根据GMSK调制与解调设计及仿真
GMSK调制与解调在不同的信道

目录第一章设计要求 (3)1.1 设计内容 (3)1.2 设计要求 (3)第二章 GMSK系统的组成及工作原理 (4)2.1 GMSK系统的组成 (4)2.2 GMSK设计原理 (4)2.3 GMSK简介及调制解调原理 (5)2.3.1 GMSK调制原理 (5)2.3.2 GMSK解调原理 (6)第三章 GMSK系统功能模块设计 (7)3.1 GMSK系统模块 (7)3.1.1 信号产生模块 (7)3.1.2 GMSK调制模块 (8)3.1.3 信道模块 (9)3.1.3.1 高斯信道 (9)3.1.3.2 锐利信道 (10)3.1.4 解调模块 (11)3.1.5 误码率模块 (11)3.2 GMSK系统观察模块 (12)3.2.1 调制观察模块 (12)3.2.2基带与解调信号的比较模块 (13)第四章调试与结果分析 (14)4.1 调试分析 (14)4.2 调试结果分析 (15)4.2.1 运行在不同的信噪比的情况下得到了相应的误码率曲线 (15)4.2.2 运行在不同的BT值时的误码率曲线图 (15)4.2.3 GMSK调制图 (16)4.2.4 GMSK调制后的频谱 (17)4.2.5 解调后的信号与基带信号的比较 (18)第五章结论 (19)参考文献 (20)附录一:高斯与锐利的程序 (21)附录二:不同BT下的误码率程序 (22)附录三:simulink总图 (24)第一章GMSK设计要求1.1 设计内容:通过脚本编程或者SIMULINK对BT=0.3的GMSK调制系统进行仿真;1.2 设计要求:1. 观察基带信号和解调信号波形;2. 观察已调信号频谱图3.分析调制性能和BT参数的关系。
提高要求:1.将高斯信道改为锐利信道2.观察已调信号频谱图3.观察误码率曲线第二章GMSK系统的组成及工作原理2.1 GMSK系统的组成GMSK系统主要由信号产生模块、信号调制模块、信道、信号解调模块、误码率计算模块组成。
课程设计---运用Simulink仿真MSK和GMSK信号

目录1前言 (1)2工程概况 (1)3正文 (2)3.1目的和意义 (2)3.2设计过程 (2)3.3MSK信号仿真设计 (2)3.3.1最小频移键控基本原理 (2)3.3.2 MSK的Simulink仿真 (4)3.3.3 GMSK信号仿真分析 (6)3.4MSK与GMSK波形分析和比较 (8)4致谢 (8)5参考文献 (9)前言MATLAB的初学者,可能有这样的体会:虽然使用MATLAB语言能较为方便地进行各种复杂的数学运算,但系统模型的建立、仿真以及程序的调试仍然是一件破花费时间的事情。
MATLAB是具有用法简易、可灵活运用、程式结构强又兼具延展性。
所以用它来实现对信号里的仿真是很直接的方法也是实践和理论的一次突破。
可以将提出的问题和解决问题的办法用熟悉的数字符号表示出来。
由于MATLAB的功能强大,应用性强,所以受到越来越多的科学工作者欢迎。
Simulink是MATLAB提供的一个用于对动态系统进行建模和仿真的软件包,具有丰富和的灵活的功能。
有了它,用户就可以将自己的计算机变成一个方便快捷的,面向各种系统的建模和分析实验室,从而解决相应的问题。
Simulink与MATLAB时高度集成在一起的,因此,Simulink与MATLAB之间可以灵活的交互操作。
Simulink可以用来对各种动态系统进行建模、分析和仿真,它的建模范围广泛,可以针对任何能用数学来描述的系统进行建模。
Simulink 提供了利用鼠标拖放的方法来建立系统框图模型的图形界面,而且还提供了丰富的功能块以及不同的专业模块集合。
MSK调制的主要优点是信号具有恒定振幅和信号功率谱密度在主瓣外衰减得较快。
然而,在某些通信场合,如移动通信中,对信号带外辐射功率的限制十分严格,要求对邻近信道的衰减达70dB~80dB以上。
