世界顶尖刀具涂层技术介绍【详解】
刀具涂层技术介绍

刀具涂层技术介绍刀具涂层技术是一种在刀具表面涂覆一层特殊材料的技术,旨在提高刀具的硬度、耐磨性、热稳定性和化学稳定性等性能。
刀具涂层技术的发展与高速切削、高效加工和先进制造技术的进步密切相关。
本文将对刀具涂层技术的原理、种类以及应用进行介绍。
1.碳化物涂层:如碳化钛(TiC)、碳化钽(TaC)等。
这些涂层具有极高的硬度和耐磨性,适用于高速切削和重载切削。
2.氮化物涂层:如氮化钨(WN)、氮化钛(TiN)、氮化铝(AlN)等。
这些涂层具有较高的硬度和化学稳定性,广泛应用于切削、修磨和打孔等工艺。
3.金属涂层:如钛合金(TiAlN)、氧化锆(ZrO2)等。
这些涂层具有较高的热稳定性和抗氧化性能,适用于高温切削和挤压。
4.金刚石涂层:金刚石涂层具有超高硬度和低摩擦系数,能够有效提高刀具的寿命和切削质量。
但由于金刚石涂层的制备技术复杂和成本较高,目前还处于实验阶段。
1.金属切削:刀具涂层技术在金属切削领域得到广泛应用,可以提高切削效率和工件表面质量。
例如,在高速铣削中,采用碳化钛涂层的刀具可以显著提高切削速度和切削质量。
2.木材加工:刀具涂层技术在木材加工领域也有一定的应用。
通过涂覆特殊涂层,可以延长刀具的使用寿命,并提高加工效率。
例如,在木材切削中,采用氮化钛涂层的刀具可有效降低磨损和摩擦。
3.非金属材料加工:刀具涂层技术在陶瓷、塑料、复合材料等非金属材料加工领域也得到了广泛应用。
通过涂层技术,可以改善切削表面的光洁度,并提高工件的精度和质量。
4.汽车零部件加工:在汽车零部件加工领域,刀具涂层技术可以有效提高零部件的加工精度和耐用性,适用于发动机气门、曲轴、轴承等零部件的加工。
刀具涂层技术的发展为现代制造业带来了巨大的效益。
随着材料科学、纳米技术和涂层技术的进一步发展,刀具涂层技术的性能和应用范围将会不断扩大。
预计未来刀具涂层技术将更加智能化和环保化,能够实现刀具表面的自动修复和自动调节。
这将进一步提高切削效率和加工质量,推动现代制造业的发展。
刀具选择正确的涂层

刀具选择正确的涂层涂层也有助于提高刀具的切削性能。
目前的涂层技术包括:(1)氮化钛(TiN)涂层:这是一种通用型PVD和CVD涂层,可以提高刀具的硬度和氧化温度。
(2)碳氮化钛(TiCN)涂层:通过在TiN中添加碳元素,提高了涂层的硬度和表面光洁度。
(3)氮铝钛(TiAlN)和氮钛铝(AlTiN)涂层:氧化铝(Al2O3)层与这些涂层的复合应用可以提高高温切削加工的刀具寿命。
氧化铝涂层尤其适合干式切削和近干切削。
AlTiN涂层的铝含量较高,与钛含量较高的TiAlN涂层相比,具有更高的表面硬度。
AlTiN涂层通常用于高速切削加工。
(4)氮化铬(CrN)涂层:这种涂层具有较好的抗粘结性能,是对抗积屑瘤的**解决方案。
(5)石涂层:石涂层可以显着提高加工非铁族材料刀具的切削性能,非常适合加工石墨、金属基复合材料、高硅铝合金和其他高磨蚀性材料。
但石涂层不适合加工钢件,因为它与钢的化学反应会破坏涂层与基体的粘附性能。
近年来,PVD涂层刀具的有所扩大,其价格也与CVD涂层刀具不相上下。
CVD涂层的厚度通常为5-15μm,而PVD涂层的厚度约为2-6μm。
