考博必看--电力系统分析上册(诸骏伟)-课程总结

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章能量管理系统

1.EMS的含义和作用

1).EMS 是以计算机为基础的现代电力系统的综合自动化系统,是预测、计划、控制和

培训的工具。

2).EMS 主要针对发电和输电系统,用于大区级电网和省级电网的调度中心。

3).EMS 涉及计算机硬软件的各个方面。它最终是通过EMS 使用软件来实现对电力系统

的监视、控制和管理。

2.EMS的主要内容

数据收集级(SCADA) ,能量管理级(GMS&OPS) 包括实时发电控制,系统负荷预测,发

电计划(火电调度计划),机组经济组合,水电计划(水火电协调计划),交换功率计划,燃料调度计划,机组检修计划. 网络分析级(NAS)包括实时网络状态分析,网络

结线分析,母线负荷预测,潮流,网络等值,网络状态监视,预想故障分析,安全约束调度,无功优化,最优潮流,短路电流计算,电压稳定分析,暂态分析.培训模拟级。

3.现有EMS存在的问题

1).EMS已得到了广泛的使用,但目前只停留在分布式独立计算分析阶段,多数高级使用

软件都需要人工调用,然后由调度员进行综合决策。2).在电网事故状态下,没有良好的事故分析、定位和恢复手段.3)电力改革使得情况更加复杂。

4.EMS的发展趋势

针对现有的EMS存在的问题,需加入决策系统,增强、扩充了网络分析功能,未来向着调度机器人的方向发展。

第二章电力系统潮流计算

1.潮流计算的定义

2.各种潮流计算的模型和算法的特点、适用范围以及相互之间的区别和联系。

(一) 高斯——塞德尔迭代法

该算法具有存储量小,程序设计简单的优点。

但收敛速度慢,阶梯式逼近时台阶的高度越来越小,以至于迭代次数过多。

算法特点:

1)在系统病态的情况下(重负荷节点负电抗支路较长辐射型线路长短线路接在同一节点上,且长短线路的比值很大),收敛困难。计算速度缓慢每次迭代速度很快,但由于结构松散耦合,节点间相互影响太小,造成迭代次数增加,收敛缓慢。

2)程序编制简便灵活

(二)、牛顿——拉夫逊迭代法(N_L)算法特点

1)平方收敛,开始时收敛比较慢,在几次迭代后,收敛得非常快,其迭代次数和系统的规模关系不大,如果程序设计良好,每次迭代的计算量仅和节点数成正比。

2)对初值很敏感,有时需要其他算法为其提供初值。

3)对函数的平滑性敏感,所处理的函数越接近线性,收敛性越好,为改善功率方程的非线性,实用中可以通过限制修正量的幅度来达到目的。但幅度不能太小。

4)对以节点导纳矩阵为基础的G_S法呈病态的系统,N_L法一般都能可靠收敛。牛顿迭代法有明显的几何解释:收敛速度:平方收敛收敛性:局部收敛

(三)、PQ分解法潮流

N_L法的J阵在每次迭代的过程中都要发生变化,需要重新形成和求解,这占据了N_L法的大部分计算时间,这也是N_L法速度不能提高的原因。

可能性:N_L法可以简化成为定雅可比矩阵法,如果固定的迭代矩阵构造得当,定雅可比矩阵法可以收敛,但只有线性收敛速度。

算法特点

1)用两个阶数几乎减半的方程组代替原方程组,显著减少了内存量和计算量

2)迭代矩阵为常数阵,只需形成求解一次,大大缩短每次迭代所需时间

3)迭代矩阵对称,可上(下)三角存储,减少内存量和计算量

4)基于以上原因,该算法内存需要量为N_L法的60%,每次迭代所需时间为N_L

法的1/5。5)线性收敛,收敛次数多于N_L法,但总的计算速度任能大幅度提高。

6)对R/X过大的病态条件以及线路特别重载的情况下,可能不收敛,一般适用于110kv及以上的电网。

7)由于算法的精确程度取决于 ,P-Q分解法的近似处理只影响计算过程,并不影响结果的精度。

3.影响潮流收敛性的因素以及如何改善潮流计算的收敛性。

(如果计算潮流不收敛,应该采用何种方法改进)

