罚函数法求解技巧

合集下载

第二节 罚函数法

第二节  罚函数法
0 Step1: 给定初始点 x ∈ int S ,初始罚因子 r1 ,缩小系数
β ∈ (0,1) ,允许误差 ε > 0 ,置 k = 1 ;
k −1 x 为初点,求解无约束优化问题 Step2: 以
min G ( x, r ) = f ( x) + rB( x) s.t. x ∈ int S
设其极小点为 x ;
G ( x, r ) = f ( x) − r ∑ ln g i ( x)
m
-----对数障碍函数
由 G( x, r ) 的定义, r 取值越小,问题
min G ( x, r ) = f ( x) + rB( x) s.t. x ∈ int S
的最优解越接近约束优化问题的最优解。 2. 内点罚函数法的计算步骤
k min H ( x) x Step4: 以 为初始点求解无约束问题 x∈Sk k +1 的最优解
x k +1 ,其中
H k +1 ( x) = −∑ gi ( x) + rk +1 ∑ gi ( x)
i∈I k i∈J k
, Sk = {x | gi ( x) > 0, i ∈ J k }
令 rk + 2 = βrk +1 , k = k + 1, 返回 Step2. 注:该算法中,对于 k = 0,1,2,L ,有 I k +1 ⊂ I k , J k +1 ⊃ J k ,且 最后某个 I k = ∅ 。 三. 广义乘子法 1. 对于等式约束优化问题
φ ( x, y , ω , σ ) = f ( x ) − ∑ ω j ( g j ( x ) − y j ) +
2 j =1 l

罚函数-原理与应用

罚函数-原理与应用

定理3.37
定理3.37 设对给定的参数μ,F(x,μ)的无约
束极小值为xμ。那么,xμ成为f(x)的约束极小点的
充要条件是:xμ是原问题的可行点。
罚函数法算法
2.罚函数算法
1) 取初始点X0为非可行点,μ0>0(通常取μ0=1), ε>0,c>1(通常取
c=10),k=0
2) 以Xk为出发点,求解无约束极小化问题:
= 12 + 222 + 21 + (1 + 2 − 1)2
(, )
= 12 + 222 + 21
+ (1 + − 1)2
例题
= 2, 2 = 100
(1) = (−0.2,0.4), ( (1) ,μ0 ) = 1.5237
任选一种无约束极小化算法,可解得F(X, μ0)的
问题转化为:
minF(x)
min() = 12 + 222 + 21
..
(3-98)
基本原理
F(x)的等价表达式:
F(x,μ)=x+μ[max(0,-0+2)]²
其中,μ是一个充分大的正数。记
α(x)=[max(0,-x+2)]²
(3-98)
(3-99)
通常将μα(x)称之为罚函数,记为
点正是X=2
解题步骤
一般情况下:
设原问题为
minf(x)
(3-100)
s.t. gi(x)≤0,i=1,2,…,m (3-101)
hj(x)=0,j=1,2,…,l (3-102)
则可以构造无约束极小化问题:
minF(x,μ)=f(x)+μα(x) (3-103)

最优化方法 第三章(罚函数法)

最优化方法  第三章(罚函数法)

这种惩罚策略,对于在无约束的求解过程中企图违反约
束的迭代点给予很大的目标函数值,迫使无约束问题的 极小点或者无限地向可行域D靠近,或者一直保持在可 行域D内移动,直到收敛到原来约束最优化问题的极小 点。
不改变可行域局部极小值,可以将 约束域之外的局部极小值变大。
p ( x) 0, x D p ( x) 0, x D
k k
k 1
k 1
xk 1是F x, M k 1 的最优解.
k 1 k k 1 k 0 M k 1 M k p ( x ) p ( x ) p ( x ) p ( x )
M k 1 M k
(3) f ( x k 1 ) M k p( x k 1 ) F ( x k 1 , M k ) F ( x k , M k ) f ( x k ) M k p( x k )
gi ( x) gi ( x) max gi ( x), 0 = 罚函数p(x)的构造 2 m l p( x) (max gi ( x), 0) 2 h 2 j ( x)
i 1 j 1
(1) p(x)连续 (2) p( x) 0, x D (3) p( x) 0, x D
二、外点法 外点罚函数法算法步骤 1:给定初始点 x 0 ,初始罚因子M1 0 (可取M1 1 ), 精度 0, k : 1. 2:以 x k 1初始点,求解无约束优化问题
min F ( x, M k ) f ( x) M k p( x)
得到极小点 x* ( M k ),记为 x k , 其中
p( x) (max gi ( x), 0) h 2 j ( x)
2 i 1 j 1 m l

