matlab图像拼接算法
matlab中的cat函数

matlab中的cat函数Matlab中的cat函数是一种用于连接数组的函数。
通过cat函数可以将多个数组按照指定的维度进行连接,从而得到一个更大的数组。
在本文中,我将详细介绍cat函数的用法及其在实际编程中的应用。
让我们来了解一下cat函数的基本语法。
在Matlab中,cat函数的使用形式为:```C = cat(dim, A1, A2, ..., An)```其中,dim表示连接的维度,A1, A2, ..., An表示需要连接的数组。
cat函数将按照dim指定的维度,将A1, A2, ..., An进行连接,并返回连接后的结果C。
接下来,我们将通过几个例子来说明cat函数的用法。
例1:连接行向量假设我们有两个行向量A和B,分别为:A = [1, 2, 3]B = [4, 5, 6]我们可以使用cat函数将它们连接起来,代码如下:```C = cat(2, A, B)```执行上述代码后,C的值为:C = [1, 2, 3, 4, 5, 6]可以看到,cat函数将A和B按照第2个维度(即列维度)进行了连接。
例2:连接列向量与例1类似,假设我们有两个列向量A和B,分别为:A = [1; 2; 3]B = [4; 5; 6]我们可以使用cat函数将它们连接起来,代码如下:```C = cat(1, A, B)```执行上述代码后,C的值为:C = [1; 2; 3; 4; 5; 6]可以看到,cat函数将A和B按照第1个维度(即行维度)进行了连接。
例3:连接多维数组除了连接一维数组,cat函数还可以连接多维数组。
假设我们有两个2x3的矩阵A和B,分别为:A = [1, 2, 3; 4, 5, 6]B = [7, 8, 9; 10, 11, 12]我们可以使用cat函数将它们连接起来,代码如下:```C = cat(1, A, B)```执行上述代码后,C的值为:C = [1, 2, 3; 4, 5, 6; 7, 8, 9; 10, 11, 12]可以看到,cat函数将A和B按照第1个维度(即行维度)进行了连接。
碎纸片的拼接复原

碎纸片的拼接复原摘要本文研究了碎纸片的复原问题。
对已有的碎纸片,我们利用Matlab求碎纸片边各侧边线的灰度值,通过最小偏差平方和法进行碎纸片间的相互匹配,中间加入人工干预进行筛选,将附件中的碎纸片全部还原。
之后,我们将该方法进行推广,可用以处理更复杂形状碎图片的的还原问题。
对问题一:首先假定附件一所给仅纵切的碎纸片的行文方向与各碎纸片两侧边线垂直,在此基础上先人工干预,根据碎纸片的剪切规范,甄选出原始图片的第一张和最后一张碎纸片,编号分别为008和006。
其次通过Matlab求出图片边线处各小网格点的灰度值,采用最小偏差平方和法,对编号008碎片右边线处的灰度值和其它碎纸片的左边线处的灰度值进行对应网格点的数值匹配,找到最匹配的碎纸片。
附件二碎片的处理进行了类似处理,给出的复原图片见附表4。
对问题二:附件三文本既纵切又横切,同样我们假设所给附件三中碎纸片的行文方向与碎纸片的上下左右边线分别平行或垂直。
在问题一的算法基础上,通过Matlab求出各碎纸片的4条边线的边界灰度值,然后利用最小偏差平方和法,对上下左右四边进行灰度值匹配,当结果多个时,我们进行了人工干预。
附件四依照附件三的方法类似处理,最终的复原见附表7和附表9。
对问题三:附件五中的图片既纵切又横切而且是正反面。
我们参照问题一、二的处理方法,加入反面的灰度值测算,随机选择一张碎纸片与其他碎纸片进行遍历匹配,得出4张匹配的碎纸片后,以这4张碎纸片为下一起点,扩张匹配,最终给出的复原图见附表12。
为适应更一般的情形,我们在模型改进部分,给出了当碎纸片的文字行文方向与碎纸片两侧边线不垂直时的处理方法(只处理了边线为直线的情形)。
首先是通过测算出的碎纸片灰度值确定出碎纸片的边缘线,其次定出碎纸片边缘线附近网格点的灰度值,最后完成边线的的匹配。
关键词:人工干预灰度矩阵灰度值最小偏差平方和法一问题重述1.1问题背景纸片文字是人们获取和交换信息的主要媒介,尤其是在计算机技术飞速发展、数码产品日益普及的今天。
碎纸片的拼接复原算法及MATLAB实现之欧阳道创编