在涂覆到刀具基体上时,CVD涂层会产生不受欢迎的拉应力;而PVD涂层则有助于对基体形成有益的压应力。
较厚的CVD涂层通常会显着降低刀具切削刃的强度。
因此,CVD涂层不能用于要求切削刃非常锋利的刀具。
在涂层工艺中采用新的合金元素可以改善涂层的粘附性和涂层性能。
例如,伊斯卡公司的3PSumoTec处理技术能提高PVD和CVD 两类涂层的韧性、光滑程度和抗崩刃性能。
同样,该工艺还能消除PVD涂层时在涂层表面产生的有害液滴,从而使涂层表面更光滑,使刀片在加工时切削温度更低、寿命更长、形成更理想的切屑流,以及能采用更高的切削速度。
复合涂层具有很好的耐磨性和抗崩刃性,非常适合用于高速切削铸铁的各种刀片牌号,其预期的切削速度可达到650-1200sfm以上(取决于工件材料的类型和加工条件)。
超硬材料涂层

超硬材料涂层1.金刚石、类金刚石(DLC)涂层金刚石涂层是新型刀具涂层材料之一。
它利用低压化学气相沉积技术在硬质合金基体上生长出一层由多晶构成的金刚石膜,用其加工硅铝合金和铜合金等有色金属、玻璃纤维等工程材料及硬质合金等材料,刀具寿命是一般硬质合金刀具的50~100倍。
金刚石涂层采纳了很多金刚石合成技术,最一般的是热丝法、微波等离子法和DC等离子喷射法。
通过改进涂层方法和涂层的粘结,已生产出金刚石涂层刀具,并在工业上得到了应用。
近年来,美国、日本和瑞典等国家都已相继推出了金刚石涂层的丝锥、铰刀、铣刀以及用于加工印刷线路板上的小孔金刚石涂层硬质合金钻头及各种可转位刀片,如瑞典Sandvik公司的CD1810和美国Kennametal公司的KCD25等牌号产品。
美国Turchan公司开发的一种激光等离子体沉积金刚石的新工艺,用此法沉积金刚石,由于等离子场包围整个刀具,刀具上的涂层均匀,其沉积速度比常规CVD法快1000倍。
此法所成的金刚石涂层与基体之间产生真正的冶金结合,涂层强度高,可防止涂层脱落、龟裂和裂纹等缺陷。
CemeCon公司具有特色的CVD金刚石涂层技术,2000年建立生产线,使金刚石涂层技术达到工业化生产水平,其技术含量高,可以批量生产金刚石涂层。
类金刚石涂层在对某些材料(Al、Ti及其复合材料)的机械加工方面具有明显优势。
通过低压气相沉积的类金刚石涂层,其微观结构与天然金刚石相比仍有较大差异。
九十时代,常采纳激活氢存在下的低压气相沉积DLC,涂层中含有大量氢。
含氢过多将降低涂层的结合力和硬度,增大内应力。
DLC中的氢在较高的温度下会渐渐释放出来,引起涂层工作不稳定。
不含氢的DLC硬度比含氢的DLC高,具有组织均匀、可大面积沉积、成本低、表面平整等优点,已成为近年来DLC涂层讨论的热点。
美国科学家A.A.Voevodin提出沉积超硬DLC涂层的结构设计为Ti—TiC—DLC梯度变化涂层,使硬度由较软的钢基体渐渐提高到表层超硬的DLC涂层。
刀具涂层的种类及作用介绍【汇总】

刀具涂层的种类及作用介绍内容来源网络,由深圳机械展收集整理!更多数控刀具技术展示,就在深圳机械展-刀具展区!刀具涂层的种类1氮化钛涂层(TiN)TiN是一种通用型PVD涂层,是工艺最成熟和应用最广泛的硬质涂层材料,可以提高刀具硬度并具有较高的氧化温度,适用于高速钢切削刀具或成形工具,改善其加工性能。