罚函数法

罚函数法

外罚函数法算法
Step1: 给出 x0 ∈ Rn (可是不可行点), > 0(ε =10−4 ) ε 罚因子 σ1(σ1 =1) , 放大系数 C(C =10) , k =1. Step2: 以 xk−1 为初始点求无约束问题: ~ m P( x,σk ) = f ( x) +σk P( x) 得 xk = x(σk ). in ~ Step3: 若 σk P(xk ) < ε , 则 x* = xk ,停; 否则转step4 Step4: 令 σk+1 = Cσk , k = k +1, 转step2.
Q f (xk ) ≤ P(xk ,σk ) ≤ f x
设其极限为 f . ∴ { f (xk )} 亦为单调有界序列, ~ ∴ lim σk P(xk ) = lim [P(xk ,σk ) − f (xk )] = p0 − f 0 k→+∞ k→+∞ ~ Q σk →+∞ ∴ lim P(xk ) = 0 k→+∞ ~ ~ ~ 且 P(x) 连续; P(~) = 0 即 ~ 为可行解 x ∴ x Q x →x
0
( )
*
Q x 为最优解;∴ f x* ≤ f (~) x ~, f (x) 连续; f (~) = lim f (x ) ≤ f (x* ) ∴ x Q xk → x k k→+∞ * ~) 即 ~ 为(3)的整体最优解. ∴ f x = f (x x
k *
( )
( )
外罚函数法评价
(1) 如果有了求解无约束问题的好算法,利用 外罚函数法求解约束问题很方便. (2) 每个近似解 x(σk ) 往往不是可行解,这是某 些实际问题所无法接受的. 内罚函数法可以解决. (3) 由收敛性定理 σk 取越大越好, σk 越大将 而 造成增广目标函数 P( x,σ ) 的Hesse阵条件数越 大,趋于病态,给无约束问题求解增加很大困 难,甚至无法求解.乘子法可解决这个问题.

0422 罚函数法

0422  罚函数法

Page 17
所以
1 r x r r
令 r 0 有:
x( r ) x 1, 0
*
T
则最优解及最优值分别为:
x 1, 0
* T
8 , f . 3
*
3. 算法实现
Page 18
Step1: 给出 x 0 R n (要求是可行点), 0 104 罚因子 r1 r1 10 , 缩小系数 c 0.1 , 令 k 1. Step2: 以 x k 1 为初始点求无约束问题:
2 2 min f x x1 x2
Page 7
s.t
解:作辅助函数
x1 1 0
2 1 2 2 2
F x, x x max 0, x1 1
2 2 x x x1 1 0 1 2 即:F x , 2 2 2 x1 1 0 x1 x2 x1 1 x1 1 因此: F 2 x1 x1 2 x1 2 x1 1 x1 1 F 2 x2 x2
i 1 j 1
0 是很大的正数.
P ( x ) 0, F ( x , ) f ( x ). 当 x是可行点时, 分析: 当 x不是可行点时, P x 0, 又因 是大正数.
故此 x 很难成为 F x, 的极小点. 因此,按上策略 得到的 F x, 的极小点应充分靠近可行域,逐渐
“围墙”,当迭代点靠近边界时,目标函数值陡然增大,
这相当于对它进行惩罚,从而阻止迭代点穿越边界,
这样就可以把最优解“挡”在可行域内了.
注意: 内点法只适合于不等式约束问题,并且要求 可行域的内点集非空.

罚函数法

罚函数法
x ∂ 2φ ' ∂ (∂y x ) 2

就是Hesse矩阵,这时大于零(或小于零)与Hesse的正 矩阵,这时大于零(或小于零) 就是 矩阵 的正 或负定)是一致的, 定(或负定)是一致的,二者都可作为判定泛函数极值的 充分条件。 充分条件。
式中: 式中:x(t)---m维状态函数向量; w(t)---r维决策函数向量; f---微分形式状态方程; t---时间变量; t0---初始时刻; tf---终止时刻。
目标函数随状态变量和决策变量的不同而 不同,也就是说目标函数是函数都是函数。在 不同,也就是说目标函数是函数都是函数。 数学上,这种函数称为泛函, 数学上,这种函数称为泛函,求泛值的问题称 为变分问题。 为变分问题。 因此, 因此,连续系统的最优化问题就是一个变 分问题。 分问题。由于求泛函的极小问题也是一种极值 问题。 问题。 对于无约束问题, 对于无约束问题,根据极值存在的充分必 要条件求极值;对于有约束的最优化问题, 要条件求极值;对于有约束的最优化问题,则 先利用拉格朗日函数或罚函数, 先利用拉格朗日函数或罚函数,将其转化成无 约束最优化问题后再求解。 约束最优化问题后再求解。
动态系统参数的最优化又称连续系统最优化,因 为优化问题的解是t的连续函数。 动态参数优化问题的一般模型:
min J = min{

tf
t0
F [ x ( t ), w ( t ), t ] dt + s [ x ( t f ), t f ]}
dx ( t ) s .t . = f [ x ( t ), w ( t ), t ] dt g [ x ( t ), w ( t ), t ] ≥ 0 c [ x ( t ), w ( t ), t ] = 0 初始条件: x (t 0 ) = x 0

