第五章Green函数法

合集下载

格林函数法

格林函数法

(14.2.12)
考虑到格林函数的齐次边界条件,由公式(14.2.9) 可得第一类边值问题的解
u (r0 ) G (r , r0 ) f (r )dV (r )
T
G (r , r0 ) n
dS
(14.2.13)
另一形式的第一类边值问题的解
u (r ) G (r , r0 ) f ( r0 )dV0 ( r0 )
T 中具有连续二阶导数,应用矢量分析的高斯定理


A S d

AdV =
T

divAdV (14.1.1)
T
单位时间内流体流过边界闭曲面S的流量
单位时间内V内各源头产生的流体的总量
将对曲面 的积分化为体积分


uv S uv )dV uvdV u vdV d (
T0
(14.3.1)
选取 u (r ) 和 G(r , r0 ) 分别满足下列方程
u (r ) f (r )
G(r , r0 ) (r - r0 )
(14.3.2) (14.3.3)
14.3.1 三维球对称
对于三维球对称情形,我们选取 对(14.3.3)式两边在球内积分
r0 0
(14.2.4)
(r r0 ) 代表三维空间变量的 函数,在直角坐标系中其形式为
(r r0 ) ( x x0 ) ( y y0 ) ( z z0 )
(14.2.4)式中
函数前取负号是为了以后构建格林函数方便
格林函数的物理意义【2】:在物体内部(T 内) r0 处放置一个单位点电荷,而该物体的界面保持电位为零, 那么 该点电荷在物体内产生的电势分布,就是定解问题(14.2.4)的解 ――格林函数.由此可以进一步理解通常人们为什么称格林函 数为点源函数.

格林函数法

格林函数法
应的单位点源的电势解; 原问题的解可以通过这个点源的解表示出来;
通过格林公式,把静电边值问题与相应的格林 函数问题联系起来。 一般的处理方法,在物理学领域有着非常广泛 的应用
3
本节主要内容: 1. 格林函数——对应于给定问题的单位点源
的电势解; 2. 格林函数与泊松方程的解之间的关系; 3. 几种简单边界问题的格林函数形式。
10/20/2014
§5 格林函数法
1
几种方法的比较
1. 镜像法只适用于比较简单(点电荷)问题; 2. 分离变量法是精确求解的方法:除了几个高对
称的边界问题以外,一些实际问题往往难以求 解; 3. 多极展开法只适用于求远处的场(最后一节); 4. 格林函数方法
2
1
10/20/2014
格林函数方法: Green函数本身实际上是对应于给定问题所对
4
2
10/20/2014
几个基本公式:Ñ
1 r
=
-
r r3
,
高斯定理:
ò
E
×
dS
=
1 e0
i
Qi
空间一个单位点电荷的电场: E
=
4
1 e0
r r3
若点电荷处于闭合积分面内:
��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

5.3 Green公式及应用

5.3 Green公式及应用

( x0 , y0 )
y0
y
lim
( x, yy)
( x, y)
Pdx
Qdy
lim
yy
y
Q(
x,
y)dy
y0
y
y0
y
lim Q( x, y y) y Q( x, y)
y0
y
同理, u P( x, y). x
(3) (4) P u , Q u , x y
P 2u , y xy
Q 2u x yx
或者
( x2 , y2 )
( x1 , y1 )
Pdx
Qdy
x2 x1
P(
x,
y1 )dx
y2 y1
Q(
x2 ,
y)dy.
ex5.计算 (3,0) ( 2, 1)
(
x4
4 xy 3
)dx
(6
x2
y2
5
y4
)dy.
Solution. P 12xy2 Q ,
y
x
所以积分与路径无关.
且u(
x,
(4) P Q 在G内恒成立. y x
Proof. (1) (2) 如图所示
B R
Pdx Qdy Pdx Qdy Pdx Qdy A
S
L
ASB
BRA
Pdx Qdy Pdx Qdy 0
ASB
ARB
Pdx Qdy Pdx Qdy.
ASB
ARB
(2) (3)
Solution. 如图所示 作辅助线GE,运用Green公式,
y F (2,1)
P 3 y2e x m, Q 3 y2e x o E(1,0)

Green公式及拓展

Green公式及拓展

Green第一第二第三公式的证明1.1Green第一公式证明Green第一公式:∬[(∂u∂x)2+(∂u∂y)2]S dxdy=−∬us∆udxdy+∮u∂u∂n⃗cds证明:不妨设n⃗=(cosθ,sinθ);由方向导数的定义有:∂u ∂n⃗=∂u∂xcosθ+∂u∂ysinθ可知有cosθ=dy√(dx)2+(dy)2;sinθ=−dx√()2()2ds=√()();故有∮u ∂u ∂n⃗cds=∮uc (∂u∂xdy()2()2+∂u∂ydy()2()2)√(dx)2+(dy)2=∮uc∂udy−u∂udx由Green公式∬(∂Q∂x−∂P∂y)D dxdy=∮Pdx+Qdy∂D;得∮u c ∂u∂xdy−u∂u∂ydx=∬[∂∂x (u∂u∂x)−∂∂y(−u∂u∂y)]Sdxdy=∬[∂(u∂u)+∂(u∂u)]Sdxdy=∬[∂∂x(∂u∂x)u+(∂u∂x)2+∂∂y(∂u∂y)u+(∂u∂y)2]dxdyS=∬[(∂u∂x)2+(∂u∂y)2]dxdyS +∬[∂∂x(∂u∂x)u+∂∂y(∂u∂y)u]dxdy S=∬[(∂u∂x)2+(∂u∂y)2]dxdyS+∬u[∂∂x(∂u∂x)+∂∂y(∂u∂y)]dxdyS=∬[(∂u∂x)2+(∂u∂y)2]dxdyS+∬uS∆udxdy即有∮u ∂u ∂n⃗c ds=∬[(∂u∂x)2+(∂u∂y)2]dxdyS+∬uS∆udxdy移项可得原式,得证。

