函数模型及其应用PPT教学课件
合集下载
《函数》PPT课件

函数连续性判断方法
01
02
03
定义法
根据函数在某点连续的定 义,判断函数在该点是否 连续。
极限法
通过计算函数在某点的左 右极限,判断函数在该点 是否连续。
定理法
利用连续函数的性质定理 ,如介值定理、零点定理 等,判断函数的连续性。
闭区间上连续函数性质
01
有界性
闭区间上的连续函数一定有界 。
02
最大值和最小值定理
切线斜率,反映了函数在 该点的局部变化性质。
可导与连续的关系
可导必连续,连续不一定 可导。
基本初等函数求导公式汇总
幂函数
y = x^n(n为实数 ),其导数为 nx^(n-1)。
对数函数
y = log_a x(a>0 且a≠1),其导数 为1/(xlna)。
常数函数
y = c(c为常数) ,其导数为0。
闭区间上的连续函数一定存在 最大值和最小值。
03
介值定理
如果函数在闭区间的两个端点 取值异号,则函数在该区间内
至少存在一个零点。
04
一致连续性
闭区间上的连续函数具有一致 连续性。
04
导数与微分学基础
导数概念及几何意义
导数定义
函数在某一点的变化率, 是函数值随自变量增量变 化的极限。
导数的几何意义
体积计算
运用定积分或重积分求解立体(如由曲面和平面围成的立体)的 体积,需熟悉体积公式及积分方法。
微分方程简介及在物理问题中应用
微分方程基本概念
介绍微分方程的定义、分类及解的概念,为后续应用打下基础。
一阶常微分方程求解
掌握一阶常微分方程的求解方法,如分离变量法、积分因子法等。
2011届新课标人教版高中第1轮总复习理科数学课件第14讲函数模型及其应用

24
1 1 因为f1-f2= 1 a 2 -[ ( a )2]2 1 2 1 16 = 2 (4 a 2 ) 2 1 a
=
a 2 (a 2 2)(a 2 2) (1 a 2 )(4 a 2 ) 2
,
所以,当0<a< 2 2 时,f1<f2,即清洗一次蔬菜 上残留的农药量较小; 当a= 2 2 时,f1=f2,即两种清洗方法的效果一样; 当a> 2 2 时,f1>f2,即清洗两次蔬菜上残留的农 药量较少.
6
将各组数据代入验证,选B.
3.某电信公司推出两种手机收费方式:A种 方式是月租20元,B种方式是月租0元.一 个月的本地网内打出电话时间(分钟) 与打出电话费s(元)的函数关系如图, 当打出电话150分钟时,这两种方式的电 话费相差( A ) A.10元 C.30元 B.20元 40 D. 元 3
(1)f(0)=1,表示没有用水清洗时,蔬 菜上残留的农药量保持不变. (2)函数f(x)应满足的条件和具有的性质是: 1 f(0)=1,f(1)= , 2 在[0,+∞)上是减函数,且0<f(x)≤1.
(3)设仅清洗一次,蔬菜上残留的农药量为f1, 清洗两次后,蔬菜上残留的农药量为f2,则
1 1 1 1 f1= ,f2= a 2 × 1 ( a )2 =[ 1 ( a )2 ]2 2 1 a 1 ( ) 2 2 2
新课标高中一轮 总复习
理数
1
第二单元
函 数
2
第14讲
函数模型及其应用
3
了解指数函数、对数函数、幂函 数、分段函数等函数模型的意义, 并能建立简单的数学模型,利用这 些知识解决应用问题.
4
1.拟定从甲地到乙地通话m分钟的电话费(单 位:元)由f(m)=1.06×(0.50×[m]+1)给 出,其中m>0,[m]是大于或等于m的最 小整数(如[4]=4,[2.7]=3,[3.8]=4). 若从甲地到乙地的一次通话时间为5.5分钟 的电话费为( C ) 由题设知,f(5.5)=1.06×(0.50×[5.5]+1) A.3.71元 B.3.97元 =1,06×(0.5×6+1)=4.24.故选C. C.4.24元 D.4.77元
2015高考数学(理)一轮复习考点突破课件:2.9函数模型及其应用