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。
我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。
如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):楚雄师范学院参赛队员(打印并签名) :1.陈志明2.施明杰3. 阮秀婷指导教师或指导教师组负责人 (打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。
以上内容请仔细核对,提交后将不再允许做任何修改。
如填写错误,论文可能被取消评奖资格。
)日期:3013年9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原算法及MATLAB实现摘要:对于只有纵切的情形,文章通过比较当前待拼碎片与剩余碎片的信噪比psnr[1,3,4]的值来确定两碎片是否为邻接碎片;拼接算法首先连续调用右拼函数直到拼接到原图右边界,然后连续调用左拼函数直到拼接到原图左边界,从而得到整幅复原图像;对于单面纵横交错切的情形,文章对首先采用纵切拼接算法将碎片拼接成多幅横条图片,然后将各横条图片矩阵转置[2],再次采用纵切拼接算法拼接;两种情形的拼接,都存在人为参与;实验证明,我们的算法对纵切情形是有效的,对纵横切情况是可行的。
Matlab在图像处理中的应用与技巧

Matlab在图像处理中的应用与技巧引言图像处理是计算机科学领域中的一个重要分支,通过对图像进行处理和分析,可以获得许多有价值的信息。
而MATLAB作为一个强大的计算软件,具备了丰富的图像处理函数和工具箱,可以帮助我们实现各种复杂的图像处理任务。
本文将介绍MATLAB在图像处理中的应用与技巧,帮助读者更好地利用MATLAB进行图像处理。
一、图像的读取与显示在MATLAB中,可以使用imread函数读取图像文件。
例如,要读取一张名为"image.jpg"的图像文件,可以使用以下代码:```MATLABimage = imread('image.jpg');```而imshow函数则可以将图像显示在窗口中,例如:```MATLABimshow(image);```通过这两个简单的函数,我们可以很方便地读取和显示图像。
二、图像的基本处理1.图像的缩放在图像处理过程中,经常需要将图像进行缩放。
MATLAB提供了imresize函数来实现图像的缩放,例如:```MATLABnew_image = imresize(image, [height, width]);```其中,height和width分别表示缩放后图像的高度和宽度。
2.图像的灰度化有时候我们只关注图像的亮度信息,而忽略了彩色信息。
此时可以将图像转换为灰度图像,MATLAB提供了rgb2gray函数来实现图像的灰度化,例如:```MATLABgray_image = rgb2gray(image);```gray_image即为灰度图像。
3.图像的旋转有时候我们需要将图像进行旋转,MATLAB提供了imrotate函数来实现图像的旋转,例如:```MATLABrotated_image = imrotate(image, angle);```其中,angle表示旋转的角度。
三、图像的增强处理1.图像的边缘检测在许多图像处理任务中,边缘是重要的特征之一。
zernike拟合matlab程序

