最优化理论第五章 惩罚函数法
合集下载
《惩罚函数法》PPT课件

那么该点x就不会是(*)的最优解。
这样的存在迫使最优解在可行域内取得。 随着的增大或更特殊地取为+∞,则问题(*)就成为:
min (x12+x22) 当(x1+x2-2)=0.
这恰为所要求解的原问题.
引例求解思想的理论支持
问题 min (x12+x22)+(x1+x2-2)2
最优解的解析式为:
x1() x2 () 221
一般地,对于等式约束问题, min f(x) s.t. hj(x)=0, j=1:n
将此问题改造成一个新问题(**):
n
min F( x),f(x )h2 j(x),其 中 为一个大正数 j1
这个新问题的最优解 必定使~x得hj( )接近于0 ~x 否则的话式子中的第二项就会是一个很大的正数 现在的这个点 就不~会x 是这个无约束问题的极小点
[max2 {(x0 )},2-]s.....[.maxm {(x 0),}2 -]s
h12(x)h22(x).....h .n2(x))
m
n
f(x )( [mai( x x ){ } 2 0 ] ,h -j2 s (x ))
i 1
j 1
P( x)
F(x, )-----增广目标函数
P(x)-----惩罚函数(惩罚项) ----罚因子
min x12+x22 s.t. x1+x2-2=0
由图解法易见最优解为(1,1)T
将这个问题改造为一个无约束问题如下:
min (x12+x22)+(x1+x2-2)2 (*)
为一个充分大的正的参数
min x12+x22 s.t. x1+x2-2=0
这样的存在迫使最优解在可行域内取得。 随着的增大或更特殊地取为+∞,则问题(*)就成为:
min (x12+x22) 当(x1+x2-2)=0.
这恰为所要求解的原问题.
引例求解思想的理论支持
问题 min (x12+x22)+(x1+x2-2)2
最优解的解析式为:
x1() x2 () 221
一般地,对于等式约束问题, min f(x) s.t. hj(x)=0, j=1:n
将此问题改造成一个新问题(**):
n
min F( x),f(x )h2 j(x),其 中 为一个大正数 j1
这个新问题的最优解 必定使~x得hj( )接近于0 ~x 否则的话式子中的第二项就会是一个很大的正数 现在的这个点 就不~会x 是这个无约束问题的极小点
[max2 {(x0 )},2-]s.....[.maxm {(x 0),}2 -]s
h12(x)h22(x).....h .n2(x))
m
n
f(x )( [mai( x x ){ } 2 0 ] ,h -j2 s (x ))
i 1
j 1
P( x)
F(x, )-----增广目标函数
P(x)-----惩罚函数(惩罚项) ----罚因子
min x12+x22 s.t. x1+x2-2=0
由图解法易见最优解为(1,1)T
将这个问题改造为一个无约束问题如下:
min (x12+x22)+(x1+x2-2)2 (*)
为一个充分大的正的参数
min x12+x22 s.t. x1+x2-2=0
优化设计5惩罚函数法

惩罚函数法
目前,人们对无约束问题的最优化方法要比对约束优化方法研 究的更为深入和成熟,并且形成了有效的、可靠的解法。因 此,在求解约束化问题时,自然会想到是否可以利用某种方法 将约束优化问题转化为无约束最优化问题来解决,显然这种转化 必须在一定的前提条件下进行。一方面这种转化不能破坏原约 束问题的约束条件;另一方面还必须使它归结到原约束优化问 题的同一最优解上去。这种将约束优化问题转化成无约束化问 题,然后用无约束最优化方法进行求优的途径就是约束优化问 题求优的间接解.