因此,近来对MSK信号作些改进,如改进两正交支路的加权函数,称为高斯最小频移键控(GMSK,Gaussian Filtered Minimum Shift Keying)调制方法等。
gmsk调制解调matlab

gmsk调制解调matlabGMSK调制解调Matlab(Gaussian Minimum Shift Keying)是一种用于数字通信系统中的调制和解调技术。
在本文中,我们将介绍GMSK调制解调的原理和如何使用Matlab进行实现。
第一步:理解GMSK调制原理作为一种调制技术,GMSK调制旨在将数字信号转换为连续的波形。
其基本原理是将数字信号的相位变化与高斯脉冲进行卷积,从而实现信号的平滑调制。
具体来说,GMSK调制使用高斯滤波器将数字信号的0和1之间的变化进行平滑。
这种平滑是通过改变信号相位的方式来实现的。
当输入为1时,相位将发生变化,而输入为0时相位将保持不变。
这种相位变化与高斯滤波器的频率响应有关,因此可以得到一个平滑的连续波形。
第二步:GMSK调制的实现步骤在Matlab中实现GMSK调制可以分为以下几个步骤:1. 生成基带信号:首先,需要生成一个基带信号,它是一个包含待调制数字信号的离散形式。
可以使用Matlab中的随机函数生成一串随机的二进制数字序列作为输入信号。
2. 高斯滤波器设计:接下来,需要设计一个高斯滤波器,它负责将输入信号进行平滑处理。
在Matlab中,可以使用fir1函数来设计一个低通滤波器,设置滤波器系数和截止频率。
3. 物理层调制:使用高斯滤波器对基带信号进行调制。
这可以通过将基带信号与高斯滤波器的响应进行卷积来实现。
在Matlab中,可以使用conv 函数进行卷积运算。
4. 添加载波:对调制后的信号添加载波。
载波频率可以根据具体需求设定。
在Matlab中,可以使用cos函数生成正弦波形,然后将其与调制后的信号相乘。
5. 发送信号:最后,生成的调制信号可以通过声卡连接到电脑的扬声器,或者通过其他通信设备发送。
第三步:GMSK解调的实现步骤GMSK解调的主要目标是将连续波形转换为数字信号,以便进行后续的数字信号处理。
在Matlab中实现GMSK解调可以按照以下步骤进行:1. 接收信号:首先,需要从通信设备中接收调制后的信号。
GMSK调制与解调算法研究111

GMSK调制与解调算法研究1 绪论1.1 选题的依据及意义在当代很多地方都使用了软件无线电技术,它打破了以前的那种无线电台功能少、扩容性也比较差的局面,它的基本思想就是通过在硬件上安装不同的可以升级,可以重新设置参数的应用软件来实现很多的通信功能和众多无线电功能的设计新思路[1]。
这样制造商不仅可以节省许多的硬件资源,而且还可以明显的缩短新产品的研发周期,这样就能更适应市场的要求,进而获取更大的利益。
软件无线电拥有开放式模块化体系,它的主要组成模块有:宽带A/D&D/A、可编程DSP模块、窄带A/D&D/A、用户终端模块等。
在接收端可以通过射频(RF)处理和变换所接收到的信号,由宽带A/D将其进行数字化,再通过可编程的DSP模块处理为我们所需要的各种信号并将处理后的信号送到多功能用户终端。
同理,我们也可以利用相同的模式将数据通过天线发射出去,并利用在线和离线软件实现通信环境的各种性能分析处理。
软件无线电所拥有的可编程特点,即RF频段和带宽、传输速率、信道接入方式、业务类型、加密方式等都可以利用软件编程来实现[2]、[3]。
它所具有的开放式模块化结构就为调制解调的实现提供了一个相当良好的软硬件平台,有好的一面当然也有坏的一面坏的一面就是对调制解调技术提出了更为严格的要求,其严格的要求主要体现在以下几个方面:★移动通信系统都存在着多普勒效应、多径衰落、噪声等不好的因素,这样就要求调制技术拥有抗噪声等性能,使其拥有优越的载干比,并让系统能够得到好的误码率性能;★移动通信系统中可用的频带资源少,这样就要求调制以后的信号即使占有较窄的频带宽度就能实现其功能;★移动通信系统为了增加系统容量,让使用的用户更多,它就采用频率复用技术。