zernike拟合是一种基于Zernike多项式的图像拟合方法,它可以用来描述并拟合各种形状的图像。
在Matlab中,我们可以使用Zernike 拟合Matlab程序来进行图像拟合分析,并且得到较为准确的结果。
一、Zernike多项式介绍Zernike多项式是一组正交完备的函数集合,它们可以用来描述并拟合各种类型的光学波前形态。
Zernike多项式具有很好的数学性质,常用于光学成像系统中的波前重构和光学表面拟合。
在图像处理领域,Zernike多项式也被广泛应用于图像的分析和拟合。
二、Zernike拟合原理Zernike拟合的原理是利用Zernike多项式来拟合图像,通过对图像进行分解和重构,得到最优的Zernike多项式系数,从而达到对图像形状的精确描述和拟合。
在Matlab中,通过编写相应的Zernike拟合程序,可以方便地进行图像的拟合分析。
三、Matlab中的Zernike拟合程序在Matlab中,我们可以使用Zernike拟合工具箱或自行编写程序来实现Zernike拟合。
以下是一个简单的Zernike拟合Matlab程序示例:```matlab读取原始图像I = imread('image.jpg');转换为灰度图I_gray = rgb2gray(I);定义Zernike多项式阶数n = 10;Zernike拟合[coefficients, rec_image] = zernike_fit(I_gray, n);显示拟合结果subplot(1, 2, 1);imshow(I_gray);title('原始图像');subplot(1, 2, 2);imshow(rec_image);title('Zernike拟合结果');输出Zernike多项式系数disp('Zernike多项式系数:');disp(coefficients);```以上是一个简单的Zernike拟合Matlab程序示例,通过该程序可以对输入的图像进行Zernike拟合,并输出拟合结果和Zernike多项式系数。
基于matlab的图像识别与匹配

基于matlab的图像识别与匹配基于matlab的图像识别与匹配摘要图像的识别与匹配是⽴体视觉的⼀个重要分⽀,该项技术被⼴泛应⽤在航空测绘,星球探测机器⼈导航以及三维重建等领域。
本⽂意在熟练运⽤图像的识别与匹配的⽅法,为此本⽂使⽤⼀个包装袋并对上⾯的数字进⾏识别与匹配。
⾸先在包装袋上提取出来要⽤的数字,然后提取出该数字与包装袋上的特征点,⽤SIFT⽅法对两幅图进⾏识别与匹配,最终得到对应匹配数字的匹配点。
仿真结果表明,该⽅法能够把给定数字与包装袋上的相同数字进⾏识别与匹配,得到了良好的实验结果,基本完成了识别与匹配的任务。
1 研究容图像识别中的模式识别是⼀种从⼤量信息和数据出发,利⽤计算机和数学推理的⽅法对形状、模式、曲线、数字、字符格式和图形⾃动完成识别、评价的过程。
图形辨别是图像识别技术的⼀个重要分⽀,图形辨别指通过对图形的图像采⽤特定算法,从⽽辨别图形或者数字,通过特征点检测,精确定位特征点,通过将模板与图形或数字匹配,根据匹配结果进⾏辨别。
2 研究意义数字图像处理在各个领域都有着⾮常重要的应⽤,随着数字时代的到来,视频领域的数字化也必将到来,视频图像处理技术也将会发⽣⽇新⽉异的变化。
在多媒体技术的各个领域中,视频处理技术占有⾮常重要的地位,被⼴泛的使⽤于农业,智能交通,汽车电⼦,⽹络多媒体通信,实时监控系统等诸多⽅⾯。
因此,现今对技术领域的研究已⽇趋活跃和繁荣。
⽽图像识别也同样有着更重要的作⽤。
3 设计原理3.1 算法选择Harris ⾓点检测器对于图像尺度变化⾮常敏感,这在很⼤程度上限制了它的应⽤围。
对于仅存在平移、旋转以及很⼩尺度变换的图像,基于 Harris 特征点的⽅法都可以得到准确的配准结果,但是对于存在⼤尺度变换的图像,这⼀类⽅法将⽆法保证正确的配准和拼接。
后来,研究⼈员相继提出了具有尺度不变性的特征点检测⽅法,具有仿射不变性的特征点检测⽅法,局部不变性的特征检测⽅法等⼤量的基于不变量技术的特征检测⽅法。
Matlab中的空间变换方法详解