2氮化铬涂层(CrN)CrN涂层良好的抗粘结性使其在容易产生积屑瘤的加工中成为首选涂层。
涂覆了这种几乎无形的涂层后,高速钢刀具或硬质合金刀具和成形工具的加工性能将会大大改善。
3金刚石涂层(Diamond)CVD金刚石涂层可为非铁金属材料加工刀具提供最佳性能,是加工石墨、金属基复合材料(MMC)、高硅铝合金及许多其它高磨蚀材料的理想涂层。
适用于硬铣、攻丝和钻削加工的涂层各不相同,分别有其特定的使用场合。
此外,还可以采用多层涂层,此类涂层在表层与刀具基体之间还嵌入了其它涂层,可以进一步提高刀具的使用寿命。
4氮碳化钛涂层(TiCN)TiCN涂层中添加的碳元素可提高刀具硬度并获得更好的表面润滑性,是高速钢刀具的理想涂层。
可增加涂层的厚度,阻止裂纹的扩展,减少崩刃。
所以,目前生产的一些刀片,如瑞典Sandvik公司推荐用于加工钢料的GC4000系列刀片、中国株洲硬质合金厂生产的CN系列刀片、日本东芝公司的T715X 和T725X涂层刀片中均有TiCN涂层成份。
TiCN基涂层适于加工普通钢、合金钢、不锈钢和耐磨铸铁等材料,用它加工工件时的材料切除率可提高2~3倍。
株硬--FMA11系列面铣刀5氮铝钛或氮钛铝涂层(TiAlN/AlTiN)TiAlN/AlTiN涂层中形成的氧化铝层可以有效提高刀具的高温加工寿命。
主要用于干式或半干式切削加工的硬质合金刀具可选用该涂层。
根据涂层中所含铝和钛的比例不同,AlTiN涂层可提供比TiAlN涂层更高的表面硬度,因此它是高速加工领域又一个可行的涂层选择。
例如,美国Kennametal公司推出的H7刀片,系TiAlN涂层,是专为高速铣削合金钢、高合金钢和不锈钢等高性能材料而设计的。
新型PVD刀具涂层--AlCrN

新型PVD刀具涂层—AlCrNTiAlN和AlTiN是将Al元素沉积到TiN中而形成的PVD刀具涂层。
迄今为止,通过增加TiAlN、AlTiN 涂层中的铝含量,从而增强刀具涂层的耐高温性能和硬度,一直是刀具制造商和涂层公司关注的重大技术课题。
自1995年以来,人们一直在持续不断地研究和改进相关的气相沉积工艺。
到2000年,TiAlN和AlTiN 涂层中铝元素与钛元素的成分比例已从原来的1∶2提高到3∶2,即铝含量已从33%增加到60%。
为了进一步提高涂层中的铝含量,总部位于列支敦士登的巴尔查斯(Balzers)涂层公司经过大量研究开发,发明了用铬元素取代钛元素的涂层技术,并于2004年推出了商品名为“Balinit Alcorna”的单层AlCrN涂层。
AlCrN涂层的铝含量比一般的AlTiN涂层更高,适用于包括齿轮滚刀、立铣刀、铣刀片在内的多种高速钢和硬质合金刀具。
此外,它也可以用于车削刀具,但仅限于耐热性和扩散稳定性极好的基体材料,如PCBN 和Si3N4陶瓷。
在EMO Hannover 2005展览会上,巴尔查斯公司又推出了商品名为“Balinit Helica”,专为孔加工刀具设计的多层AlCrN涂层。
这种超光滑涂层可应用于任何硬质合金或高速钢钻头上,从而显著增强了钻头的耐磨性和剪切强度,并有利于提高钻头的排屑性能。
