并不局限于单一的“充电”或者“放电”模式,往往需要能量的双向流动。

如电动汽车中的燃料电池,给汽车运动系统提供电能的同时从压缩机处吸收能量,只有吸收的能量大于等于提供的能量汽车才能正常运行[6-7];太阳能电池阵也是如此,航天器外围的太阳能板是一个双向DC-DC变换器,即可以为航天器时刻提供工作电压,也需要不断吸收太阳能[8];不停电(UPS)系统中的放电单元和充电单元也可以理解为双向boost-buck电源[9]。

基于TL494器件反馈控制的Buck降压电路的设计

基于TL494器件反馈控制的Buck降压电路的设计

l引言
如 今 电力 电 子 技 术 正 在 日新 月 异 的更 新 和 发 展 , 以弱 电控 制 强 电的 思 想是 这 个 领域 不 断进 步 的动 力 。而 P WM 控 制 作 为 电力 电 子 中很 重 要 的

本 电路 就 是 通 过 将 Bu c k电 路 与 T L 4 9 4相 结 合 , 形成 一个 闭环 控 制 电 路 ,实 现期望 的电压输 出 。

ቤተ መጻሕፍቲ ባይዱ


《 变频 器世 界》 》 M a r c h . 20 1 7 ' 一 一
基于 TL 4 9 4器件反馈控制的 B u c k降压 电路 的 设计
De s i gn o f B u c k Ci r c u i t B a s e d o n T L 4 9 4 F e e db a c k C on t r ol
K e y wo r d s : B u c k c i r c u i t : T L 4 9 4 ; P W M: B o b b i
【 中图分 类号 】T M 9 3 3 . 2 1 【 文 献 标识 码】 B 文章 编号 1 5 6 1 — 0 3 3 0( 2 0 1 7 )0 3 — 0 0 8 1 — 0 3
是 基于 开环 控制 的 电路 ,而本 文分 析 基于 一种 反馈 器件 T L 4 9 4对 B u c k电 路进行 闭 不 控制 的设 计 ,其 中输 出 电压
反馈到 T L 4 9 4芯片的一个引脚,通过内 ̄ 1 3 k b 较 电路将其与基准电压比较后产生 P WM ( 脉; 中 宽度调制 ) 信号来推动
淮 阴工 学院 自动化 学 院 陈潇 ( C h e nX i a o )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
L0 ~
VIN T 8I
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
t
I (10% ~ 20%) I O max
电流断续状态DCM
t
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
CO=(3~5)(ΔI) T/(2ΔVP-P)
产生纹波的两个因素:1.输出电容容 量有限;2.开关过程产生的过冲,这
VIN-VSTA IOC
-VF
t
(tON)min (tOFF)max
临界连续状态
部分较难滤除。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA VO -VF (tON)min (tOFF)max IO<IOC
5. 较典型的设计验证方法和负载实验。
三、BUCK型DC-DC变换器(CCM工作模式)
1. 导通状态 U I UO UL I ON t1 t1 L L 2. 截止状态 UO UL I OFF t2 t2 L L 3. 输入输出关系
I ON I OFF
U O DU I
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 R17
R16 3K6
5
6
7
闭环输出电压调整系数
记输出电压反馈系数为: F R16(R16 R17) TL494 误差放大器 1 的差模电压放大倍数为: k R12 R10 则 TL494 反馈/PWM 比较器输入端电压为
死区时间控制 触发器 时钟
反馈/PWM比较器输入
Q
Q
Q1射极
Q2射极
输出控制 图二:TL494时序图
3. 功能描述
含有控制开关式电源所需的主要功能块。 线性锯齿波振荡器(3V),频率Fosc = 1.1/ (RT* CT ) 输出开关管导通时间由“死区时间控制”和“反馈/PWM比 较器输入”两个信号中电平较高的一个控制,控制信号电 平与电容器CT 上的锯齿波进行比较,实现脉冲宽度的调整。 控制信号电平线性增加时,Q1 和Q2 的导通时间线性减少。
tON=TOSCVO/(VIN-Vsta)=13.0~21.4uS(Vsta~1.2V)。
七、参数选择 4.开关管:
开关速度<1uS,
IC VEC PT
VIN+VF
IECO tON tOFF
VSTA t
耐压>2(VIN)max,
电流>2(IO)max
图四:开关管开关速度与功耗分析
TIP127(100V/5A,
t
Imax = (Vref /R7)*R8/ R9~2.0A
7.电感量:L~270μH(ΔI~0.4A, VIN~28.8V)。
2I VIN VO I OC I tON L0 V (1 D) DT VIN T I IN 2L0 8L0
电流连续状态CCM
续流管阴极电位VK 、 电感电流IL、负载电流IO 2IOC
设计案例分析
降压型(BUCK型)开关稳压电源设计
一. 技术指标
1. 电源容量 输入:15~24Vac(或18~28.8Vdc)。 输出:电源电压+12V(不可调),纹波小于 150mVP-P,最大输出电流2.0A(限流型保 护 )。 工作频率
2.