Matlab中的空间变换方法详解1. 引言在现代科学和工程领域,空间变换是一种重要的数学工具,它在图像处理、机器视觉、计算机图形学等领域中得到广泛应用。
而Matlab作为一种功能强大的数值计算和数据可视化工具,提供了丰富的空间变换方法和函数,方便用户进行数据处理和分析。
本文将详细介绍Matlab中常用的空间变换方法,包括仿射变换、透视变换和图像配准等内容。
2. 仿射变换2.1 仿射变换的概念仿射变换是一种保持直线并比例保持平行线的变换,它可以通过矩阵乘法和向量加法来表示。
在Matlab中,可以使用affine2d对象来定义和实现仿射变换。
affine2d对象可以通过定义变换矩阵和向量来创建,然后可以将其应用于图像或坐标点,实现图像的旋转、平移、缩放等操作。
2.2 仿射变换的应用在图像处理中,仿射变换常用于图像修复、图像拼接和图像配准等应用。
例如,在图像拼接中,我们可以使用仿射变换来将多张图像拼接成一张大图像;在图像配准中,我们可以使用仿射变换来对齐两幅图像,以便进行后续的分析和处理。
3. 透视变换3.1 透视变换的概念透视变换是一种将图像从原始视角转换到目标视角的变换,它常用于图像校正、三维重建等应用中。
在Matlab中,可以使用projective2d对象来定义和实现透视变换。
projective2d对象可以通过定义变换矩阵来创建,并可以将其应用于图像或坐标点,实现图像的透视变换。
3.2 透视变换的应用透视变换在计算机视觉和模式识别中有着广泛的应用。
例如,在图像校正中,我们可以使用透视变换将斜视图像转换为直视图像,以提高图像的可视化效果;在三维重建中,我们可以使用透视变换将多张图像投影到三维空间中,恢复物体的三维结构。
4. 图像配准4.1 图像配准的概念图像配准是一种将多幅图像在空间中对齐的过程,它常用于医学影像、遥感图像和计算机视觉等领域。
在Matlab中,可以使用imregister函数来实现图像配准。
matlab图像处理函数大全

matlab图像处理函数大全Matlab是一种强大的科学计算软件,广泛应用于各个领域,包括图像处理。
在Matlab中,有许多内置的图像处理函数,可以帮助我们实现各种图像处理任务。
本文将介绍一些常用的Matlab图像处理函数,帮助您更好地理解和运用这些函数。
1. imread函数imread函数用于读取图像文件,并将其存储为Matlab的图像矩阵。
它可以读取多种图像格式,如JPEG、PNG、BMP等。
例如,可以使用以下代码读取名为"image.jpg"的图像文件:```matlabimage = imread('image.jpg');```2. imshow函数imshow函数用于显示图像。
它可以接受一个图像矩阵作为输入,并将其显示在Matlab的图像窗口中。
例如,可以使用以下代码显示之前读取的图像:```matlabimshow(image);```3. imresize函数imresize函数用于调整图像的大小。
它可以接受一个图像矩阵和目标大小作为输入,并返回调整大小后的图像矩阵。
例如,可以使用以下代码将图像调整为200x200的大小:```matlabresized_image = imresize(image, [200, 200]);```4. rgb2gray函数rgb2gray函数用于将彩色图像转换为灰度图像。
它可以接受一个彩色图像矩阵作为输入,并返回一个灰度图像矩阵。
例如,可以使用以下代码将彩色图像转换为灰度图像:```matlabgray_image = rgb2gray(image);```5. imadjust函数imadjust函数用于调整图像的对比度和亮度。
它可以接受一个灰度图像矩阵和目标对比度和亮度范围作为输入,并返回调整后的图像矩阵。
例如,可以使用以下代码增加图像的对比度和亮度:```matlabadjusted_image = imadjust(gray_image, [0.2, 0.8], [0, 1]);```6. imfilter函数imfilter函数用于对图像进行滤波操作。