在扫描电子显微镜(SEM)下观察硬质合金基体上Balinit Alcorna涂层的剖面微观结构时,可以清楚地看到厚度为3~4μm,呈连续结构的单层涂层;而在Balinit Helica涂层的SEM图像中,多层涂层结构清晰可辨。
Helica多层涂层的总厚度约为4μm,但对于直径小于1/8″的小钻头,涂层厚度以1~2μm更为适宜。
虽然100%的Al2O3(纯氧化铝)PVD 涂层可为切削刀具提供最佳的热防护作用(在切削加工时,AlTiN和AlCrN涂层中的AlN成分将“转化”为Al2O3),但是这种涂层的应用范围十分有限。
超硬涂层知识图文并茂详解(6种)

超硬涂层知识图文并茂详解(6种)超硬涂层材料通常由Ⅲ、Ⅳ和Ⅴ主族元素构成的单质或共价键化合物组成,目前能够满足这个标准的材料有金刚石、类金刚石(DLC)、立方氮化硼(cBN)、碳化氮(C3N4)等。
利用PVD或CVD法将这些材料沉积到基体表面即可获得超硬涂层,这种涂层不但具有与材料本身同样的优良特性,如极高的硬度、极低的摩擦因数、极强的耐磨和耐腐蚀性能、良好的导热和化学稳定性能、高的禁带宽度等,而且其实用性较材料本身更强。
1)、金刚石涂层金刚石是自然界中已知硬度最高的物质,此外它还具有低的摩擦因数、高的弹性模量、高的导热系数、高的声传播速度、宽的能带隙以及良好的化学稳定性等,然而天然金刚石的存量及价格限制了它的大规模商业化应用。
目前一般会采用CVD法制备金刚石涂层,它具有与天然金刚石非常相近的物理和化学性能,根据金刚石的晶粒尺寸,可以将CVD金刚石涂层分为微米晶金刚石(MCD)涂层和纳米晶金刚石(NCD)涂层,其中,晶粒尺寸小于10nm时,被称作超纳米金刚石(UNCD)涂层。
CVD金刚石涂层制备技术已取得了非常大的进展,部分产品已进入产业化推广阶段,并形成了一定的市场规模,应用领域非常多,如下图所示:2)、类金刚石(DLC)涂层利用离子束沉积技术制备了一种化学组成、光学透过率、硬度以及耐磨损等性能与金刚石相近的非晶碳涂层。
这种碳涂层具有以sp3键碳共价结合为主体,混合有sp2键碳的亚稳态长程无序立体网状结构,被称为类金刚石(DLC)涂层。
由于DLC涂层中既有类似于金刚石的sp3键合形式,又有类似于石墨的sp2键合形式,因而其结构和性能介于金刚石和石墨之间。
DLC涂层具有与金刚石涂层非常相近的性能,即极高的硬度、电阻率、导热系数、电绝缘强度、高红外透射性以及光学折射率,同时具有良好的化学稳定性和生物相容性等,在机械、电子、光学、声学、计算机以及生物医学等领域有着广阔的应用前景。
不过受沉积方式和环境的影响,DLC涂层中还可能含有氢等杂质,含各种C-H键,因此不同的制备方法和工艺条件对涂层的性能,尤其是硬度的影响很大。
刀具涂层技术

刀具涂层技术一、概述刀具涂层技术是一种将刀具表面涂上一层特殊材料的技术,目的是提高切削性能、延长使用寿命和降低生产成本。
随着制造业的发展,刀具涂层技术已经成为了现代制造业中不可或缺的重要技术之一。
二、刀具涂层的分类根据不同的涂层材料和工艺,刀具涂层可以分为以下几类:1.物理气相沉积(PVD):是利用真空蒸发、离子镀等方法,在刀具表面形成一层硬质化合物薄膜。
常用的PVD涂层有TiN、TiCN、AlTiN等。
2.化学气相沉积(CVD):是利用化学反应在高温下将气态物质沉积在刀具表面形成一层质量优良的陶瓷薄膜。