3.
开关电源的工作频率为30~40kHz。
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
过载保护--过载时,降低输出电压使负载电流保持在保护值。 不论开关管T2是否导通,流过负载的电流都经过R9(由上向下),R9的下端
电位为负,当负载电流达一定值时,误差放大器2的反相端电位为负,误差
放大器2的输出(即反馈/PWM端)为正,Q1管不导通,输出电压降低。
100u/25V
C6
220u/25V
T2 TIP127 (100V/5A/Darl-L) 104 R2 C3 1K
10 9
3K R6
FR307 D4 103 C5 570 R13
C7
104 C9 5K1 Rห้องสมุดไป่ตู้7
R16 3K6
5
6
7
六、原理图
t
电流断续状态DCM
图五:电流连续、临界连续、断续状态
七、参数选择
9. 续流二极管:FR307 • 快恢复二极管 • 反向偏压=(VIN)max-VSTA • 峰值电流= (IO)max+ΔI FR307~3A/1kV满足要求。
续流管阴极电位VK 、 电感电流IL、负载电流IO VIN-VSTA 2ΔI IO>IOC -VF (tON)min (tOFF)max
682 1M
R10 3K
R12
IC2 3300u/35V C1
494
CONT
13 14
R11 3K C8 R5 2K R7 3K
10u/16V
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
“输出控制”=5V为推挽输出,最小死区2%,最大占空比
48%; “输出控制” =0为单端输出,最小死区4%。
五、TL494的工作条件
1. 工作条件
条 件 符 号 VCC VC1,VC2 IC1,IC2 Vin Ifb Iref RT CT Fosc 最小 7.0 ---0.3 --1.8 0.0047 1.0 典型 15 30 ----30 0.01 40 最大 40 40 200 VCC-2 0.3 10 500 10 200 单位 V V mA V mA mA kΩ μF kHz
稳压原理--输出电压负反馈。
若某因致输出电压过高,则误差放大器1同向端电位升高,反馈/PWM端电位 上升,Q1管导通时间减少,占空比减少,输出电压减少。负反馈使输出电压
保持稳定,R17和R16中点电压为5V。R12/R10为误差放大器1的静态放大倍
数,影响控制精度。C3和R6、C4、C5和R13补偿网络,提高静、动态性能。
L1 270uH/2.0A 3A/400 IN5399*4 R1 10K
12 11 8
+12
VCC
C2
C1
E2
E1
C4
PW M IN1 IN1 + 3 2 1
682 1M
R10 3K
R12
IC2 3300u/35V C1
494
CONT
13 14
R11 3K C8 R5 2K R7 3K
10u/16V
VPWM (k 1) FDVin kVREF
VPWM T Vsm
若 TL494 锯齿波电压的幅度为 Vsm ,则有
Vsm VPWM Vsm (k 1) FDVin kVREF D VPWM Vsm Vsm D
tON
Vsm kVREF Vsm kVREF VREF V DV V , O in in Vsm (k 1) FVin Vsm (k 1) FVin F
电源电压 集电极电压 集电极输出电流(每个三极管) 误差放大器输入共模电压 反馈/PWM比较器输入端电流 基准输出电流 计时电阻 计时电容 振荡器频率
L1 270uH/2.0A
+12
六、原理图
3A/400 IN5399*4 R1 10K
12 11 8
VCC
C2
C1
E2
E1
C4
PW M IN1 IN1 + 3 2 1
+5V
IN2 +
GND
IN2 -
CT
RT
DE AD
4
16
C2 332
15
R4 10K
R3 10K R9 0.1
R8 120
图三:由TL494组成降压型开关稳压电源
软启动--上电时输出电压由低到高建立,需要一定时间。 上电时,C6充电需要一定时间,死区电压由高逐渐变低,Q1管的导通 时间逐渐增大,输出电压逐渐升高。
t ON t1 D t1 t 2 t ON t OFF
D称为占空比
四、TL494的内部结构与功能
1. 结构
CT
死区时间控制 触发器 时钟
反馈/PWM比较器输入
四、TL494 的内部结构 与功能
Q
Q
Q1射极
Q2射极
输出控制 图二:TL494时序图
2.TL494的时序
当锯齿波电平<死区时间控制电平时,死区时间比较器输出高电平。 当锯齿波电平<反馈/PWM输入电平时,PWM比较器输出高电平。 死区时间控制电压和反馈/PWM输入电压,二者中较高的电平控制触发器时钟宽度。
压=输入交流电压峰值,IN5399(1.5A/1kV)可以满足要求。
相关文档
最新文档