混凝土耐久性研究现状和研究方向

合集下载

混凝土耐久性研究综述

混凝土耐久性研究综述

混凝土耐久性研究综述一、前言混凝土是一种广泛应用于建筑、工程和基础设施中的材料。

它的使用范围非常广泛,因为它的强度和耐久性能良好。

然而,长期以来,混凝土的耐久性问题一直是人们关注的焦点。

混凝土耐久性能否得到保证,直接关系到混凝土结构的使用寿命和安全性。

因此,混凝土耐久性的研究一直是建筑材料领域的重要课题之一。

二、混凝土耐久性的定义混凝土耐久性是指混凝土在外界环境条件下,经过一定时间后,能否维持其设计功能和安全性的能力。

混凝土的耐久性可以在其寿命期间内保持其设计功能、性能和美观性。

混凝土耐久性与混凝土的质量、使用条件、环境条件等因素密切相关。

三、混凝土耐久性的主要影响因素1.混凝土本身的质量,包括配合比、水泥的品种和用量、骨料的品种和粒径等因素;2.使用条件,包括荷载、温度、湿度、化学物质等影响;3.环境因素,包括大气环境、土壤环境、水环境等;4.结构设计和施工质量。

四、混凝土耐久性的评价指标混凝土耐久性的评价指标主要包括以下几个方面:1.强度衰减率;2.龟裂程度;3.碳化深度;4.氯离子渗透深度;5.硫酸盐侵蚀深度;6.碳酸盐侵蚀深度;7.钢筋锈蚀率;8.表面开裂率;9.变形率;10.耐久性指数。

五、混凝土耐久性研究的方法混凝土耐久性研究的方法主要包括:1.实验方法,包括室内模拟试验和现场试验;2.计算方法,包括数值模拟和结构可靠性分析。

六、混凝土耐久性研究的现状1.混凝土耐久性的主要问题:混凝土结构的使用寿命和安全性问题;2.混凝土耐久性的研究方法:实验方法和计算方法;3.混凝土耐久性的研究成果:针对混凝土耐久性问题,国内外学者已经进行了大量的研究工作,研究成果丰硕;4.混凝土耐久性的未来研究方向:深入研究混凝土耐久性影响因素、研究混凝土的损伤演化规律、研究混凝土修复技术等方面。

七、混凝土耐久性研究的案例1.混凝土碳化研究案例:通过实验验证,得出了混凝土碳化深度与时间关系曲线,为混凝土结构的设计和施工提供了重要的技术依据;2.混凝土氯离子侵蚀研究案例:通过实验和计算,得出了混凝土氯离子渗透深度与时间关系曲线,为混凝土结构的耐久性评估提供了重要的依据;3.混凝土修复技术研究案例:研究了多种混凝土修复技术,通过对比实验,得出了不同修复技术的优缺点,为混凝土结构的维修提供了技术支持。

耐久性混凝土研究报告

耐久性混凝土研究报告

耐久性混凝土研究报告耐久性混凝土研究报告一、研究背景混凝土是一种常用的建筑材料,其耐久性对于建筑结构的长期稳定性至关重要。

然而,由于外界环境的影响,例如温度变化、湿度、化学物质的侵蚀等,混凝土结构容易发生损坏和腐蚀,降低了其使用寿命和安全性。

因此,耐久性混凝土的研究非常重要。

二、研究目的本报告旨在通过研究耐久性混凝土的材料特性和施工技术,探讨如何提高混凝土结构的耐久性,延长其使用寿命。

三、研究方法1. 材料选取:选择常用的水泥、骨料和添加剂等作为研究对象。

2. 实验设计:通过对不同组合比例的混凝土进行试验,分析不同材料对混凝土耐久性的影响。

3. 实验数据分析:通过对试验数据的统计分析和对比,总结提高混凝土耐久性的关键因素。

四、研究结果1. 材料特性:通过实验发现,添加适量的粉煤灰和矿渣粉可以显著提高混凝土的耐久性,减少裂缝和渗透问题。

2. 施工技术:采用适当的混凝土浇注技术和养护方法,可以改善混凝土的抗渗性和抗裂性。

五、研究结论通过研究耐久性混凝土的材料特性和施工技术,可以得到以下结论:1. 添加适量的粉煤灰和矿渣粉是提高混凝土耐久性的有效方法,可以减少混凝土的渗透性和裂缝。

2. 采用合适的混凝土浇注技术和养护方法,可以改善混凝土的工作性能和耐久性。

3. 对于长期处于潮湿环境的混凝土结构,应增加防水层和抗渗设施,以防止水分侵蚀。

六、研究建议基于以上研究结论,我们提出以下建议:1. 进一步研究和应用新型的混凝土材料和添加剂,以提高混凝土的耐久性和抗裂性。

2. 完善混凝土施工技术和养护措施,加强对混凝土的质量控制和监测。

3. 加强混凝土结构的维修和保养,及时处理损坏和裂缝问题,延长结构的使用寿命。

七、研究创新点本研究通过对耐久性混凝土的材料特性和施工技术的研究,提出了一些创新点:1. 添加适量的粉煤灰和矿渣粉可以有效改善混凝土的耐久性。

2. 采用合适的混凝土浇注技术和养护方法可以提高混凝土的工作性能。

混凝土结构耐久性的研究现状与展望

混凝土结构耐久性的研究现状与展望

混凝土结构耐久性的研究现状与展望【摘要】混凝土结构是土建工程中广泛采用的结构形式,但由于在其使用过程中经常会受到各种各样的腐蚀和损伤,经常达不到预定的使用年限,由此造成了巨大的经济损失,因此对混凝土结构的耐久性进行深入的研究意义重大。