这样就存在邻道同频道两种干扰,所以这就要求我们所使用的调制技术必须具有很好的频谱特性以减小干扰,使其系统更加优越;★移动通信系统中的发送接收机所用的功率放大器一般都有非线性的特性,这样就使得无线信道也具有相同的特性了,所以我们所使用的调制技术也应该拥有包络恒定的特点,用来降低功率放大器所造成的不良方面;★因为差分解调并不像相干解调那样需要相干载波的恢复,这样系统就简单了,构造简单了成本自然就低,所以我们应该尽量选择差分解调方式;★容易实现,所需设备尺寸小[4]这样成本低。
GMSK调制解调的MATLAB仿真与误码率分析

插 入 高斯低 通预 调制 滤波 器 [ , 使 其具 有包 络恒 定 、 带宽 较 窄 和能 进行 相 干解 调 的 优点 , 并 能 够有 效 提 高 数
字移动通信 的频谱利用率和通信质量。文章通过 S i m u l i n k 对G M S K系统进行仿真分析其抗干扰能力。
1 G MS K调 制 解 调 系统
已调信 号
图2 GMS K调 制 原 理 图
高斯滤 波器 的传输 函数 表示 为 : 日( . =e x p ( 一
)
( 1 )
其中O / 是与滤波器 ( 3 分贝带宽) 有关的一个系数。 B 可 以由以下公式计算 :
{ I e x p ( 一 2 O r 2 = ÷
性能 。
关 键词 : G M S K : 误比 特率; s i m u l i n k 仿真
中图分 类号 : T P 3 9 3
文 献标 识码 : A
文章 编号 : 1 0 0 8 . 9 6 5 9 ( 2 0 1 5 ) 0 2 . 0 6 7 . 0 6
在 实 际的通 信系 统 中 . 通 常规模 比较 大 , 要 进 行 系 统 试 验 与研 究 是 比较 困难 的 l l J 。仿 真 设 计 技术 由 于
可得 : B h— O . 5 8 8 7
1 . 2 G MS K解调 原理
GMSK调制与解调

SGMSK (t ) cos (t )cos ct sin (t )sin ct
式中,
(t )
2T b
t
[ bn g ( nTb
n
Tb )]d 2
设信息数据an为1,,-1,-1,1,1,1,-1,GMSK的相位路径如 图(5)所示
由图(4)可见, BTb越小,g(t)波形越宽,幅度越小;当 BTb为有限值时,g(t)的宽度大于一个码元的宽度,即高斯滤波 器引入了码间干扰,且BTb越小,码间串扰越严重。这种码间 串扰使GMSK信号的相位路径得到平滑,同时也使得GMSK信 号在一码元周期内的相位增量不像MSK那样为π/2或-π/2,而是 随着BTb的不同及输入序列的不同而不同。
图(2)
图(3)
由图(1)中的高斯滤波器必须满足 (1)带宽窄并且锐截止; (2)较低的过脉冲响应; (3)保持输出脉冲面积对应于π/2的相移。 其中: 条件(1)是为了抑制高频分量; 条件(2)是为了防止过大的瞬时频偏; 条件(3)是为了使得调制指数为0.5。
高斯低通滤波器的频率特性为:
H G ( f ) exp{ 2 f 2 }
(2)正交调制法 GMSK信号产生的一种实用方法是波形存储正交调制法,其 原理框图如图(5)所示。图5-21所示调制器可通过GMSK 信号表示式说明。
cos ct cos[· ] 表 D/A LPF cos(t) + ∑ - s in[· ] 表 D/A LPF s in(t) s in ct 放大器
二、GMSK调制与解调