4
内点惩罚函数法
内点惩罚函数法的基本原理
内点惩罚函数法(简称内点法)将新目标函数定义在可行城内.这样 它的初始点以及后面产生的迭代点序列也必在可行城内,它是求解 不等式约束优化问题的一种十分有效的方法。下面我们选用一个简 单的例子来说明内点法的一些几何概念和基本原理。 设数学模型为:
min F(x) x X D R1 D: g(X) x 1 0 用内点法来求解此约束问题先构造泛函,取
适用于不等式约束函数比较简单的情况
然后构造罚函数,并求无约束极小值
5
代替计算机无约束搜索求优,惩罚函数无约束最优点序列
6
7
8
9
可以看出内点惩罚函数法就是以不同的加权参数(罚因子)来构造一 序列无约束的新目标函数,求这一序列惩罚函数法的无约束极值 点 X • (r(k) ) ,使它逐渐逼近原约束问题的最优解,而不论原约束问题 最优解在可行域内还是在可行域的边界上,其整个搜索过程都在约束 区域内进行。
k 0
r(ห้องสมุดไป่ตู้) 1
u1
G[gu(X)]
0
的满足要求。
12
13
采用内点法应注意几个问题
目前,人们对无约束问题的最优化方法要比对约束优化方法研 究的更为深入和成熟,并且形成了有效的、可靠的解法。因 此,在求解约束化问题时,自然会想到是否可以利用某种方法 将约束优化问题转化为无约束最优化问题来解决,显然这种转化 必须在一定的前提条件下进行。一方面这种转化不能破坏原约 束问题的约束条件;另一方面还必须使它归结到原约束优化问 题的同一最优解上去。这种将约束优化问题转化成无约束化问 题,然后用无约束最优化方法进行求优的途径就是约束优化问 题求优的间接解.
4
内点惩罚函数法
内点惩罚函数法的基本原理
内点惩罚函数法(简称内点法)将新目标函数定义在可行城内.这样 它的初始点以及后面产生的迭代点序列也必在可行城内,它是求解 不等式约束优化问题的一种十分有效的方法。下面我们选用一个简 单的例子来说明内点法的一些几何概念和基本原理。 设数学模型为:
min F(x) x X D R1 D: g(X) x 1 0 用内点法来求解此约束问题先构造泛函,取
适用于不等式约束函数比较简单的情况
然后构造罚函数,并求无约束极小值
5
代替计算机无约束搜索求优,惩罚函数无约束最优点序列
6
7
8
9
可以看出内点惩罚函数法就是以不同的加权参数(罚因子)来构造一 序列无约束的新目标函数,求这一序列惩罚函数法的无约束极值 点 X • (r(k) ) ,使它逐渐逼近原约束问题的最优解,而不论原约束问题 最优解在可行域内还是在可行域的边界上,其整个搜索过程都在约束 区域内进行。
k 0
r(ห้องสมุดไป่ตู้) 1
u1
G[gu(X)]
0
的满足要求。
12
13
采用内点法应注意几个问题
机械优化设计第五节约束优化-惩罚函数法3-5

外点法求解时,惩罚函数的形式为:
(k ) ( x, r ) f ( x) r max 0, gu ( x) r hv ( x) u 1 v 1
(k ) (k ) m p 2 2
k 1, 2
r
(1) ( 2)
(k )
内点法对企图从内部穿越可行域的点施以惩 g x 0 时,则障碍项的 罚。设计点离边界越近 值急剧增大,并趋向无穷大,于是惩罚越大,于是惩 罚函数 ( x r ( k ) )亦随之急剧增大至无穷大.