1.2Green第二公式证明Green第二公式:∬|∆u∆vu v |dx dyS =∮|∂u∂n⃗∂v∂n⃗u v|Cds证明: 等式左边展开:∬|∆u ∆vu v|dx dyS=∬v∆u −u∆vdx dy S=∬v∆u −u∆vdx dyS右边∮|∂u ∂n ⃗ ∂v∂n ⃗ u v |C ds=∮(∂u ∂n ⃗Cv −∂v∂n ⃗u) ds=∮∂u ∂xC dy √()2()2−∂u ∂y dx√()2()2−u∂v ∂x dy√()2()2+u ∂v dx()2()2√(dx )2+(dy )2 =∮v ∂u ∂xC dy −v ∂u ∂y dx −u ∂v ∂x dy +u ∂v ∂y dx=∮(u ∂v ∂y −v ∂u ∂y )dx +(v ∂u ∂x −u ∂v ∂x)dyC有Green 公式有∬(∂Q ∂x −∂P∂y) Ddxdy =∮Pdx +Qdy∂D;有P=(u ∂v ∂y −v∂u∂y ) Q=(v∂u ∂x−u∂v ∂x)∂Q =∂(v ∂u ∂x −u ∂v∂x )=∂v∂u+v∂2u2−∂v∂u−u∂2v2 =v∂2u∂x2−u∂2v∂x2同理∂P=u ∂2v2−v∂2u2故有∬(∂Q−∂P)Ddxdy=∬(v ∂2u∂x2−u∂2v∂x2−u∂2v∂y2+v∂2u∂y2)Ddxdy=∬v∆u−u∆v D dxdy=∬|∆u∆vu v|dx dyS1.3Green第三公式证明Green第三公式:若u为有界闭区域S中的调和函数,则有:u(x,y)=12π∮(u∂ln r∂n⃗−ln r∂u∂n⃗)ds C其中C为S边界,∂u∂n⃗为u沿着C的外法线方向的方向导数;r=√(ξ−x)2+(η−y)2;为(x,y)到边界C上动点(ξ,η)的距离;证明:由Green 第二公式得到∮(u ∂ln r∂n⃗−ln r∂u∂n⃗)dsC =∬v∆u−u∆vDdxdy由于u为有界闭区域S中的调和函数,∆u=0∆v=∆ln r=∆ln√(ξ−x)2+(η−y)2=0可知ln r也是调和函数;故有在没有奇点的情况下,S内的任何区域∮(u ∂ln r∂n⃗−ln r∂u∂n⃗)dsC =∬u∆v−v∆uDdxdy=0故有设以(x,y)为中心,t为半径的一个领域D,∮(u ∂ln r∂n⃗−ln r∂u∂n⃗)dsC =∮(u∂ln r∂n⃗−ln r∂u∂n⃗)ds ∂D有在∂D上,∮ln r ∂u ∂n⃗ds∂D =ln t∮∂u∂n⃗ds∂D=ln t∬∆udsD=0∮u ∂ln rds∂D =∮u∂ln rds∂D=∮u1ds∂D=1∮uds∂D=2πu(ξ1,η1)故由u在S上的连续性得到lim t→0∮(u∂ln r∂n⃗−ln r∂u∂n⃗)ds=Climt→02πu(ξ1,η1)=2πu(x,y)故得证u(x,y)=12π∮(u∂ln r∂n⃗−ln r∂u∂n⃗)ds C第二十二章 各种积分间的联系与场论初步下面的图表给出了各种积分间的联系,在计算中可以根据这些关系,将一种积分转化为另一种积分。

Green公式

Green公式

Green 公式令向量函数为(,,)A P Q R =;(,,)dS dydz dzdx dxdy ndS ==,n 为曲面∑的外法线方向上的单位向量,即:(cos ,cos ,cos )n αβγ=,则:A d S ∑⋅⎰⎰A ndS ∑=⋅⎰⎰(,,)(,,)(,,)P x y z dydz Q x y z dzdx R x y z dxdy ∑=++⎰⎰ (cos cos cos )P Q R dS αβγ∑=++⎰⎰()A dxdydzDivA dxdydzP Q R dxdydz x y zΩΩΩ=∇⋅⋅=⋅∂∂∂=++∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰⎰,,P Q R 在Ω内具有一阶连续偏导数。

,,x y z P uv Q uv R uv ===令⇒上式左端为:(cos cos cos )Pdydz Qdzdx Rdxdy P Q R dS αβγ∑∑++=++⎰⎰⎰⎰=(cos cos cos )x y z u v v v dS αβγ∑++⎰⎰v u dS n ∑∂=∂⎰⎰ 上式右端为:()P Q R dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰=()y x z uv uv uv dxdydz x y z Ω∂∂∂++∂∂∂⎰⎰⎰ ()xy z u u u v v v dxdydz u vdxdydz x y z ΩΩ∂∂∂=+++∆∂∂∂⎰⎰⎰⎰⎰⎰ ()x x y y z z v u v u v u dxdydz u vdxdydz ΩΩ=+++∆⎰⎰⎰⎰⎰⎰⇒ ()x y z V v u u u udS v v v dxdydz u vdxdydz n x y z ∑Ω∂∂∂∂=+++∆∂∂∂∂⎰⎰⎰⎰⎰⎰⎰⎰()x x y y z z v u v u v u dxdydz u vdxdydz ΩΩ=+++∆⎰⎰⎰⎰⎰⎰ 所以:()x x y y z z v udS v u u v v u dxdydz u vdxdydz n ∑ΩΩ∂=+++∆∂⎰⎰⎰⎰⎰⎰⎰⎰(Green 第一公式)n 为曲面∑的外法线方向,∑为区域Ω的外侧。

数学物理方程-第五章格林函数法[整理版]

数学物理方程-第五章格林函数法[整理版]