前面已从原理上说明了产生GMSK的方法, 但这种方法的缺点是不易 获得准确的中心频率和规定的频率偏移,硬件实现式(5-44)的hG(t) 也不 容易。 GMSK的调制一般采取锁相环法和正交调制法。 (1)锁相环法 可以用如图()所示的调制器产生GMSK信号,图中s(t)为矩形数 字基带信号,其中“1”码和“0”码分别使载波信号发生π/2和-π/2的 相移,产生B模式BPSK信号。锁相环对该B模式BPSK信号的相位跳变 进行平滑,使得信号在码元转换时刻相位连续,而且无尖角,当锁相 环的频率特性与高斯滤波器的频率特性相同时,锁相环的输出即为 GMSK信号。
MSK、GMSK调制及相干解调Matlab仿真
MSK、GMSK调制及相干解调Matlab仿真实验目的:1.掌握MSK调制、相干解调原理及特性;2.了解MSK调制与GMSK调制的差别。
实验内容:1.编写MATLAB程序仿真MSK调制及相干解调;2.观察I、Q两路基带信号的特征及与输入NRZ码的关系;3.观察I、Q调制解调过程中信号的变化;4.对程序做修改,进行GMSK调制及解调仿真;5.分析仿真中观察的数据,撰写实验报告。
仿真代码:clear allclcglobal dt df t f Nclose allpi=3.1415926;fc=5;N=2^8;L=8;M=N/L;Rb=2;Tb=1/Rb;dt=Tb/L;df=1/(dt*N);T=N*dt;B=N*df/2;t=[-T/2+dt/2:dt:T/2];f=[-B+df/2:df:B];EP=zeros(size(f));EPg=zeros(size(f));for ii=1:10;for j=1:50;b=sign(randn(1,M));for i=1:L,s(i+[0:M-1]*L)=b;endP=t2f(s);P=P.*conj(P)/T;EP=(EP*(j-1)+P)/j;endPs=10*log10(EP+eps);Bb=Tb/0.3;alpha=sqrt(logm(2)/2/Bb^2);H=exp(-alpha^2*f.^2);a(1)=b(1);for i=M:-1:2,a(i)=b(i)*b(i-1);endfor i=1:L,sa(i+[0:M-1]*L)=a;endsend=real(f2t(t2f(s).*H));It=zeros(size(t));for k=0:2*L:N-1;kk=1:2:2*L;kkk=1:L;It(k+kk)=send(k+kkk+L);It(k+kk+1)=send(k+kkk+L);endfor k=N:-1:L+1,It(k)=It(k-L);endQt=zeros(size(t));for k=0:2*L:N-1;kk=1:2:2*L;kkk=1:L;Qt(k+kk)=send(k+kkk);Qt(k+kk+1)=send(k+kkk);endsubplot(2,1,1);stem(b);title('原始');%x = input('xxx');%IttItt=It.*cos(pi*t/2/Tb);%QttQtt=Qt.*sin(pi*t/2/Tb);%GMSK 时域波形gmsk=Itt.*cos(2*pi*fc*t)-Qtt.*sin(2*pi*fc*t); %GMSK 功率谱PP=t2f(gmsk);Pa=PP.*conj(PP)/T;EPg=(EPg*(ii-1)+Pa)/ii;endPgmsk=10*log10(EPg+eps);%接收端r=gmsk;%接收端的低通滤波器,带宽为RbLPF=zeros(size(f));ai=(B-Rb)/2/B*size(f);aj=(B+Rb)/2/B*size(f);for k=(ai(1,2):aj(1,2)),LPF(k)=1;end%接收端上支路LPF的输出,与Itt相似(图九)RI=r.*cos(2*pi*fc*t);RI=real(f2t(t2f(RI).*LPF));RQ=-r.*sin(2*pi*fc*t);RQ=real(f2t(t2f(RQ).