分享:惩罚函数法(内点法、外点法)求解约束优化问题最优值

分享:惩罚函数法(内点法、外点法)求解约束优化问题最优值

分享:惩罚函数法(内点法、外点法)求解约束优化问题最优值1 用外点法求下列问题的最优解方法一:外点牛顿法:clcm=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);% a b为最优点坐标,f0为最优点函数值,f1 f2最优点梯度。

syms x1 x2 e; %e为罚因子。

m(1)=1;c=10;a(1)=0;b(1)=0; %c为递增系数。

赋初值。

f=x1^2+x2^2+e*(1-x1)^2;f0(1)=1;fx1=diff(f,'x1');fx2=diff(f,'x2');fx1x1=diff(fx1,'x1');fx1x2=diff(fx1,'x2');fx2x1=diff(fx2,'x1');fx2x2=diff(fx2,'x2');%求偏导、海森元素。

for k=1:100 %外点法e迭代循环.x1=a(k);x2=b(k);e=m(k);for n=1:100 %梯度法求最优值。

f1=subs(fx1); %求解梯度值和海森矩阵f2=subs(fx2);f11=subs(fx1x1);f12=subs(fx1x2);f21=subs(fx2x1);f22=subs(fx2x2);if(double(sqrt(f1^2+f2^2))<=0.001) %最优值收敛条件a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs (f));break;elseX=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]';x1=X(1,1);x2=X(2,1);endendif(double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001) %罚因子迭代收敛条件a(k+1) %输出最优点坐标,罚因子迭代次数,最优值b(k+1)kf0(k+1)break;elsem(k+1)=c*m(k);endend方法二:外点梯度法:clcm=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);syms d x1 x2 e;m(1)=1;c=10;a(1)=0;b(1)=0;f=x1^2+x2^2+e*(1-x1)^2; f0(1)=1;fx1=diff(f,'x1');fx2=diff(f,'x2');for k=1:100x1=a(k);x2=b(k);e=m(k);for n=1:100f1=subs(fx1);f2=subs(fx2);if(double(sqrt(f1^2+f2^2))<=0.002)a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs (f));break;elseD=(x1-d*f1)^2+(x2-d*f2)^2+e*(1-(x1-d*f1))^2;Dd=diff(D,'d'); dd=solve(Dd); x1=x1-dd*f1; x2=x2-dd*f2;endendif(double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001) a(k+1)b(k+1)kf0(k+1)break;elsem(k+1)=c*m(k);endend2,点法求下列问题的最优解内点牛顿法clcm=zeros(1,50);a=zeros(1,50);b=zeros(1,50);f0=zeros(1,50);syms x1 x2 e;m(1)=1;c=0.2;a(1)=2;b(1)=-3;f=x1^2+x2^2-e*(1/(2*x1+x2-2)+1/(1-x1)); f0(1)=15;fx1=diff(f,'x1');fx2=diff(f,'x2');fx1x1=diff(fx1,'x1');fx1x2=diff(f x1,'x2');fx2x1=diff(fx2,'x1');fx2x2=diff(fx2,'x2');for k=1:100x1=a(k);x2=b(k);e=m(k);for n=1:100f1=subs(fx1);f2=subs(fx2);f11=subs(fx1x1);f12=subs(fx1x2);f21=subs(fx2x1);f22=subs(fx2x2);if(double(sqrt(f1^2+f2^2))<=0.002)a(k+1)=double(x1);b(k+1)=double(x2);f0(k+1)=double(subs (f));break;elseX=[x1 x2]'-inv([f11 f12;f21 f22])*[f1 f2]';x1=X(1,1);x2=X(2,1);endendif(double(sqrt((a(k+1)-a(k))^2+(b(k+1)-b(k))^2))<=0.001)&&(double(abs((f0(k+1)-f0(k))/f0(k)))<=0.001) a(k+1)b(k+1)kf0(k+1)break;elsem(k+1)=c*m(k);endend。