对点演练 (1)今有一组数据,如表所示: x 1 2 3 4 5
y 3 5 6.99 9.01 11 下列函数模型中,最接近地表示这组数据满足规律的一个是 ( A.指数函数 C.一次函数 答案:C B.反比例函数 D.二次函数 )
•
•
(2)一辆汽车在某段路程中的行驶速度 v与时间t的关系图象如图, 则t=2时,汽车已行驶的路程为________km.
快于 ax>xn
• (2)对数函数y=logax(a>1)与幂函数y=xn(n>0) • 对数函数y=logax(a>1)的增长速度,不论a与n值的大小如何总会 y = xn 的 增 长速 度 , 因 而 在 定 义 域 内 总 存 在 一 个 实 数 x0 , 使 x > x0 时 有 . 慢于 • 由(1)(2)可以看出三种增长型的函数尽管均为增函数,但它们的增长速 度不同,且不在同一个档次上,因此在 (0 ,+ ∞ )上,总会存在一个 x0, logax<xn 使x>x0时有 .
• • • • •
1.解函数应用问题的步骤(四步八字) (1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选 择数学模型; (2)建模:将自然语言转化为数学语言,将文字语言转化为符号 语言,利用数学知识,建立相应的数学模型; (3)解模:求解数学模型,得出数学结论; (4)还原:将数学问题还原为实际问题的意义.
• •
满分指导:实际应用问题的规范解答 【典例】 (满分 12 分 )(2013·重庆 )某村庄拟修建一个无盖的圆柱形蓄
水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立 方米.假设建造成本仅与表面积有关,侧面的建造成本为 100 元 / 平方 米,底面的建造成本为 160 元 / 平方米,该蓄水池的总建造成本为 12 000π元(π为圆周率). • • (1)将V表示成r的函数V(r),并求该函数的定义域; (2) 讨论函数 V(r) 的单调性,并确定 r 和 h 为何值时该蓄水池的体积最
2015届高考数学总复习第二章 第十一节函数模型及其应用课件 理

变式探究
1.某租赁公司拥有汽车100辆,当每辆车的月租金为3 000 元时,可全部租出.当每辆车的月租金每增加 50元时,未租出 的车将会增加一辆.租出的车每辆每月需要维护费150元,未租 出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最 大?最大月收益是多少?
特别是端点值. (2)构造分段函数时,要力求准确、简洁,做到分段合
理、不重不漏.
变式探究
2.某市有甲、乙两家乒乓球俱乐部,两家设备和服务 都很好,但收费方式不同,甲每张球台每小时5元;乙按月 计费,一个月中30小时以内(含30小时)每张球台90元,超过 30小时的部分每张球台每小时2元.李明准备下个月从这两 家中的一家租一张球台开展活动,其活动时间不少于15小时,
10 m,
入水处距池边4 m,同时运动员在距水面5 m或5 m以上时,必须
完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误. (1)求这个抛物线的解析式. (2) 在某次试跳中,测得运动员在空中的运动轨迹为 (1) 中的 抛物线,且运动员在空中调整好入水姿势时距池边的水平距离为
3 3 m,问:此次跳水会不会失误?请通过计算说明理由.
第二章
第十一节 函数模型及其应用
二次函数模型应用题 【例1】 2012年伦敦奥运会中国跳水队取得了辉煌的成
绩.据科学测算,跳水运动员进行 10 m跳台跳水训练时,身 体(看成一点)在空中的运动轨迹 (如图所示)是一经过坐标原点
的抛物线(图中标出数字为已知条件),
且在跳某个规定的翻腾动作时,正常 情况下运动员在空中的最高点距水面
(1)求y关于x的函数;
【成才之路】2014-2015学年高中数学 3.2.2 函数模型的应用实例课件 新人教A版必修1