*LPF));%取样RIt=RI(2*L:2*L:N);RQt=RQ(L:2*L:N);%码型串并转换Rt=zeros(1,M);Rt(2:2:M)=RIt(1:M/2);Rt(1:2:M-1)=RQt(1:M/2);%判决Rt=sign(Rt);clear j;d(1)=j;for i=2:M,d(i)=d(i-1).*j;ende=Rt.*d;for i=1:2:M,e(i)=imag(e(i));endf=b-e;for i=1:L,sy(i+[0:M-1]*L)=e;endsubplot(2,1,2);stem(sy);f2tfunction x=f2t(X)global dt df t f T NX=[X(N/2+1:N),X(1:N/2)];x=ifft(X)/dt;t2ffunction X=t2f(x)global dt N t f TH=fft(x);X=[H(N/2+1:N),H(1:N/2)]*dt;。
GMSK调制解调报告
GMSK调制解调的实现l979年由日本国际电报电话公司提出的GMSK调制方式.有较好的功率频谱特性,较优的误码性能,特别是带外辐射小,很适用于工作在VHF和UHF频段的移动通信系统,越来越引起人们的关注。
GMSK调制方式的理论研究已较成熟.实际应用却还不多,主要是由于高斯滤波器的设计和制作在工程上还有一定的困难。
GMSK调制方式的工作原理及特点调制前高斯滤波的最小频移键控简称GMSK,基本的工作原理是将基带信号(16kbps)先经过高斯滤波器成形,再进行最小频移键控(MSK)调制(图1)。
由于成形后的高斯脉冲包络无陡峭边沿,亦无拐点,因此频谱特性优于MSK信号的频谱特性。
GMSK的解调方式与MSK一致。
下面主要介绍的是MSK的调制解调一.调制部分:MSK是二进制连续相位调制(CPFSK)的一种改进形式。
在FSK方式中,每个码元的频率不变,在2个相邻的频率码元信号之间,其相位通常是不连续的。
而MSK就是使FSK信号的相位始终保持连续变化的调制方式,其调制指数是0.5。
二进制MSK型号的表达式如下:式中:为载波角频率;为码元宽度;为第K个码元中的信息,其取值为;为第K个码元的相位常数,其取值为0或π,它在时间中保持不变。
MSK是正交调制方式,其MSK信号可以看成由二条彼此正交的载波分别调制后合成的。
因此MSK信号的表达式可以展开成以下形式:其中:上式中:等号后第一项为同相分量(I分量);第二项为正交分量(Q分量);和为加权函数;为同相分量的等效数据,为正交分量的等效数据,它们都与原始输入数据有确定的关系。
令,,带入上式可以得到由上式可以得到MSK调制器的原理框图:二.解制部分:MSK 解调部分也分为二条支路分别解调。
I 支路乘上,再通过低通滤波得到cos(())cos()cos 2k kstt T πθϕ=(1) ; Q 支路乘上,再通过低通滤波得到sin(())sin()cos 2k k kstt a T πθϕ-=-(2);解调原理图如下:下面是判决过程:首先根据cos(())cos()cos 2k kstt T πθϕ=(1),sin(())sin()cos 2k k kstt a T πθϕ-=-(2)两个式子在不同码元内的值,可以解到一个判决表,这个判决表是按码元顺序排列的,以4为周期,即第k 个码元与第k+4个码元的判决规则是一致的。
GMSK技术原理与MATLAB仿真报告
一、引言