常用的CVD涂层有TiC、TiCN、Al2O3等。
3.离子注入(IBAD):是将金属离子注入到刀具表面形成一定深度的硬化区域,增强其耐磨性和抗热性能。
三、刀具涂层的优势1.提高切削速度:由于涂层具有高硬度、低摩擦系数和良好的耐热性能,使得刀具可以承受更高的切削速度,从而提高生产效率。
2.延长使用寿命:涂层可以有效地保护刀具表面不被磨损和氧化,延长其使用寿命。
3.降低生产成本:由于涂层可以延长刀具的使用寿命,减少了更换刀具的次数,降低了生产成本。
4.提高加工质量:由于涂层可以减少表面粗糙度和毛刺,提高加工质量。
四、选择合适的涂层在选择合适的涂层时,需要考虑以下几个因素:1.加工材料:不同材料需要不同类型的涂层。
例如,钢材需要TiN或TiCN等PVD涂层;铸铁需要Al2O3等CVD涂层。
2.加工条件:不同加工条件需要不同类型的涂层。
例如,高速加工需要AlTiN等PVD涂层;重负荷加工需要TiC等CVD涂层。
3.加工要求:不同的加工要求需要不同类型的涂层。
例如,高精度加工需要Al2O3等CVD涂层;高温加工需要ZrN等PVD涂层。
五、刀具涂层的应用刀具涂层技术已经广泛应用于各种行业,如机械制造、汽车制造、航空航天、医疗器械等。
其中,高速钢刀具、硬质合金刀具和陶瓷刀具是最常见的应用对象。
六、总结刀具涂层技术作为现代制造业中不可或缺的重要技术之一,已经成为了提高生产效率、降低生产成本和提高产品质量的重要手段。
刀具涂层技术介绍

04
电子工业领域:提高电子元器件的耐磨性和耐腐蚀性
05
能源领域:提高太阳能电池板的耐磨性和耐腐蚀性
06
建筑领域:提高建筑材料的耐磨性和耐腐蚀性
谢谢
01
陶瓷涂层材料:具有高硬度、高耐磨性和耐高温性
02
复合涂层材料:结合多种材料的优点,提高涂层性能
03
环保型涂层材料:减少环境污染,提高涂层的环保性能
04
涂层技术的优化
01
涂层材料的改进:提高涂层的耐磨性、耐热性、耐腐蚀性等性能
03
涂层结构的优化:设计更合理的涂层结构,提高刀具的使用寿命和加工效率
提高刀具寿命:涂层技术可以降低刀具磨损,提高刀具寿命
提高加工精度:涂层技术可以提高刀具的耐磨性和抗磨损性,从而提高加工精度
降低加工成本:涂层技术可以降低刀具更换频率,从而降低加工成本
提高生产效率:涂层技术可以提高刀具的切削速度和进给速度,从而提高生产效率
降低生产成本
提高刀具寿命:涂层技术可以延长刀具的使用寿命,从而降低生产成本。
刀具涂层技术介绍
演讲人
目录
刀具涂层技术的背景
01
刀具涂层技术的原理
02
刀具涂层技术的应用
03
刀具涂层技术的发展趋势
04
1
刀具涂层技术的背景
刀具磨损问题
刀具磨损是影响加工效率和成本的重要因素
01
刀具磨损会导致加工精度下降,影响产品质量
02
刀具磨损会增加生产成本,降低生产效率
03
刀具磨损问题一直是制造业面临的重要挑战
04
热稳定性测试:测试涂层在高温环境下的稳定性能,以评估其使用寿命
3
刀具涂层技术的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
世界顶尖刀具涂层技术介绍
内容来源网络,由深圳机械展收集整理!
更多数控刀具技术展示,就在深圳机械展-刀具展区!