云杰的答案:主要是看潮流方程组本身是否有解,当方程组有解或者无实数解,或者方程组有解但是算法不够完善时,潮流计算将不收敛。

采用的方法是用数学规划来求解潮流方程的解——即非线性规划潮流计算。

这样:1 从原理上保证计算过程不发散。

2 有解——目标函数趋近于0

3 无解——目标函数停留在不为0的正值上。

(如果计算潮流不收敛,应该采用何种方法改进)

第三章电力系统状态估计

1 状态估计的定义

环境噪声使理想的运动方程无法精确求解。测量系统的随机误差,使测量向量不能直接通过理想的测量方程求出状态真值。只有通过统计学的方法加以处理以求出对状态向量的估计值。这种方法,称为状态估计。

2.状态估计的作用和步骤作用:降低量测系统投资,少装测点;计算出未测量的电气量;利用量测系统的冗余信息,提高量测数据的精度

结构信息

测量信息

预过滤

假设模型

估计计算

检测

BD

识别

修正输入

结束

(独立测量量的数目和状态量数目之比,成为冗余度)。 状态估计的流程

3、状态估计和潮流计算的关系

⏹ 潮流计算是状态估计的一个特例

⏹ 状态估计用于处理实时数据,或者有冗余的矛盾方程的场合

⏹ 潮流计算用于无冗余矛盾方程的场合

⏹ 两者的求解算法不同

⏹ 在线使用中,潮流计算在状态估计的基础上进行,也就是说,由状态估计提供经过加工处理过的熟数据,作为潮流计算的原始数据。

4各种状态估计模型和算法的特点

1) 基本加权最小二乘法的估计质量和收敛性最好,是状态估计的经典解法和理论基础,适合各种类型的量测系统。缺点是使用内存多,计算量大,计算时间长,不适用于大型电力系统的实时状态估计。

2) 快速解耦法估计质量和收敛性能在实用精度范围内和基本加权最小二乘法相近,而在计算速度和内存耗量方面优于基本加权最小二乘法,很实用,缺点是使用内存较多,程序也比较复杂。

3) 仅用支路量测量的唯支路法计算速度快,内存省,对于纯支路量测系统可以得到满意的估计结果,且运行经验丰富,缺点是不能处理注入型量测量。

4) 递推状态估计使用内存最少,对注入型量测量具有一定的适应能力,程序简单。缺点是收敛速度慢,计算时间长,估计质量差。

5) 数学规划法的计算速度慢,但其受不良数据的影响较小。 正交变换的特点:变换后矩阵的范数不变。判断增加哪些测量点,可以取得最佳的估计效果;提高状态估计的数值稳定性。 5 相关的概念和定义

1)通常测量错误数据分为两类:一类是稳定的错数(属设备和维修问题);另一类是在一次采样周期中随机出现的错误数据(即下一次采样不一定还是那几个错误数据)。状态估计现场安装后一段时间主要是消除第一类错数,或者是设备损坏,或者是符号相反。随着状态估计使用时间加长和维护工作的完善,第一类错数逐步减少,正常运行中往往开关状态错误(测量错或无测量)是引起这一类错数的主要原因。第二类错数是由测量和传送系统质量以及受到干扰而产生的。

2)几个概念

⏹ 不良数据检测:判断某次量测采样中是否存在不良数据。

⏹ 不良数据辨识:通过检测确知量测采样中存在不良数据后,确定不良数据具体侧点位置。 ⏹ 不良数据估计:不仅能确定不良数据具体侧点位置,还能给出不良数据估计值。不良数据辨识定量化。

⏹ 状态估计修正:根据不良数据估计值,对原来受不良数据影响的状态估计进行修正,从状态估计

Vi,Pi,Qi,Ii

Pij,Qij,Iij

Vi,Pi,Qi 潮流计算

模拟操作:

开关操作

出力调整

负荷调整

分接头调整

相关文档
最新文档