高斯滤波最小频移键控( Gaussian Filtered Minimum Shift Keying GMSK)由于具有优良的频谱效率和功率效率等特性,因而作为一种主要的 调制技术被广泛地应用于多种现行 的无线标准之中 (GSM, DECT, CDPD )。GMSK 调制技术是从 MSK ( Minimum Shift Keying )调制的基础上发 展起来的一种数字调制方式,其特点是在数据流送交频率调制器前先通过 一个 Gauss 滤波器(预调制滤波器)进行预调制滤波,以减小两个不同频 率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以 变得更紧密。由于数字信号在调制前进行了 Gauss 预调制滤波,调制信号 在交越零点不但相位连续,而且平滑过滤,因此 GSMK 调制的信号频谱紧 凑、误码特性好,在数字移动通信中得到了广泛使用,如现在广泛使用的 G SM( Global System for Mobile communication)移动通信体制就是使用 G MSK 调制方式。本文首先介绍了 GMSK 的应用背景和研究现状,然后分析 了 GMSK 的调制以及解调原理,最后利用 MATLAB 进行了系统仿真和性 能分析。
3.2 GMSK信号的调制和解调
3.2.1 GMSK调制器的实现方案及其比较
直接数字调频方案
该方案利用脉冲形成后的基带信号直接对压控振荡器VOC进行调频。该方 案十分简单,并且在多种模拟和数字系统中采用。例如蜂窝数字分组数据系统 (CDPD)和全球通(GSM)[4]。可是该方案不易于集成。而且为了保持中心频率在动 态范围内,就必须要求VOC有着较高的线性度和灵敏度。类似的方案还有环路 型调制器(见图4) 。 2 BPSK保证每个码元得相位变化为 2 ,利用锁相环对相 位进行平滑。可是如何设计PLL的传输函数,从而满足功率谱特性的需要是一件 很困难的事情。
GMSK调制解调实验
实验课程名称移动通信实验(GMSK调制解调实验)专业班级
学生姓名
学号
指导教师
至学年第学期第至周
《GMSK调制解调实验》实验报告
至学年第学期
NRZ NRA与/NRZ NRZ与DI NRZ与DQ
DI与I路成形DQ与Q路成形
Q路成形与Q路调制调制输出MSK调制
X-Y波形
BT=0.5 GMSK 调制
NRZ /NRZ /NRZ DI
DI 与I路成形DQ与Q路成形I路调制
Q路调制调制输出
X-Y波形
I路解调I路滤波Q路解Q路滤波DI DQ
/NRZ NRZ
I路解调I路滤波Q路解Q路滤波
DI DQ
/NRZ NRZ
实验结果(反思)
通过这次实验,我们掌握了GMSK调制解调原理和理解了
们观察了GMSK解调和调制的信号波形,明白了
养我们的探索问题和发现问题的能力,对我们的综合发展有很大的作用。
实验完成情况:完成√基本完成未完成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.- 基于GMSK调制与解调设计及仿真 1.系统简介 高斯滤波最小频移键控(Gaussian Filtered Minimum Shift Keying - GMSK)调制技术是从MSK调制的基础上发展起来的一种数字调制方式,其特点是在数据流送交频率调制器前先通过一个Gauss滤波器(预调制滤波器)进行预调制滤波,以减小两个不同频率的载波切换时的跳变能量,使得在相同的数据传输速率时频道间距可以变得更紧密。由于数字信号在调制前进行了Gauss预调制滤波,调制信号在交越零点不但相位连续,而且平滑过滤,因此GSMK调制的信号频谱紧凑、误码特性好,在数字移动通信中得到了广泛使用。 本文主要在瑞利信道下,通过在Matlab中的Simulink建立仿真模型进行仿真研究。并通过观察GMSK系统调制、解调信号的的波形、频谱图、眼图和误码率曲线,从而验证GMSK系统较为良好的性能。
2.系统的设计原理 GMSK系统主要由信号产生模块、信号调制模块、信道、信号解调模块、误码率计算模块组成。本系统由信号产生模块产生一个二进制序列,再经过调制器进行调制,之后便将调制信号送入信道,经过解调器解调得到解调信号。为计算系统误码率,则在调制器后加一误码率计算模块,计算误码率。GMSK系统原理框图如下图所示:
图2.1 GMSK调制与解调系统原理框图 信号产 生模块 调制模块 信道 解调模块
误码
率计 算模块
示波器
频谱仪 .- 在设计中,选用贝努力二进制序列产生器来产生器(Bernoulli Binary Generator)产生一个二进制序列,将序列送入GMSK基带调制器模块(GMSK Modulator Baseband)中得到已调信号,再将已调信号送入一个加性高斯白噪声信道,将信噪比设为一个变量,用于绘制信噪比——误码率曲线。解调阶段则将通过加性高斯白噪声信道的信号输入GMSK基带解调器模块(GMSK Demodulator Baseband)中,其后接一个误码率统计模块(Error Rate Calculation),且误码率统计模块另一输入端接至源信号处。而用示波器观察解调波形并与源信号波形进行比较。因为已调信号是一复合信号,所以要用complex to Magnitude-Angle 模块,再用示波器分别观察其幅度与相角。另外还用频谱仪观察了已调信号的频谱。
2.1GMSK调制原理介绍 调制原理中滤波器是高斯低通滤波器,它的输出直接对VCO进行调制,以保持已调包络恒定和相位连续。原理如下所示:
非归零自序 GMSK已调信号 为了使输出频谱密集,前段滤波器必须具有以下待性[2]: 1.窄带和尖锐的截止特性,以抑制FM调制器输入信号中的高频分量; 2.脉冲响应过冲量小,以防止FM调制器瞬时频偏过大; 3.保持滤波器输出脉冲响应曲线下的面积对应丁pi/2的相移。以使调制指数为1/2。 前置滤波器以高斯型最能满足上述条件,这也是高斯滤波器最小移频键控(GMSK)的由来。
2.2GMSK解调原理介绍 GMSK本是MSK的一种,而MSK又是是FSK的一种,因此,GMSK检波也可以采用FSK检波器,即包络检波及同步检波。而GMSK还可以采用时延检波,但每种检波器的误码率不同。
高斯低通 滤波器 频率调制器
(VCO) .- GMSK非相干解调原理是采用FM鉴频器(斜率鉴频器或相位鉴频器)再加判别电路,实现GMSK数据的解调输出。原理如下: GMSK信号 数据
3仿真模型建立及参数设置 如图3.1为GMSK调制解调系统的SimuLink仿真模型,整个系统主要包括五大模块:随机信号发生模块、GMSK调制模块、信道、GMSK解调模块、误码率统计模块。
图3.1 GMSK系统SimuLink仿真模型图 3.1信号发生模块 因为GMSK信号只需满足非归零数字信号即可,本设计中选用(Bernoulli Binary Generator)来产生一个二进制序列作为输入信号。 该模块的参数设计这只主要包括以下几个。其中probability of a zero 设置为
带通滤波器 限幅器 鉴频器 判决器 .- 0.5表示产生的二进制序列中0出现的概率为0.5;Initial seed 为200表示随机数种子为200;sample time为1/10表示抽样时间即每个符号的持续时间为0.1s。当仿真时间固定时,可以通过改变sample time参数来改变码元个数。例如仿真时间为10s,若sample time为1/1000,则码元个数为10000。
3.2 调制与解调模块 MSK Modulator Baseband为GMSK基带调制模块,其input type参数设为Bit表示表示模块的输入信号时二进制信号(0或1)。BT product为0.3表示带宽和码元宽度的乘积。其中B是高斯低通滤波器的归一化3dB带宽,T是码元长度。当B·T=∞时,GMSK调制信号就变成MSK调制信号。BT=0.3是GSM采用的调制方式。Plush length则是脉冲长度即GMSK调制器中高斯低通滤波器的周期,设为4。Symbol prehistory表示GMSK调制器在仿真开始前的输入符号,设为1。Phase offset 设为0,表示GMSK基带调制信号的初始相位为0。