u
就好像在可行域的边界上设置很高的障 碍,从而保障迭代点一直在可行域内而又趋向 于约束最优点。当 k r ( k ) 0时,才能求得 原约束问题的最优解。 参数的选取和确定:
(0)
(2)初始惩罚因子 r
(0)
的选择
) . 初始惩罚因子 r ( 0的选择对于计算效率影响很大
若r x, 项)的作用就会很小,
x, r ( k )
( 0 ) 值得太小,则在惩罚函数中障碍项(惩罚
r
(k )
f ( x)
这时求惩罚函数 的无约束极值点。 犹如求原目标函数 f ( x)本身的无约束极值点而 这个极值点 x又不大可能接近 f ( x) 的约束极值点,
D.收敛条件: 同时满足:(1)相邻两次惩罚函数值相对变化 足够小; (2)相邻两次惩罚函数无约束最优 点的距离足够小。
(k ) x r
* (k ) ( k 1) ( k 1) , r x r , r 1 * ( k 1) ( k 1) x r , r
约束优化-惩罚函数法38页PPT

1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
约束优化-惩罚函数法 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
41、学问是异常珍2、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
约束优化-惩罚函数法 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
41、学问是异常珍2、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45、自己的饭量自己知道。——苏联
约束优化-惩罚函数法

( p) 1
,r
( p) 2
f x r G g x r H h x
( p) 1 m j 1 j ( p) 2 l k 1 k
的无约束最优化问题。
min x, r1( p ) , r2( p ) f x r1( p ) G g j x r2( p ) H hk x
k 1 l
对于每次迭代的 M ( p ),都可以求得相应的惩 罚函数最小 值和最优解X ( M ( p ) )。
当M为足够大的值时,惩罚 函数最小值将收敛于一 个有 限的极限值 *,且满足hk ( x) 0,而序列{X ( M ( p ) )}将 收敛于某一点X *。 *即为原问题f ( x)在等式约束hk ( x) 0 条件下的最小值, X *即为原问题的最优解。 即: lim M ( p ) lim M
2 另外,惩罚项形式 M h ( x ) k k 不是唯一的, k 1 l
任何仅仅当约束条件得 到满足时才等于零的 非负函数都可以当作惩 罚项,可以根据具体情 况选择。
四、惩罚函数法
将约束最优化问题 min f x f x1 , x2 , , xn s.t. g j x g j x1 , x2 , , xn 0 hk x hk x1 , x2 , , xn 0 转化为形如: min x, r ( j 1,2, , m) (k 1,2, , l )
为便于在计算机上用直 接寻优的方法进行迭代 计算, 可以构造一个新的函数 : F F Z x i 1 k 1 i k
n l 2 l F 2 x hk ( x) i 1 k 1 i n 2 2
惩罚函数法讲稿

其中:g u(x ) 0,u 1, 2,... m
其中:gu ( x) 0, u 1,2,...m
惩罚(加权)因子 r 缩小系数c:
( 0)
r ....r
(1)
(k )
r
( k 1)
c r
(k )
0< c <1
三.
1. 2.
迭代步骤:
选取合适的初始点 x(0) ,以及 r(0)、c(缩减系数)、计算精度 ε,令 k=0; 构造惩罚(新目标)函数;
程问题时,只要在可行域内,即使未达最优解,接近的过程解也
是可行的; 初始点和序列极值点均需严格满足所有约束条件;
不能解决等式约束问题。
六.
举例:盖板问题 设计一个箱形截面的盖板。 tf
h
已知:长度 l0= 600cm,宽度 b = 60cm, 侧板厚度 ts = 0.5cm,翼板厚度为 tf(cm),高 度为 h(cm),承受最大的单位载荷 q = 0.01Mpa。
以用来求解含不等式和等式约束的优化问题。
二.混合惩罚函数法的形式:
障碍函数
衰减函数
其中根据Fiacco等建议的关系式可得: 为逐渐减小的正项数列,即:
x(k 1) * (r1
(k 1)
) x k * (r1 )
(k )
2. 惩罚因子初始值 r(0) 的选择:
惩罚因子的初值应适当,太大,将增加迭代次数;太小,会 使惩罚函数难以收敛到极值点。对于不同的问题,都要经过多次 试算,才能决定一个适当 r0。
3. 缩减系数 c 的选择:
在构造序列惩罚函数时,惩罚因子 ,相邻两次迭代的惩罚因子的关系为 : 是一个逐次递减到0的数列
惩罚函数法概述_内点法

第五节 惩罚函数法
一 基本原理
惩罚函数法是应用广泛,非常有效的间接解 法.又称为序列无约束极小化方法(SUMT法). 该方法通过将原约束优化问题中的等式和 不等式约束函数加权处理后与原目标函数结合, 得到新的目标函数(惩罚函数).原问题转化为新的 无约束优化问题,求解该新的无约束优化问题,间 接得到原约束优化问题的最优解.