第五章 格林函数法在第二章中利用分离变量法求出了矩形区域和圆域上位势方程Dirichlet 问题的解.本章利用Green 函数法求解一些平面或空间区域上位势方程Dirichlet 问题. 另外,也简单介绍利用Green 函数法求解一维热传导方程和波动方程半无界问题. 应指出的是:Green 函数法不仅可用于求解一些偏微分方程边值问题或初边值问题,特别重要的是,它在偏微分方程理论研究中起着非常重要的作用.§5⋅1 格林公式在研究Laplace 方程或Poisson 方程边值问题时,要经常利用格林(Green )公式,它是高等数学中高斯(Gauss )公式的直接推广.设Ω为3R 中的区域,∂Ω充分光滑. 设k 为非负整数,以下用()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体,()k C Ω表示在Ω上具有k 阶连续偏导的实函数全体. 如()10()()()()u C C C C ∈Ω⋂ΩΩ=Ω,表示(,,)u x y z 在Ω具有一阶连续偏导数而在Ω上连续. 另外,为书写简单起见,下面有时将函数的变量略去.如将(,,)P x y z 简记为P ,(,,)P x y z x ∂∂简记为Px∂∂或x P 等等.设(,,)P x y z ,(,,)Q x y z 和(,,)R x y z 1()C ∈Ω,则成立如下的Gauss 公式()P Q RdV Pdydz Qdydx Rdxdy x y z Ω∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.1)或者()(cos cos cos )P Q R dV P Q R ds x y z αβγΩ∂Ω∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ (1.2)如果引入哈米尔顿(Hamilton )算子: (,,)x y z∂∂∂∇=∂∂∂,并记(,,)F P Q R = ,则Gauss 公式具有如下简洁形式⎰⎰⎰⎰⎰∂⋅=⋅∇ΩΩds n F dv F(1.3)其中(cos ,cos ,cos )n αβγ=为∂Ω的单位外法向量.注1 Hamilton 算子是一个向量性算子,它作用于向量函数(,,)F P Q R =时,其运算定义为(,,)(,,),F P Q R x y zP Q Rx y z∂∂∂∇⋅=⋅∂∂∂∂∂∂=++∂∂∂形式上相当于两个向量作点乘运算,此即向量F 的散度div F. 而作用于数量函数(,,)f x y z 时,其运算定义为(,,)(,,)f f ff f x y z x y z∂∂∂∂∂∂∇==∂∂∂∂∂∂,形式上相当于向量的数乘运算,此即数量函数f 的梯度grad f .设(,,)u x y z ,2(,,)()v x y z C ∈Ω,在(1.3)中取F u v =∇得()u v dV u v nds Ω∂Ω∇⋅∇=∇⋅⎰⎰⎰⎰⎰(1.4)直接计算可得v u v u v u ∇∇+=∇⋅∇∆)( (1.5)其中xx yy zz v v v v ∆=++. 将(1.5)代入到(1.4)中并整理得vu vdV uds u vdV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.6)(1.6)称为Green 第一公式.在(1.6)中将函数u ,v 的位置互换得uv udV vds v udV n Ω∂ΩΩ∂∆=-∇⋅∇∂⎰⎰⎰⎰⎰⎰⎰⎰ (1.7)自(1.6)减去(1.7)得()()v uu v v u dV uv ds n nΩ∂Ω∂∂∆-∆=-∂∂⎰⎰⎰⎰⎰ (1.8)(1.8)称为Green 第二公式.设点0(,,)P ξηζ∈Ω,点3(,,)P x y z R ∈,||00P P r P P -==引入函数 001(,)4P PP P r πΓ=,注意0(,)P P Γ是关于六个变元(,,)x y z 和(,,)ξης的函数且00(,)(,)P P P P Γ=Γ. 如无特别说明, 对b 求导均指关于变量(,,)x y z 的偏导数. 直接计算可得00(,)0, P P P P ∆Γ=≠即0(,)P P Γ在3R 中除点0P 外处处满足Laplace 方程.设0ε>充分小使得00(,){(,,) ||}B B P P x y z P P εε==-≤⊂Ω. 记\G B =Ω,则G B ∂=∂Ω⋃∂. 在Green 第二公式中取0(,)v P P =Γ,G Ω=. 由于在区域G 内有0∆Γ=,故有()GGuudV uds n n∂∂Γ∂-Γ∆=-Γ∂∂⎰⎰⎰⎰⎰ 或者()()GBu u udV uds u ds n n n n ∂Ω∂∂Γ∂∂Γ∂-Γ∆=-Γ+-Γ∂∂∂∂⎰⎰⎰⎰⎰⎰⎰ (1.9)在球面B ∂上,021()414P P r n rrrππ∂∂Γ∂Γ=-=-=∂∂∂,因此21(,,)4BBuuds ds u x y z n πε∂∂∂Γ==∂⎰⎰⎰⎰ (1.10)其中(,,)P x y z B ∈∂.同理可得14BBu u ds ds n n πε∂∂∂∂Γ=∂∂⎰⎰⎰⎰(,,)ux y z n ε∂'''=∂ (1.11)其中(,,)P x y z B '''∈∂.将(1.10)和 (1.11)代入到(1.9)中并令0ε+→,此时有(,,)(,,)P x y z P ξηζ→,(,,)0u x y z nε∂'''→∂,并且区域G 趋向于区域Ω,因此可得()(,,)uudV uds u n nξηζΩ∂Ω∂Γ∂-Γ∆=-Γ+∂∂⎰⎰⎰⎰⎰,即(,,)()u u u d s u d V n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (1.12)(1.12)称为Green 第三公式. 它表明函数u 在Ω内的值可用Ω内的u ∆值与边界∂Ω上u 及nu∂∂的值表示.注2 在二维情形,Green 第一公式和Green 第二公式也成立. 而对于Green第三公式, 需要取011(,)ln 2P P rπΓ=,其中0(,)P ξη∈Ω,2(,)P x y R ∈,r =0P P r=0||P P -=此时Green 第三公式也成立.§5⋅2 Laplace 方程基本解和Green 函数基本解在研究偏微分方程时起着重要的作用. 本节介绍Laplace 方程的基本解,并在一些特殊区域上由基本解生成Green 函数,由此给出相应区域上Laplace 方程或Poisson 方程边值问题解的表达式. 下面以Dirichlet 问题为例介绍Laplace 方程的基本解和Green 函数方法的基本思想.5.2.1 基本解设30(,,)P R ξηζ∈,若在点0P 放置一单位正电荷,则该电荷在空间产生的电位分布为(舍去常数0ε)001(,,)(,)4P Pu x y z P P r π=Γ=(2.1)易证: 0(,)P P Γ在30\{}R P 满足0 .u -∆= 进一步还可以证明[1],在广义函数的意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.2)其中0(,)()()()P P x y z δδξδηδζ=---. 0(,)P P Γ称为三维Laplace 方程的基本解.