切削刀具表面涂层技术是近几十年应市场需求发展起来的材料表面改性技术。
采用涂层技术可有效提高切削刀具使用寿命,使刀具获得优良的综合机械性能,从而大幅度提高机械加工效率。
1.刀具涂层的特点
(1)力学和切削性能好。
涂层刀具将基体材料和涂层材料的优良性能结合起来,既保持了基体良好的韧性和较高的强度,又具有涂层的高硬度、高耐磨性和低摩擦系数。
因此,涂层刀具的切削速度与未涂层的相比,切削速度可提高2~5倍,使用涂层刀具可以获得明显的经济效益。
(2)通用性强。
涂层刀具通用性广,加工范围显著扩大,一种涂层刀具可以代替数种非涂层刀具使用,因而可以大大减少刀具的品种和库存量,简化刀具管理,降低刀具和设备成本。
2.涂层的分类
根据涂层方法不同,涂层刀具可分为化学气相沉积(Chemical Vapour Deposition,简称CVD)涂层刀具、物理气相沉积(Physical Vapour Depositon,简称PVD)涂层刀具及混合工艺及组合技术。
CVD涂层原理如图1a所示,PVD涂层原理如图1b所示。
混合工艺是等离子辅助CVD技术与传统的PVD技术进行有效的结合。
比如先沉积传统的CrN硬质涂层,再在最上面沉积一层用于减少摩擦的DLC涂层。
组合技术是涂层前对工具或零部件的表面层进行氮化,可以提高涂层的功效。
CVD可以涂覆耐磨损性优异的TiCN、耐热性非常优异的Al2O3厚膜,因此在产生高温的高速、高效率切削加工中能显示出长寿命,CVD涂层如图2a所示。
PVD一般用在与无涂层硬质合金、高速钢相同或较高速的切削速度条件下,以延长刀具寿命为目标。
对基体制约少、损伤小,因此特别适合用于要求耐磨损性、耐崩刃性的刀具,也适用于要求锋利刃口的低进给加工与精加工或螺纹加工工具等,PVD涂层如图2b所示。
根据涂层刀具基体材料的不同,涂层刀具可分为硬质合金涂层刀具、高速钢涂层刀具以及在陶瓷和超硬材料(金刚石和立方氮化硼)上的涂层刀具等。
涂层硬质合金刀具一般采用化学气相沉积法,沉积温度在1 000℃左右。
涂层高速钢刀具一般采用物理气相沉积法,沉积温度在500℃左右。
金刚石涂层采用CVD(化学蒸镀法)在硬质合金基体上合成。
合成的涂层具备与天然金刚石相匹敌的硬度与导热系数,在非铁材料的加工中发挥着优异的性能。
金刚石涂层刀具由于其良好的切削性能,在切削加工领域具有广阔的应用前景,是加工石墨、金属基复合材料、高硅铝合金及许多其他耐磨蚀材料的理想刀具,目前其主要应用领域是汽车和航空航天工业。
金刚石涂层刀具的组织如图3所示。
根据涂层材料的性质,涂层刀具又可分为两大类,即“硬”涂层刀具和“软”涂层刀具。
“硬”涂层刀具追求的主要目标是高的硬度和耐磨性,其主要优点是硬度高、耐磨性好,典型的是TiC和TiN涂层,各种涂层刀具如图4所示。
“软”涂层刀具是采用固体润滑剂如MoS2、WS2等制备的刀具,“软”涂层追求的目标是低摩擦系数,也称为自润滑刀具,它与工件材料的摩擦系数很低,只有0.1左右,可减小粘、减轻摩擦、降低切削力和切削温度。
对刀具进行涂层处理是提高刀具性能的重要途径之一,涂层刀具的出现,使刀具切削性能有了较大的提高,应用领域不断扩大,涂层刀具在数控加工领域有巨大潜力,将是今后数控加工领域中最重要的刀具品种。
目前国外硬质合金可转位刀片的涂层比例在70%以上,欧洲齿轮刀具的涂层比例高达90%。
涂层技术已应用于立铣刀、铰刀、复合孔加工工具、齿轮滚刀、剃齿刀、成形拉刀及各种机夹可转位刀片,满足高速切