内 点 法 程 序 框 图
举例
用内点法求最优点:
2 min f ( x) x12 x2
解: r ( x, r ) f ( x ) g ( x) r 2 2 ( x, r ) x1 x2 1 x1
s.t.g ( x ) 1 x1 0
or ( x, r ) f ( x) r ln( g ( x))
r1 , r2
加权因子(惩罚因子)
原约束优化问题转化为无约束优化问题:
min ( x, r1 , r2 ) f ( x) r1 G[ g j ( x)]
j 1
m
r2 H [hk ( x)]
k 1
l
改变惩罚因子r1, r2的值,就会得到一系列的无约束优 化问题,求解得到一系列的无约束最优解(系列迭代点),这些 最优解逐渐的逼近原约束优化问题的最优解.
min f ( x) g j ( x) 0 ( j 1,2,...,m) hk ( x) 0 (k 1,2,...,l)
( x, r1 , r2 ) f ( x) r1 G[ g j ( x)] r2 H [hk ( x)]
j 1 k 1 m l
障碍项
惩罚项
二 惩罚函数法分类
内点惩罚函数法(内点法)
外点惩罚函数法(外点法) 混合惩罚函数法(混合法)
一 基本原理
惩罚函数法是应用广泛,非常有效的间接解 法.又称为序列无约束极小化方法(SUMT法). 该方法通过将原约束优化问题中的等式和 不等式约束函数加权处理后与原目标函数结合, 得到新的目标函数(惩罚函数).原问题转化为新的 无约束优化问题,求解该新的无约束优化问题,间 接得到原约束优化问题的最优解.
内 点 法 程 序 框 图
举例
用内点法求最优点:
2 min f ( x) x12 x2
解: r ( x, r ) f ( x ) g ( x) r 2 2 ( x, r ) x1 x2 1 x1
s.t.g ( x ) 1 x1 0
or ( x, r ) f ( x) r ln( g ( x))
r1 , r2
加权因子(惩罚因子)
原约束优化问题转化为无约束优化问题:
min ( x, r1 , r2 ) f ( x) r1 G[ g j ( x)]
j 1
m
r2 H [hk ( x)]
k 1
l
改变惩罚因子r1, r2的值,就会得到一系列的无约束优 化问题,求解得到一系列的无约束最优解(系列迭代点),这些 最优解逐渐的逼近原约束优化问题的最优解.
min f ( x) g j ( x) 0 ( j 1,2,...,m) hk ( x) 0 (k 1,2,...,l)
( x, r1 , r2 ) f ( x) r1 G[ g j ( x)] r2 H [hk ( x)]
j 1 k 1 m l
障碍项
惩罚项
二 惩罚函数法分类
内点惩罚函数法(内点法)
外点惩罚函数法(外点法) 混合惩罚函数法(混合法)
最优化方法之罚函数法讲解

最优化方法之罚函数法讲解
contents
目录
• 引言 • 罚函数法基本原理 • 经典罚函数法介绍 • 改进型罚函数法探讨 • 数值实验与案例分析 • 结论与展望
01 引言
最优化问题概述
01
02
03
最优化问题的定义
最优化问题是在一定条件 下,寻找一组参数值,使 得某个或某些目标函数达 到最优的问题。
混合罚函数法
• 基本思想:混合罚函数法结合了外点罚函数法和内点罚函数法的特点,通过同时构造包含原目标函数、等式约 束和不等式约束的辅助函数,将约束问题转化为无约束问题进行求解。
• 辅助函数构造:混合罚函数法的辅助函数通常包括原目标函数、等式约束的二次惩罚项以及不等式约束的对数 障碍项。其中,二次惩罚项用于处理等式约束,对数障碍项用于处理不等式约束。
内点罚函数法
• 基本思想:与外点罚函数法类似,内点罚函数法也是通过构造辅助函数将约束问题转化为无约束问题。不同之 处在于,内点罚函数法要求迭代点始终保持在可行域内部,并在可行域边界上对原目标函数进行惩罚。
• 辅助函数构造:内点罚函数法的辅助函数通常取为原目标函数加上一个障碍项,该障碍项在可行域内部为零, 在可行域边界上取正值,且随着接近边界程度的增加而趋于无穷大。