惩罚函数法

惩罚函数法

解出x1,x2
5M 4 M 5 x1 x2 2.5 2M 1 2
此时x1,x2则满足约束条件,是原问题的解。
§2惩罚函数法
§2惩罚函数法
§2惩罚函数法
§2惩罚函数法
§2惩罚函数法
§2惩罚函数法 例:内点法求解约束问题 min f (u ) au(a 0) s.t.g (u ) b u 0(b 0)
§2惩罚函数法
§2惩罚函数法
§2罚函数法
§2惩罚函数法
§2惩罚函数法
§2惩罚函数法
s.t. h (xi)=x1+ x2-5=0
该问题只有等式约束 解:首先建立罚函数:
F ( x, M ) f ( x) Mp( x)
P( x)
(max( 0, g
i 1
l
i
( x )))
2
( h j ( x ))
j 1
m
2
( x1 x 2 5) 2
F ( x, M ) ( x1 4) 2 ( x2 4) 2 M ( x1 x2 5) 2
此时的x1,x2不满足约束条件,不是原问题的解。
当x 不属于 S 时
F§2惩罚函数法 ( x2 4) 2 M ( x1 x2 5) 2 ( x, M ) ( x1 4) 2
F 2( x1 4) 2M ( x1 x 2 5) 0 x1 F 2( x 2 4) 2M ( x1 x 2 5) 0 x 2
*
rk a 2 (b u )
rk a
F (u , rk ) f (u ) rk a (b rk 0
1 1 au rk g (u ) bu
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

罚函数法求解技巧
罚函数法(也称为约束罚函数法)是一种通过在优化问题中引入罚函数来处理约束条件的方法。

它将约束条件转化为目标函数的一部分,通过调整罚函数的系数来平衡目标函数的优化和约束条件的满足。

罚函数法的基本思想是将原始优化问题转化为无约束优化问题。

具体步骤如下:
1. 将原始问题的约束条件表示为等式或不等式形式。

例如,如果存在等式约束f(x) = 0 和不等式约束g(x) ≤0,则可以将原始优化问题表示为:
min f(x)
s.t. g(x) ≤ 0
2. 引入罚函数,将约束条件转化为目标函数的一部分。

罚函数的形式可以有多种选择,常用的有线性罚函数和二次罚函数。

线性罚函数的形式如下:
min f(x) + κh(x)
s.t. g(x) ≤ 0
其中,h(x)表示约束条件的惩罚项,κ是罚函数的系数。

3. 将原始优化问题转化为无约束优化问题。

通过调整罚函数的系数κ,可以平衡目标函数的优化和约束条件的满
足。

一般来说,较小的κ会更加侧重于满足约束条件,而较大的κ则更加强调目标函数的优化。

4. 使用无约束优化算法求解转化后的无约束优化问题。

根据具体情况选择适当的优化算法,例如牛顿法、梯度下降法等,来求解转化后的无约束优化问题。

5. 根据优化结果得到原始优化问题的解。

根据转化后的无约束优化问题的解,可以得到对应的原始问题的解。

罚函数法的求解技巧包括以下几个方面:
1. 罚函数的选择:罚函数的选择应该考虑到约束条件的性质和目标函数的特点。

例如,如果约束条件是线性的,可以选择线性罚函数;如果约束条件是非线性的,可以选择二次罚函数。

此外,罚函数的形式也可以根据具体问题进行调整,例如引入松弛变量等。

2. 罚函数系数的调整:罚函数的系数κ可以通过试验来确定。

一般而言,初步确定一个较小的值,然后逐步增加,直到找到适当的取值为止。

一般来说,较小的κ会更注重约束条件的满足,较大的κ则更注重目标函数的优化。

3. 初始点的选择:初始点的选择对罚函数法的收敛性和求解效率有一定的影响。

合理选择初始点可以减少迭代次数和计算成本,加速求解过程。

4. 适当限制罚函数系数的增长:随着罚函数系数的增加,罚函数法可能会变得不稳定或收敛速度变慢。

为了避免这种情况的发生,可以设置一个最大罚函数系数,或者在达到一定的罚函数系数后停止迭代。

5. 使用合适的优化算法:在罚函数法中,需要使用无约束优化算法来求解转化后的无约束优化问题。

选择合适的优化算法对求解效率和求解质量都有重要影响。

根据具体情况选择合适的算法,可以提高求解效率和求解质量。

总的来说,罚函数法是一种有效的处理约束条件的方法。

通过引入罚函数,将约束条件转化为目标函数的一部分,可以将原始优化问题转化为无约束优化问题。

在使用罚函数法求解问题时,需要注意罚函数的选择、罚函数系数的调整、初始点的选择、限制罚函数系数的增长以及使用合适的优化算法等因素,以提高求解效率和求解质量。

相关文档
最新文档