削加工各种钢和铸铁、耐热合金和有色金属等材料的需要。
3.涂层刀具的制备
精密工具、零部件和功能件的新型高性能涂层都是由涂层炉生产出来的。
因为不同的应用需要不同种类的涂层,且需要快速的交货期,因此涂层炉必须要有足够的灵活性,以保证生产不同系列的涂层都能有最佳的成本效益。
现代化的涂层设备能够在金属、陶瓷甚至是塑料的表面进行快速、稳定且全自动的涂层。
现代涂层设备必须满足以下准则:①单炉时间短。
②日常运营成本低。
③灵活性高。
④设备保养和备件费用成本设计低。
⑤生产可靠性高。
⑥全自动操作。
⑦CE认证,职业安全标准高。
4.涂层的选用
为了更好地选择和发展刀具及零部件的最佳功效,需要鉴别其主要及特定的磨损性和失效机理。
磨损、粘附、腐蚀和疲劳都视为磨损机理,而且都取决于实际的应用。
经验指出,材料的摩擦和磨损都不是材料的原因,而是整个系统的原因。
因此,在选择涂层前就必须分析整个摩擦系统,包括零部件的技术性能、抗压力范围以及磨损机理的类型。
5.实际案例
案例1:山特维克可乐满涂层技术
Inveio-单一晶体定向技术
Inveio™是对氧化铝涂层中单一晶体定向技术的一项突破,赋予刀片更高的耐磨性和更长的刀具寿命。
材料科技背景:
在传统的CVD氧化铝涂层中,晶体的生长方向是随机的。
在开发Inveio™时,我们的专家们找到了一种控制该涂层中晶体生长的方法,以确保所有晶体都沿着相同的方向排列,并使最坚固的部分朝向顶面。
您可以在下面的显微镜图片中看到这种情形,其中,每种晶体方向都被赋予一种独特的颜色。
在传统的CVD氧化铝涂层中,晶体取向是随机的。
通过Inveio,氧化铝涂层中的所有晶体都沿着相同的方向朝向顶面排列。
Inveio的作用:
紧密排列的单向晶体在切削区域和铁屑间构造了一个坚固的屏障。
这极大程度地改进了抗月牙洼磨损和抗后刀面磨损特性。
另一种作用是能够更迅速地将热量从切削区域带走,从而有助于切削刃在更长时间的切削期间保持不变形。
可预测性和长刀具寿命:
Inveio™对刀片强度、耐磨性和刀具寿命具有最大的单独影响。
Inveio涂层与刀片的所有其他元素相结合:基体、刃边处理和后处理工艺。
它们可共同确保可预测的长刀具寿命。
案例2:京瓷涂层技术
产品简介:
京瓷先进“KCRIOS”CVD涂层以独创的结晶控制技术与覆膜密度强度的提高,将CVD图层带到了一个全新的阶段。
车削新涂层CA5系列结合最新P系列断屑槽,使车削从粗加工到精加工实现长寿命及优良的断屑效果,铣削CVD新涂层CA420M结合铣削GM、GH、GL及修光刃W断屑槽使铣削刀具寿命更高,“KCRIOS”CVD涂层使我们车削、铣削加工刀具实现长寿命、稳定加工。
“KCRIOS”CVD涂层的特点:
寿命延长:
朝着高耐磨性与高崩损性的方向控制α-Al2O3的结晶成长;
α-Al2O3的结晶呈现柱状化/细微化,相比以往涂层更具有高硬度,高韧性。
从而提高了刀具的寿命,并可对应多样加工。
抑制涂层剥离:
对界面的优化处理使其覆膜密着强度比以往提高了40%;
α-Al2O3层与TiCN层的界面改善使其密着强度提高了40%;
抑制涂层剥离大幅提高了寿命稳定性。
防止崩损:
高纵横比TiCN层提高了覆膜强度与抗崩损性;
TiCN层与以往产品相比更加细微化。
控制结晶方向形成致密组织构造。
大幅提高其耐磨损性。
“KCRIOS”涂层结合车削、铣削丰富的断屑槽使加工更加稳定。
内容来源网络,由深圳机械展收集整理!
更多相关内容,就在深圳机械展!。