当n =2时,二维Laplace 方程的基本解为0011(,)ln2P PP P r πΓ=(2.3)其中0(,)P ξη,2(,)P x y R ∈,0P Pr =同理可证,0(,)P P Γ在平面上除点0(,)P ξη外满足方程0 u -∆=,而在广义函数意义下0(,)P P Γ满足方程0(,)u P P δ-∆= (2.4)其中0(,)()()P P x y δδξδη=--.注1 根据Laplace 方程的基本解的物理意义可以由方程(2.2)和(2.4)直接求出(2.1)和(2.3),作为练习将这些内容放在本章习题中. 另外,也可以利用Fourier 变换求解方程(2.2)和(2.4)而得到Laplace 方程的基本解.5.2.2 Green 函数考虑如下定解问题(,,), (,,) (2.5)(,,)(,,), (,,) (2.6)u f x y z x y z u x y z x y z x y z ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩设0(,,)P ξηζ∈Ω,21(,,)()()u x y z C C ∈Ω⋂Ω是(2.5)— (2.6)的解,则由Green 第三公式可得(,,)()u u u ds udV n n ξηζ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰⎰⎰ (2.7)在公式(2.7)的右端,其中有两项可由定解问题(2.5)—(2.6)的边值和自由项求出,即有uds ds n n ϕ∂Ω∂Ω∂Γ∂Γ=∂∂⎰⎰⎰⎰u d V f d VΩΩΓ∆=-Γ⎰⎰⎰⎰⎰⎰.而在u ds n ∂Ω∂Γ∂⎰⎰中,un ∂∂在边界∂Ω上的值是未知的. 因此须做进一步处理.注2 若要求解Neumann 问题,即将(2.6)中边界条件换为(,,)ux y z nϕ∂=∂.此时,在方程(2.7)右端第二项uds n∂Ω∂Γ∂⎰⎰中,u 在边界∂Ω上的值是未知的,而其余两项可由相应定解问题的边值和自由项求出.如何由(2.7)得到定解问题(2.5)-(2.6)的解?Green 的想法就是要消去(2.7)右端第一项uds n ∂Ω∂Γ∂⎰⎰. 为此,要用下面的Green 函数取代(2.7)中的基本解.设h 为如下定解问题的解0,(,,)(2.8),(,,)(2.9)h x y z h x y z -∆=∈Ω⎧⎨=-Γ∈∂Ω⎩ 在Green 第二公式中取v h =得()h u h udV uh ds n nΩ∂Ω∂∂-∆=-∂∂⎰⎰⎰⎰⎰ 或者0()u hhu ds h udV n n ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.10)将(2.7)和(2.10)相加得(,,)()u Gu Gu ds G udV n n ξηζ∂ΩΩ∂∂=--∆∂∂⎰⎰⎰⎰⎰ (2.11)其中0(,)G P P h =Γ+.由(2.2)和(2.8)—(2.9)可得,0(,)G P P 是如下定解问题的解00(,), (,,)(2.12)(,)0, (,,)(2.13)G P P P x y z G P P P x y z δ-∆=∈Ω⎧⎨=∈∂Ω⎩0(,)G P P 称为Laplace 方程在区域Ω的Green 函数.由于G 在∂Ω上恒为零,由(2.11)可得(,,)Gu uds G udV n ξηζ∂ΩΩ∂=--∆∂⎰⎰⎰⎰⎰ Gds GfdV n ϕ∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰. (2.14)因此,若求出了区域Ω的Green 函数0(,)G P P ,则(2.14)便是定解问题(2.5)— (2.6)的解.§5⋅3 半空间及圆域上的Dirichlet 问题由第二节讨论可知,只要求出了给定区域Ω上的Green 函数,就可以得到该区域Poisson 方程Dirichlet 问题的解. 对一般区域,求Green 函数并非易事. 但对于某些特殊区域,Green 函数可借助于基本解的物理意义利用对称法而得出. 下面以半空间和圆域为例介绍此方法.5.3.1 半空间上Dirichlet 问题设{(,,)|0},{(,,)|0}x y z z x y z z Ω=>∂Ω==. 考虑定解问题2(,,),(,,) (3.1)(,,0)(,),(,) (3.2)u f x y z x y z u x y x y x y Rϕ-∆=∈Ω⎧⎨=∈⎩设0(,,),P ξηζ∈Ω则1(,,)P ξηζ-为0P 关于∂Ω的对称点. 若在0P ,1P 两点各放置一个单位正电荷,则由三维Laplace 方程的基本解知,它们在空间产生的电位分别为00111(,)41(,)4P P r P P r ππΓ=Γ=其中0011||,||r P P r P P =-=-. 由于0P 和1P 关于∂Ω对称,且1P ∉Ω,故有01001[(,)(,)](,), (,)(,)0,.P P P P P P P P P P P P δ-∆Γ-Γ=∈Ω⎧⎨Γ-Γ=∈∂Ω⎩即001(,)(,)(,)G P P P P P P =Γ-Γ为上半空间的Green 函数,且有001(,)(,)(,)G P P P P P P =Γ-Γ011114r r π⎛⎫=- ⎪⎝⎭14π⎡⎤= (3.3)直接计算可得3/2222012()()z G Gn zx y ζπξηζ∂Ω=∂∂=-=-∂∂⎡⎤-+-+⎣⎦(3.4)将(3.3)—(3.4)代入到公式(2.14)得(,,)Gu ds Gfd n ξηζϕν∂ΩΩ∂=-+∂⎰⎰⎰⎰⎰ 3/2222001(,)2()() (,)(,,)x y dxdyx y G P P f x y z dxdydzϕζπξηζ∞∞-∞-∞∞∞∞-∞-∞=⎡⎤-+-+⎣⎦+⎰⎰⎰⎰⎰上式便是定解问题(3.1)— (3.2)的解.5.3.2 圆域上Dirichlet 问题设222{(,)|}x y x y R Ω=+<,则222{(,)|}x y x y R ∂Ω=+=. 考虑圆域Ω上的Dirichlet 问题(,), (,) (3.5)(,)(,), (,) (3.6)u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 设0(,)P ξη∈Ω,1(,)P ξη为0(,)P ξη关于圆周∂Ω的对称点,即201,OP OP R =如图3-1所示 . 由于201OP OP R =,因此对任意M ∈∂Ω有01~OP M OMP ∆∆ROP r r MP M P ||010=1P01011||P MPMR r OP r =图3.1因此有0101111ln ln 022||P M PMR r OP r ππ-= (3.7)上式说明函数01001111(,)ln ln22||P P P PR G P P r OP r ππ=- (3.8)在∂Ω上恒为零. 又由于1P ∉Ω,故有000(,)(,),(,)0,.G P P P P P G P P P δ-∆=∈Ω⎧⎨=∈∂Ω⎩即0(;)G P P 是圆域上的Green 函数.引入极坐标(,)P ρθ,设0000(,)(,)P P ξηρθ=,则21100(,)(,)R P P ξηθρ=. 