当该顾客购买茶杯 40 个时,采用优惠办法 (1) 应付款 y1 =
5×40+60=260元;采用优惠办法(2)应付款y2=4.6×40+73.6 =257.6元,由于y2<y1,因此应选择优惠办法(2).
2
2
二次函数模型问题与函数的图象
西部山区的某种特产由于运输原因,长期只能
在当地销售,当地政府对该项特产的销售投资收益为:每年投 1 入 x 万元,可获得利润 P=-160(x-40)2+100(万元).当地政 府拟在新的十年发展规划中加快发展此特产的销售,其规划方 案为: 在规划前后对该项目每年都投入 60 万元的销售投资, 在 未来 10 年的前 5 年中, 每年都从 60 万元中拨出 30 万元用于修 建一条公路,5 年修成,通车前该特产只能在当地销售;
●温故知新
旧知再现 1.常见的函数模型 kx k为常数,k≠0); (1)正比例函数模型:f(x)=____(
k (2)反比例函数模型:f(x)=____( x k为常数,k≠0);
(3)一次函数模型:f(x)=________( kx+b k,b为常数,k≠0); ax2+bx+c a , b , c 为常数, (4) 二次函数模型: f(x) = ____________(
(1)分别求出通话费y1、y2与通话时间x之间的函数关系式; (2)请帮助用户计算,在一个月内使用哪种卡便宜.
[分析]
由题目可获取以下主要信息: (1)通过图象给出函
数关系, (2) 函数模型为直线型, (3) 比较两种函数的增长差 异.解答本题可先用待定系数法求出解析式,然后再进行函数 值大小的比较.
1 又由题设 P=-160(x-40)2+100 知, 每年投入 30 万元时, 795 利润 P= 8 (万元). 前 5 年的利润和为 795 2 775 8 ×5-150= 8 (万元).
【高考复习方案 】2014年高考数学(文,江苏教育版)一轮复习课件:第12讲 函数模型及其应用

返回目录
第12讲
函数模型及其应用
点 面 讲 考 向
[归纳总结] (1)指数函数模型常与增长率相结合进行 考查,在实际问题中有人口增长、银行利率、细胞分裂等 增长问题可以利用指数函数模型来表示. (2)应用指数函数模型时,先设定模型,将已知的相关 数据代入验证,确定参数,从而确定函数模型. (3)对于函数 y=a(1+x)n 通常利用指数运算与对数函 数的性质进行求解.
返回目录
第12讲
双 向 固 基 础
函数模型及其应用
4. 1992 年底世界人口达 54.8 亿, 若人口的年平均增长率 为 x% , 2014 年底世界人口数为 y(亿), 那么 y 与 x 的函数关系 式是____________________.
[答案]
y=54.8(1+x%)22
[解析] 因为 2014-1992=22,所以 y=54.8(1+x%)22.
返回目录
第12讲
函数模型及其应用
点 面 讲 考 向
可见,细胞总数 y 与时间 x(小时)之间的函数关系为 y= 3x 100×(2) ,x∈N*. 3x 3x 10 由 100×(2) >10 ,得(2) >108. 3 8 两边取以 10 为底的对数,得 xlg >8,解得 x> . 2 lg 3-lg 2 8 8 因为 = ≈45.45, lg 3-lg 2 0.477-0.301 所以 x>45.45. 故经过 46 小时,细胞总数超过 1010 个.
ax=300, x=120, 解得 (a+1)(x-12)=300+78. a=2.5.
返回目录
第12讲
双 向 固 基 础
函数模型及其应用
3.某车站有快、慢两种车,始发站距终点站 7.2 km,慢 车到终点站需 16 min,快车比慢车晚发车 3 min,且行驶 10 min 后到达终点站,则在慢车出发________min 后两车相遇, 相遇时距终点站________ km. [答案] 8 3.6
《用函数模型解决实际问题》课件1(北师大必修1)

当________时,一次函数在 ( ,) 上为增函数,当_______时, 一次函数在 (,) 上为减函数。
y ax bx c ( a 0 ) 2.二次函数的解析式为_______________________, 其图像是一条
2
4 ac b 4 ac b
2
高一新教材
函数模型的应用实例
教学任务分析 1.培养学生阅读图形、表格的能力。 2.引导学生利用题中的数据及其蕴涵的关系建立数学模型,解决 实际问题。 3.强化一次函数、二次函数在实际问题中的应用。 4.让学生充分体会解决实际问题中建立函数模型的过程。 教学重点与难点 重点:如何结合题意,利用函数模型解决实际问题 难点:如何才能准确提取题目的数据,建立相应的函数模型 教学方法:导学法
2 2
当 x 6 . 5时, y 有最大值
只需将销售单价定为11.5元,就可获得最大的利润。
1.一家旅社有100间相同的客房,经过一段时间的经营实践,旅社经理发现, 每间客房每天的价格与住房率之间有如下关系: 每间每天房价 20元 18元 16元 住房率 65% 75% 85% 14元 95%
复习一次函数与二次函数模型 学习例1,提高读图、建模能力 设计练习,加强读图、建模能力的培养
学习例2,提高读表、建模能力
设计练习,加强读表、建模能力的培养 小结方法,形成知识系统
布置作业
直 y kx b(k 0) 1.一次函数的解析式为__________________ , 其图像是一条____线,
480 40 ( x 1) 520 40 x (桶)
而 x 0 , 且 520 40 x 0 , 即 0 x 13
y ( 520 40 x ) x 200 40 x 520 x 200 40 ( x 6 . 5 ) 1490
函数模型及其应用(1)