Sample per symbol为1表示每一个输入符号对应的GMSK调制器产生的输出信号的抽样点数为1。 AWGN Channel为加性高斯白噪声模块,高斯白噪声信道的Mode参数(操作模式)设置为Signal to noise(SNR),表示信道模块是根据信噪比SNR确定高斯白噪声的功率,这时需要确定两个参数:信噪比和周期。而将SNR参数设为一个变量xSNR是为了在m文件中编程,计算不同信噪比下的误码率,改变SNR即改变信道信噪比。 GMSK Demodulator Baseband是GMSK基带解调器。其前六项参数与GMSK调制器相同,并设置的值也相同。最后一项为回溯长度Traceback Length,设为变量16,在m文件通过改变其值,可以观察回溯长度对调制性能的影响。
3.3 误码率计算模块 Receive dely(接收端时延)设置为回溯长度加一,表示接收端输入的数据滞后发送端数据TracebackLength+1个输入数据;Computation delay(计算时延)设为0,表示错误率统计模块不忽略最初的任何输入数据。Computation mode(计算模式)设置为Entire frame(帧计算模块),表示错误率统计模块对发送端和接收端的.- 所有数据进行统计。Output data(输出数据)设为workspace,表示竟统计数据输出到工作区。Variable name (变量名)则是设置m文件中要返回的参数的名称,设为ErrorVec。
3.4 波形观察模块 因为GMSK调制信号是一个复合信号,所以只用示波器(Scope)无法观察到调制波形,所以在调制信号和示波器间加一转换模块Complex to magnitude-angle将调制信号分别在幅度和相角两方面来观察。 将Complex to magnitude-angleoutput的output参数设为magnitude and angle,表示同时输出调制信号的幅度和相角。示波器scope1的number of axes 为2表明有纵坐标个数为2;time range表示时间轴的显示范围,设为auto,表示时间轴的显示范围为整个仿真时间段。Tick Tabels 设为bottom axis only时,只显示各个纵坐标以及最下面的横坐标的标签。 调制信号频谱观察模块:设置了坐标Y的范围为-30到5,X的范围为[0,FS],Amplitude scaling表示幅度计算,选择一般模式即以V为单位进行计算。但Y坐标标记Y-axis title设为magnitude,dB转换为dB形式。
4仿真结果分析
图4.1 GMSK调制信号幅度和相角波形 .- 由于调制信号时一个复合信号,不能直接由示波器观察,通过一complex to magnitude-angle模块将调制信号分为幅度和相角两个变量来观察。通过幅度的波形(上)和相角波形(下)验证了GMSK的幅度不变,由相角波形来看,相角连续,与理论符合。
图4.2 GMSK基带信号与解调信号 由图4.2中基带信号(上)与解调信号波形(下)比较可得,其由起始码元到最后一个码元,发现调制信号波形从第四个码元开始与基带信号完全符合,说明系统的调制性能较好,基本实现了解调的目的——将调制信号还原为基带信号。 .- 图4.3 BT=0.3的GMSK调制信号频谱 由图4.3可知,除了顶端稍显尖锐和不够圆滑,实验所得频谱图的主瓣与理论频谱近似。 .- 图4.4 BT=0.3 分析:由图中混乱的线条可知,BT=0.6时,眼图“眼睛”睁开较大,但存在过零点失真,存在码间串扰。
图4.5 信噪比为0:10的不同模块的误码率 图4.6中 * 标识的是瑞利信道的误码率曲线,近似水平线,可见调制特性非常不好,而其余两条曲线都是通过高斯白噪声信道的误码率,明显的比前者平滑且下降现象明显,说明采用高斯白噪声信道所得调制特性更好;而实线和菱形