用α表示0OP 与OP 的夹角,则有000cos cos cos sin sin cos()αθθθθθθ=+=-利用余弦定理可得0P P r = (3.9)1P P r =(3.10)将(3.9)和(3.10)代入到(3.8)中并整理得22222000042220002cos()1(,)ln 42cos()R R R G P P R R ρρρρθθπρρρρθθ+--=-+-- (3.11)直接计算可得RG Gn ρρ∂Ω=∂∂=∂∂2222000122cos()R R R R ρπρρθθ-=-+-- . (3.12)记()(cos ,sin )g R R ϕθθθ=,则有00(,)Gu ds Gfd n ρθϕσ∂ΩΩ∂=-+∂⎰⎰⎰ 222022000()()122cos()R d R R πρϕθθπρρθθ-=+--⎰- 22222200042220002cos()1(cos ,sin )ln 42cos()R R R R f d d R R πρρρρθθρθρθρρθπρρρρθθ+--+--⎰⎰(3.13)(3.13)便是定解问题(3.5)—(3.6)的解.注1 当0f =时(3.13)称为圆域上调和函数的Poisson 公式.注2 利用复变函数的保角映射,可以将许多平面区域变换为圆域或半平面.因此,与保角映射结合使用,可以扩大对称法以及Green 函数法的应用范围. 在本章习题中有一些这类题目,Green 函数法更多的应用可查阅参考文献[13].§5⋅4* 一维热传导方程和波动方程半无界问题5.4.1 一维热传导方程半无界问题为简单起见,仅考虑以下齐次方程定解问题20 , 0 , 0 (4.1)(0,)0 , 0 (4.2)(,0)() , 0 t xx u a u x t u t t u x x x ϕ-=<<∞>=≥=<<∞ (4.3)⎧⎪⎨⎪⎩该定解问题称为半无界问题, 这是一个混合问题,边界条件为(4.2). 类似于上节Poisson 方程在半空间和圆域上Dirichlet 问题的求解思想,也要以热方程的基本解为基础,使用对称法求出问题(4.1)—(4.3)的Green 函数,并利用所得到的Green 函数给出该问题的解.一维热传导方程的基本解为224(,)() .x a tx t H t -Γ (,)x t Γ是如下问题的解20, , 0 (4.4)(,0)(), . (4.5)t xx u a u x t u x x x δ⎧-=-∞<<∞>⎨=-∞<<∞⎩相当于在初始时刻0t =,在0x =点处置放一单位点热源所产生的温度分布.若将上面定解问题中的初始条件换为(,0)()u x x δξ=-,只要利用平移变换'x x ξ=-易得此时(4.4)—(4.5)的解为(,)x t ξΓ-.为求解定解问题(4.1)—(4.3),先考虑()()x x ϕδξ=-,其中ξ为x 轴正半轴上的任意一点. 此时,相当于在x ξ=点处置放一单位点热源. 则此单位点热源在x 轴正半轴上产生的温度分布,如果满足边界条件(4.2),它便是(4.1)—(4.3)的解,即为该问题的Green 函数. 为此,设想再在x ξ=-点,此点为x ξ=关于坐标原点的对称点,处置放一单位单位负热源,这时在x ξ=点处置放的单位点热源产生的温度分布(,)x t ξΓ-和在x ξ=-处置放的单位负热源产生的温度分布(,)x t ξ-Γ+在0x =处相互抵消,从而在0x =处的温度恒为零. 因此,问题(4.1)—(4.3)的Green 函数为(,)(,)(,) G x t x t x t ξξξ-=Γ--Γ+ (4.6)利用叠加原理可得原问题的解为(,)() (,)u x t G x t d ϕξξξ∞=-⎰ . (4.7)若将(4.2)中的边界条件换为(0,)()u t g t =或(0,)0x u t =,请同学们考虑如何求解相应的定解问题.5.4.2 一维波动方程半无界问题考虑以下齐次方程定解问题20, 0, 0 (4.8)(0,)0, 0 (4.9)(,0)0, (,0)(), 0 tt xx t u a u x t u t t u x u x x x ψ-=<<∞>=≥==<<∞ (4.10)⎧⎪⎨⎪⎩一维波动方程的基本解(,)x t Γ为1, 2(;) 0, .x ata x t x at ⎧<⎪Γ=⎨⎪≥⎩完全类似于上小节的分析,可得该问题的Green 函数为(,)(,)(,G x t x t x t ξξξ-=Γ--Γ+, (4.11)其中0ξ>. 因此,该定解问题的解便可表示为(,)() (,)u x t G x t d ψξξξ∞=-⎰. (4.12)注意到(,)x t ξΓ-的具体表示式为1, 2(;) 0, x atax t x at ξξξ⎧-<⎪Γ-=⎨⎪-≥⎩类似地有1, 2(;) 0, x ata x t x at ξξξ⎧+<⎪Γ+=⎨⎪+≥⎩将上面两式代入到(4.12)中并整理可得1(), 0 2(,)1(), 0.2x atx atx atat xd x at a u x t d x at a ψξξψξξ+-+-⎧-≥⎪⎪=⎨⎪-<⎪⎩⎰⎰ 若将(4.9)中的边界条件换为(0,)0x u t =,请同学们考虑如何求解相应的定解问题.注1 对一维波动方程半无界问题,除上面使用的Green 函数法以外,也可以用延拓法或特征线法求解[1]. 相比之下,Green 函数法最简单.注2 类似于本章前两节,对一维热传导方程和波动方程初边值问题,也可以建立起解的Green 公式表达式,相当于本章第二节中的(2.14), 并以此为基础而给出上面(4.7)和(4.12)两式的严格证明[2]. 由于本章主要是通过对一些比较简单的偏微分方程定解问题的求解,重点介绍Green 函数法的基本思想和一些特殊区域Green 函数的具体求法,故略去了(4.7)和(4.12)两式的推导过程.习 题 五1.设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(1)uudV ds n Ω∂Ω∂∆=∂⎰⎰⎰⎰⎰.(2)2u u udV uds u dV n Ω∂ΩΩ∂∆=-∇∂⎰⎰⎰⎰⎰⎰⎰⎰.2. 设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题0, (,,)(,,)0, (,,).xx yy zz u u u u x y z u x y z x y z ∆=++=∈Ω⎧⎨=∈∂Ω⎩证明 (,,)0u x y z ≡,并由此推出Poisson 方程Dirichlet 问题解的唯一性.若将定解问题中的边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在Ω中等于什么?Poisson 方程Neumann 问题的解是否具有唯一性?3*设3R Ω⊂为有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω满足下面问题(,,)(,,), (,,)(,,)(,,), (,,).u c x y z u f x y z x y z u x y z x y z x y z ϕ-∆+=∈Ω⎧⎨=∈∂Ω⎩其中 (,,)c x y z 在闭域Ω非负有界且不恒为零. 证明或求解以下各题(1) 如果0,(,,), 0,(,,),f x y z x y z ϕ=∈Ω=∈∂Ω证明(,,)0u x y z ≡.(2)如果0,(,,),f x y z =∈Ω而边界条件换为0, (,,),ux y z n∂=∈∂Ω∂问(,,)u x y z 在区域Ω中等于什么?4.