t 10 t 10
t 10
分层训练
• 必做题 P88 1 • 选做题 P88 2 • 作业 P84 2
2.6函数模型及其应用
2 . 6 函数 模 型 及 其 应 用
函数 是描述客观世界变化规律的基本 数学模型 是研究变量之间依赖关 , 系的 有效工具.利用函数模型可以处理 生产 生活中许多实际问题 .
学习目标
• 1 能根据实际问题的情景建立函数模型, 利用计算工具,结合对函数性质的研究, 给出问题的解答 • 2 能利用所学的数学知识分析,研究身边 的问题
例 2 物体在常温下的温度变 化可以用牛顿冷却规律 来描述 : 设物体的初始温度是 0 , 经过一定时间 后的温度是T , 则T T0 T t 1 T0 Ta , 其中Ta 表示环境温度 h称为半衰期 , . 2 现有一杯用 0 C热水冲的速溶咖啡放在 24 0 C的房间中 如果 88 , , 咖啡降温到40 0 C需要20 min, 那么降温到35 0 时, 需要多长时间 ?
自学检测
• 课本p84 练习 1
例1 某计算机集团公司生 产某 种型号计算机的固定 成本为200 万元, 生产每台计算机的可变 成本为3000元, 单位成本P万元、销售收入R万元以及利润L万元 每台计算机的售价为 5000元.分别写出总成本 万元、 C
关于总产量x 台的函数关系式.
t h
1 1 1 解 由题意40 24 88 24 , 即 h
20 h
1 故T 24 88 24 .当T 35时, 代入上式, 得 2
11 两边取对数, 1 1 35 24 88 24 , 即 . 64 2 2 用计算器求得t 25.因此, 约需要25 min, 可降到350 C.
t 10
分层训练
• 必做题 P88 1 • 选做题 P88 2 • 作业 P84 2
2.6函数模型及其应用
2 . 6 函数 模 型 及 其 应 用
函数 是描述客观世界变化规律的基本 数学模型 是研究变量之间依赖关 , 系的 有效工具.利用函数模型可以处理 生产 生活中许多实际问题 .
学习目标
• 1 能根据实际问题的情景建立函数模型, 利用计算工具,结合对函数性质的研究, 给出问题的解答 • 2 能利用所学的数学知识分析,研究身边 的问题
例 2 物体在常温下的温度变 化可以用牛顿冷却规律 来描述 : 设物体的初始温度是 0 , 经过一定时间 后的温度是T , 则T T0 T t 1 T0 Ta , 其中Ta 表示环境温度 h称为半衰期 , . 2 现有一杯用 0 C热水冲的速溶咖啡放在 24 0 C的房间中 如果 88 , , 咖啡降温到40 0 C需要20 min, 那么降温到35 0 时, 需要多长时间 ?
自学检测
• 课本p84 练习 1
例1 某计算机集团公司生 产某 种型号计算机的固定 成本为200 万元, 生产每台计算机的可变 成本为3000元, 单位成本P万元、销售收入R万元以及利润L万元 每台计算机的售价为 5000元.分别写出总成本 万元、 C
关于总产量x 台的函数关系式.
t h
1 1 1 解 由题意40 24 88 24 , 即 h
20 h
1 故T 24 88 24 .当T 35时, 代入上式, 得 2
11 两边取对数, 1 1 35 24 88 24 , 即 . 64 2 2 用计算器求得t 25.因此, 约需要25 min, 可降到350 C.