• 迭代过程:从满足所有约束条件的一个点出发(通常通过其他方法获得),通过求解无约束问题的极小化序列 来逼近原问题的最优解。在迭代过程中,根据当前点违反约束的情况动态调整惩罚因子和障碍参数,以保证算 法的稳定性和收敛性。
• 优缺点:混合罚函数法能够同时处理等式和不等式约束,具有较广泛的适用性。然而,由于需要同时考虑多种 类型的约束和惩罚项,算法的复杂性和计算量相对较大。此外,惩罚因子和障碍参数的选择对算法效果也有一 定影响。
contents
目录
• 引言 • 罚函数法基本原理 • 经典罚函数法介绍 • 改进型罚函数法探讨 • 数值实验与案例分析 • 结论与展望
01 引言
最优化问题概述
01
02
03
最优化问题的定义
最优化问题是在一定条件 下,寻找一组参数值,使 得某个或某些目标函数达 到最优的问题。
混合罚函数法
• 基本思想:混合罚函数法结合了外点罚函数法和内点罚函数法的特点,通过同时构造包含原目标函数、等式约 束和不等式约束的辅助函数,将约束问题转化为无约束问题进行求解。
• 辅助函数构造:混合罚函数法的辅助函数通常包括原目标函数、等式约束的二次惩罚项以及不等式约束的对数 障碍项。其中,二次惩罚项用于处理等式约束,对数障碍项用于处理不等式约束。
内点罚函数法
• 基本思想:与外点罚函数法类似,内点罚函数法也是通过构造辅助函数将约束问题转化为无约束问题。不同之 处在于,内点罚函数法要求迭代点始终保持在可行域内部,并在可行域边界上对原目标函数进行惩罚。
• 辅助函数构造:内点罚函数法的辅助函数通常取为原目标函数加上一个障碍项,该障碍项在可行域内部为零, 在可行域边界上取正值,且随着接近边界程度的增加而趋于无穷大。
• 迭代过程:从满足所有约束条件的一个点出发(通常通过其他方法获得),通过求解无约束问题的极小化序列 来逼近原问题的最优解。在迭代过程中,根据当前点违反约束的情况动态调整惩罚因子和障碍参数,以保证算 法的稳定性和收敛性。
• 优缺点:混合罚函数法能够同时处理等式和不等式约束,具有较广泛的适用性。然而,由于需要同时考虑多种 类型的约束和惩罚项,算法的复杂性和计算量相对较大。此外,惩罚因子和障碍参数的选择对算法效果也有一 定影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收敛于
称为SUMT方法 基本步骤:
序列无约束极小化方法
1.3. 外点法收敛性
定理2: 的最优解。
定理3:
2. 内点罚函数法
2.1 思想:从内点出发,保持在可行域内部进行搜索。
只适用于不等式约束问题
两种形式:
原始问题的解
2.2 r如何取值?
r太大,问题的解不精确
计算步骤:
∆例题:
解得:
2.3. 收敛性
例:乘子法求解:
3.3. 不等式约束的乘子法
转化为
等式
定义增广Lagrange函数。
求得原问题的解
用配方法整理则有:
增广Lagrange函数变为
一般问题
例题:
则
作业:
1. 阅读MATLAB中optimization toolbox 中的Quasi-Newton Method 和 Least-Squares Method 算法,用Lsqnonlin()函数 求解
定理:问题
∆ 外点法 内点法
应用序列无约束极小化方法,简单
增大
成为病态矩阵 无法求解
3. 乘子法(Hestenes, Powell)提出
3.1. 基本思想: ⑴ 等式约束问题:
其中: ,
Lagrange函数 罚函数
的局部最优解,且满足二阶充分条件,
的局部最优解 计算步骤(等式约束)
2.
阅读MATLAB中有约束优化函数 fmincon( ) 并编程求解
课堂练习:
外点法求解
惩罚函数法
有约束最优化:
可行域
定义:局部极小点,局部严格极小点
一阶条件(必要条件)
二阶条件(必要条件)
惩罚函数法 可行方向法,二次规划
1. 外点罚函数法
1.1 罚函数概念
a 对于等式约束: 对于线性约束可 消元处理
第2项很大
很大的正数
b. 不等式约束
转化为
罚回来
c.一般情况:
过大,计算困难 太小,远离约束问题的最优解