(1) 验证0∆Γ=,0P P ≠,其中0(,) 3P P n Γ==01(,)22P P n πΓ==(2)设()u u r =, 22y x r +=, 求0,0xx yy u u r +=≠,并且满足(1)0,u =(0,)1B u n ds δ∂∇⋅=-⎰的解, 其中(0,)B δ是以原点为圆心δ为半径的圆形域,n 为(0,)B δ∂的单位外法向量.(3) 设()u u r =, 222z y x r ++=, 求0=++zz yy xx u u u ,0≠r ,并且满足B(0,)lim ()0, 1r u r u nds δ→∞∂=∇⋅=-⎰⎰的解, 其中(0,)B δ是以原点为球心δ为半径的球形域,n为(0,)B δ∂的单位外法向量.5. 设2R Ω⊂有界区域,∂Ω充分光滑,21()()u C C ∈Ω⋂Ω. 证明(,)()u u u ds ud n n ξησ∂ΩΩ∂∂Γ=Γ--Γ∆∂∂⎰⎰⎰ 其中0(,)P ξη∈Ω,0(,)P P Γ如第4题所示.6. 设2R Ω⊂有界区域,∂Ω充分光滑,0(,)P ξη∈Ω,2(,)P x y R ∈,0(,)P P Γ为二维Laplace 方程的基本解. 考虑定解问题(,), (,)(,)(,), (,)u f x y x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 若(,)h x y 是如下定解问题的解00, (,)(,)(,),(,)h x y h x y P P x y ∆=∈Ω⎧⎨=-Γ∈∂Ω⎩证明 若21(,)()()u x y C C ∈Ω⋂Ω,则有(,)Gu ds Gfd n ξηϕσ∂ΩΩ∂=-+∂⎰⎰⎰,其中G h =Γ+.7. 设3R Ω⊂有界区域,∂Ω充分光滑, 考虑定解问题(,,), (,,)(,,), (,,).u f x y z x y z ux y z x y z nϕ-∆=∈Ω⎧⎪∂⎨=∈∂Ω⎪∂⎩ 证明该问题可解的必要条件为0f dV ds ϕΩ∂Ω+=⎰⎰⎰⎰⎰.8*证明上半空间Laplace 方程Dirichlet 问题的Green 函数0(,)G P P 满足020010(,), (,),0, .4P PG P P x y R z P P r π<<∈>≠ 对平面上圆域Laplace 方程Dirichlet 问题的Green 函数0(,)G P P ,给出类似结果.9. 利用对称法求二维Laplace 方程Dirichlet 问题在上半平面的Green 函数, 并由此求解下面定解问题0, (,),0(,0)(), (,).u x y u x x x ϕ-∆=∈-∞∞>⎧⎨=∈-∞∞⎩ 10. 求二维Laplace 方程在下列区域上 Dirichlet 问题的Green 函数.(1) {(,)|}x y x y Ω=>. (2) {(,)|0,0}x y x y Ω=>>.11. 设222{(,)|,0}x y x y R y Ω=+<>. 考虑半圆域Dirichlet 问题0,(,)(,)(,), (,).u x y u x y x y x y ϕ-∆=∈Ω⎧⎨=∈∂Ω⎩ 应用对称法求区域Ω上的Green 函数.12*求解定解问题0,(,,)(,,)(,,),(,,).u x y z u x y z g x y z x y z -∆=∈Ω⎧⎨=∈∂Ω⎩其中32222,(0,){(,,)|}xx yy zz u u u u B R x y z R x y z R ∆=++Ω==∈++<.13.[解对边值的连续依赖性]设Ω为半径等于R 的圆域,考虑如下问题(,), (,)(,)(,),(,) 1,2.k k k u f x y x y u x y g x y x y k -∆=∈Ω⎧⎨=∈∂Ω=⎩ 利用Poisson 公式证明2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω14*证明在广义函数的意义下,11(,0)ln 2P rπΓ=满足 ()()u x y δδ-∆=,其中xx yy r u u u =∆=+.15*设Ω为半径等于R 的圆域,考虑如下问题0, (,)(,)(,),(,) .u x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 如果(,)g x y 在∂Ω连续,证明由Poisson 公式给出的解是该问题的古典解(真解).16*设(,)u x y 为平面上区域Ω上的调和函数,000(,)P x y ∈Ω且0(,)B P R ⊂Ω.证明调和函数的平均值公式00002(,)(,)11(,)(,)(,)2B P R B P R u x y u x y ds u x y dxdy R R ππ∂==⎰⎰⎰ 17*[极值原理]设2R Ω⊂有界区域,边界充分光滑,2()()u C C ∈Ω⋂Ω为Ω内的调和函数,并且在某点000(,)P x y ∈Ω达到u 在闭域Ω上的最大(小)值,利用平均值公式证明u 为常数.18*[极值原理]设2R Ω⊂有界区域,边界∂Ω充分光滑, 2()()u C C ∈Ω⋂Ω. 如果u 在区域Ω内调和且不等于常数,则u 在闭域Ω上的最大值和最小值只能在区域的边界∂Ω上达到.19*利用第12题的结果,建立在3R Ω⊂内调和函数的平均值公式,并证明和第16题类似的结果.20*设2R Ω⊂有界区域,2()(), (),1,2,k k u C C g C k ∈Ω⋂Ω∈∂Ω=满足(,), (,)(,)(,),(,) k kk u f x y x y u x y g x y x y -∆=∈Ω⎧⎨=∈∂Ω⎩ 证明 2121(,)(,)max{(,)(,)(,)}u x y u x y g x y g x y x y -≤-∈∂Ω.21.设D 和Ω为平面上的两个区域,()(,)(,)f z x y i x y ϕψ=+在区域D 内解析且不等于常数,()f D =Ω,即f 将区域D 保形映射到区域Ω.证明 如果(,)u x y 在区域Ω内调和,则((,),(,))u x y x y ϕψ在区域D 内调和.22.(1)找一个在上半平面解析的函数()f z ,在边界{(,),0}x y x R y ∈=上满足00(),, (),,f x A x x f x B x x =>=<其中A 和B 为实常数.(2)求下面定解问题的一个解0, 0,0(,0)0,0, (0,)10,0.xx yy u u x y u x x u y y +=>>⎧⎨=>=>⎩ 23*求下面定解问题的一个解22220, 1(,)0,0, (,)1,0, 1.xx yy u u x y u x y y u x y y x y ⎧+=+<⎪⎨=<=>+=⎪⎩ 24. 求下面定解问题的一个解0, 0<(,0)0, (,)1, 0.xx yy u u y xu x u x x x +=<⎧⎨==>⎩ 25. 求下面定解问题的一个解0, , 0<(,)0, (,0)0, 0, (,0)1, 0.xx yy u u x R y u x x Ru x x u x x ππ+=∈<⎧⎪=∈⎨⎪=<=>⎩26. 设(0,)B R Ω=,1(0,)2RB Ω=,(,)u x y 在Ω内调和且在Ω上连续,在边界上非负,证明以下结果(1)(,),x y ∀∈Ω有(0,0)(,)(0,0),R r R ru u x y u R r R r-+≤≤+-其中r =.(2)存在常数0M > 使得 11max (,)min (,).u x y M u x y ΩΩ≤。

格林函数

格林函数

格林函数法求解稳定场问题1 格林函数法求解稳定场问题(Green ’s Function) Green ’s Function, 又名源函数,或影响函数,是数学物理中的一个重要概念。

从物理上看,一个数学物理方程表示一种特定的场和产生这种场的源之间关系:Heat Eq.:()2222 ,u a u f r t t∂-∇=∂v 表示温度场u 与热源(),f r t v之间关系 Poission ’s Eq.:()20u f r ρε∇=-=-v表示静电场u 与电荷分布()f r v之间的关系场可以由一个连续的体分布源、面分布源或线分布源产生,也可以由一个点源产生。

但是,最重要的是连续分布源所产生的场,可以由无限多个电源在同样空间所产生的场线性叠加得到。

例如,在有限体内连续分布电荷在无界区域中产生的电势:()''04r dV r r ρφπεΩ=-⎰r r r这就是把连续分布电荷体产生的电势用点电荷产生的电势叠加表示。

或者说,知道了一个点源的场,就可以通过叠加的方法算出任意源的场。

所以,研究点源及其所产生场之间的关系十分重要。

这里就引入Green ’s Functions 的概念。

Green ’s Functions :代表一个点源所产生的场。

普遍而准确地说,格林函数是一个点源在一定的边界条件和初始条件下所产生的场。

所以,我们需要在特定的边值问题中来讨论 Green ’s Functions.下面,我们先给出Green ’s Functions 的意义,再介绍如何在几个典型区域求出格林函数,并证明格林函数的对称性,最后用格林函数法求解泊松方程的边值问题。

实际上,只限于讨论泊松方程的第一类边值问题所对应的 Green ’s Functions 。

2 泊松方程的格林函数静电场中常遇到的泊松方程的边值问题:()()()()()201 f s u r r u r u r r n ρεαβϕ⎧∇=-⎪⎪⎨∂⎡⎤⎪+=⎢⎥⎪∂⎣⎦⎩vv v v v 这里讨论的是静电场()u r v, ()f r ρv 代表自由电荷密度。

特殊区域的green函数

特殊区域的green函数

特殊区域的green函数
Green函数是当今互联网领域研究的热点课题之一。

它是一种算法,能够对复杂的系统提供可观察指标,帮助企业进行失控风险分析、工程优化、性能评估等工作。

Green函数利用理论物理、数学技术和计算机科学,在探索和试验阶段最大化系统的抗耗散能力,最大限度的强化了系统的一致性,减少了耗散现象的发生。

Green函数法可以用来实现对系统的动态可观察性,它将影响了系统应用的多变性和复杂性。

它可以更加准确的构建仿真的数据,更大的容差,可以将系统进行无限细致的分解,由此可以获得越来越准确而深入的见解,深入到系统结构及其它未知潜在因素。

Green函数法有助于企业在控制、优化和管理服务水平等领域取得突破性的成就。

借助Green函数,企业可以有效的利用它管理系统的资源,提高系统性能,并最大化系统的可持久性。

Green函数技术运用到系统中将增强系统的灵活性,能实现高效、轻松、稳定的系统控制,从而满足企业需求。

Green函数相当于企业把高精度技术融入系统中,系统就可以实现自动化,并在系统运行时进行越来越精准的运算和操控。

总之,Green函数是当今互联网领域的一项重要技术,它将大大提高企业的服务水平和服务质量,实现系统的智能化管理,更有效的实现对系统的管理与优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第五章 格林函数法
Method of Green function
数理方程分类
无源:拉普拉斯方程 u 0
稳定态
有源:泊松方程 有源
u h(M )
格林函数法
utt 2 u f (r, t )
ut 2 u f (r, t )
与时间
有关
无源
utt 2 u 0
解 由Fourier变换公式,有
F ( ) F [ f (t )]





f (t )e
it
dt sin 0 te it dt



e i 0t e i 0t i t e dt 2i
i ( 0 ) t
1 2i
e
所以,当t 0时, i (t ) 0;当t 0时,由于 q (t )是不连续的, 从而在普通导数的意义 下, q (t )在这一点导数不存在, 如果我们从形式上计算 这个导数,则得
dq( t ) q(0 t ) q(0) 1 i( t ) lim lim . t 0 t 0 t dt t
ti
f (t ) [ (t )]dt
ti
f ( )

ti
[ (t )]dt
ti

k i 1
f (t i )
' (t i )
另外


k
k t (t ti ) (t ti ) f (t ) dt f (t ) dt t ' (ti ) ' (ti ) i 1 i 1 k
可见, 单位脉冲函数 (t )与常数 1构成了一个 Fourier 变换对
同理, (t t0 )和eit0 也构成了一个 Fourier变换对
注意:这时的广义积分不是普通意义下的积分值,δ 函数的Fourier变换是一种广义的Fourier变换.
0, t 0 例 证明单位阶跃函数 u (t ) 的Fourier变换 1, t 0 1 为 ( ). i
令 即
w (t ) 因
d[ (t )] ' (t )dt
1 1 dt d [ (t )] dw ' (t ) ' (t )
时, (ti ) (ti ) 时, (ti ) (ti )
又由于 ' (t ) 0
显然,上例中的电流强度无法用一个普通函数来表示,为 了确定这类工程中常见的函数,必须引入广义函数, 简记为 δ–函数.
0, t 0 (t ) , t 0 (t ) dt 1
有了这种函数,对于许多集中于一点或一瞬时的量, 例如点电荷、点热源、集中于一点的质量以及脉冲技术 中非常窄的脉冲等,都能够像处理连续分布的量那样, 以统一的方式加以解决. 从数学上弄清δ–函数的定义,要涉及到广义函 数的知识。为方便起见,我们可把δ–函数看作是弱 收敛函数序列的弱极限.
记为 (t ),即
(t ) (t ), 或简记为 lim (t ) (t ).
0 0

这表明δ–函数可以看成一个普通函数序列的弱极限 .
1
(t )
(t )
1

O


t

O
t
对任何 0, 显然有
工程上常将δ函数称为单位脉冲函数.有时将δ函 数用一个长度等于1的有向线段表示, 线段的长度 表示δ函数的积分值称为δ函数的强度.
i i


i 1



k f (ti ) t (t ti ) f (t ) dt f (t ) [ (t )]dt t i 1 ' (t i ) i 1 ' (ti )
k
i i
f (ti ) ' (ti )
比较上述二式,得

(t ti ) [ (t )] ' (ti ) i 1
k
根据δ–函数的筛选性质和Fourier变换的定义, 容易 求出δ–函数的Fourier变换.
F () F[ (t )] (t )eit dt eit
t 0
1


sin t
0

dt
2.1和2 ( )构成一个 Fourier变换对.
3.e i0t 和2 ( 0 )构成一个 Fourier变换对.



e
it
dt 2 ( ).



e i ( 0 ) t dt 2 ( 0 ).
例 求正弦函数 f (t ) sin 0t的Fourier变换.
0
lim
0 0


1

f (t )dt lim
0

1

0
f (t )dt ,
由于 f (t )是无穷次可微函数 , 显然 f (t )是连续函数 , 按积分中值定理 , 有,



(t ) f (t )dt lim
0

1

0
f (t )dt lim f ( ) (0 1).
ut 2 u 0
§5.1
函数
物理和工程技术中,许多物理现象具有脉冲性 如集中在一点的质量分布、电荷分布等问题(即质点、 点电荷的概念)力学中集中作用在一点的力所产生的压 强、热学中的点热源,以及在电路中出现的瞬时电流、 瞬时电压等 。 它们不在某一空间范围内出现,也不在某一时间间隔内 出现,而只是在某一空间点,或某一瞬时才出现。 研究这类现象产生的问题都要涉及到下面介绍的δ函数
0
所以,



(t ) f (t )dt f (0).

更一般地有, (t t0 ) f (t )dt f (t0 ).
2.函数是偶函数 ,即 (t ) (t );
3.

t

d 0, t 0 ( )d H (t ), H (t ) (t ),其中 H (t ) dt 1, t 0
1 这就表明 ( )的Fourier逆变换为 f (t ) u (t ) i
一些常见函数的广义Fourier变换: 1 1.u( t )和 ( )构成一个Fourier 变换对. i
u( t )的积分表达式在 t 0时,可写为
1 1 u( t ) 2



f (t ) [ (t )]dt
i 1
k
k
ti
t i
f (t ) [ (t )]dt
ti
f ( )
i 1
t i
[ (t )]dt
最后一步用了中值定理,其中 ti i ti ]

0时, i ti
' (t ) 0
ti
( ti ) 1 1 所以有 [ (t )]dt ( w)dw t i ( t i ) ' ( ) ' ( t ) i k
于是


k i 1

f (t ) [ (t )]dt

i 1
称为单位阶跃函数;
4.若f (t )为无穷次可微的函数, 则有



(t ) f (t )dt f (0).
( n ) (t ) f (t )dt (1)n f ( n ) (0).
一般地,有



5.根据δ–函数的定义, 容易得出宗量为函数的δ函 数的性质 k (t ti ) [ (t )] 其中 ti为 (t ) 0的单根 i 1 ' (ti )

1 事实上,若 F ( ) ( ), 则由 Fourier逆变换 i 可得
1 f ( t ) F [ F ( )] 2
1



F ( )e it d
1 1 [ ( )]e it d 2 i it 1 1 e i t ( )e d d 2 2 i 1 1 sin t i t ( )e d d 2 2 1 1 sin t d 2 0 sin 利用Dirichlet积分 d 有 2 0
格林函数的定义
• 格林函数的定义: 一个点源在一定的边界条件和初始条件下所产生 的场。 • 如
G (r r0 )
• 格林函数 数 • 应用 格林函数






2 , t 0 sin t d 0, t0 0 , t 0 2 则 当t 0时,

1 1 1, t 0 1 1 sin t 2 2 f (t ) dt 2 0 1 1 ( ) 0, t 0 2 2
0

(t )dt
1
dt 1.
2
函数的性质:
1.筛选性质 由δ–函数的定义,可以推出δ–函数 的一个重要结果,称为δ–函数的筛选性质:
若f (t )为无穷次可微的函数, 则有




( t ) f ( t )dt f (0).

事实上, (t ) f (t )dt lim (t ) f (t )dt

e i (
0
)t
相关文档
最新文档