本文对混凝土结构耐久性的阐述以及混凝土耐久性损伤的影响因素及混凝土结构耐久性损伤机理和成因研究等方面进行了总结阐述。

【关键词】混凝土结构;耐久性;损伤机理混凝土结构是以混凝土为主要材料制成的结构,包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构等结构形式。

这种结构广泛应用于建筑、桥梁、隧道、矿井以及水利、港口等工程。

但是由于各种各样的原因,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限;这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化引起的,但更多的是由于结构的耐久性不足导致的;特别是一些处于特殊使用环境中的建(构)筑物,如沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,导致钢筋锈蚀而使结构发生早期损坏,丧失了结构的耐久性能,这已成为实际工程中的重要问题。

早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。

耐久性失效是导致混凝土结构在正常使用状态下失效的主要原因之一。

所谓混凝土结构的耐久性,是指混凝土结构在自然环境、使用环境及材料内部因素的作用下,在设计要求的目标使用期内,不需要花费大量资金加固处理而保持其安全、使用功能和外观要求的能力。

引起结构耐久性失效的原因存在于结构的设计、施工及维护的各个环节。

但是由于种种原因,混凝土的耐久性并没有完全的发挥,随着建筑物使用时间的加长、环境污染的加剧、使用不当以及不符合要求的材料和工艺的应用,导致了大量混凝土结构出现不同程度的碳化、开裂、变形、酥松、露筋、蜂窝、空洞、剥落等破坏现象。

在过分追经济效益的现在,这种问题更值得关注。

我国混凝土结构量大面广,随着环境的变迁和功要求的提高,耐久性问题越来越突出,是迫切需要加以解决的问题。

混凝土耐久性研究现状综述

混凝土耐久性研究现状综述

混凝土结构耐久性现状
混凝土结构耐久性现状
目前,混凝土结构耐久性面临着诸多问题。其中,评估方法的不完善是一个 关键问题。现有的评估方法主要基于经验和实验室测试,难以准确预测混凝土结 构的耐久性。此外,设计规范和标准的不完备也影响了混凝土结构耐久性的提升。 在实际应用中,对混凝土结构的维护和管理也存在着较大的不足,导致结构的耐 久性受到影响。
2.3.1钢筋锈蚀
其中,电化学防护技术通过向混凝土中引入金属离子或极化剂,改变钢筋的 电化学状态,以减缓锈蚀速率。钝化剂涂层则在钢筋表面形成保护膜,防止水分 和氧气渗透,从而延缓锈蚀过程。改性混凝土则通过优化混凝土的配合比和原材 料,提高混凝土的密实度和抗渗透性,以达到抗腐蚀的目的。然而,钢筋锈蚀的 机理复杂,影响因素众多,如何准确评估和控制钢筋锈蚀仍然是研究的热点和难 点。
混凝土结构耐久性关键问题
混凝土结构耐久性关键问题
混凝土结构耐久性的关键问题主要包括以下几个方面: 1、混凝土结构的劣化机理:混凝土结构的劣化是指结构在使用过程中性能的 降低。研究劣化机理有助于了解结构的耐久性,从而采取有效的措施提高其使用 寿命。
混凝土结构耐久性关键问题
2、混凝土结构的寿命预测:预测混凝土结构的寿命是评估其耐久性的重要手 段。通过研究影响结构寿命的因素,可以更好地预测其耐久性,并为结构的维护 和管理提供指导。
混凝土结构耐久性受损原因及其 影响
混凝土结构耐久性受损原因及其影响
混凝土结构耐久性受损的主要原因包括以下几个方面: 1、碳化:混凝土碳化是指大气中的二氧化碳与混凝土中的碱性物质发生化学 反应,导致混凝土碱度降低,从而削弱了其对钢筋的钝化保护作用。
混凝土结构耐久性受损原因及其影响
2、氯离子侵蚀:氯离子在混凝土中的渗透会导致钢筋的腐蚀,进而引发混凝 土开裂和剥落。

混凝土的耐久性研究创新实践报告

混凝土的耐久性研究创新实践报告

混凝土的耐久性研究创新实践报告大家好,今天我要给大家讲一个关于混凝土的耐久性研究创新实践报告。

我们要明确一点,这个报告可不是那种枯燥无味、让人昏昏欲睡的东西,而是一个充满趣味、让人捧腹大笑的大杂烩。

好了,废话不多说,让我们开始吧!一、前言(1.1)混凝土作为建筑材料的一种,广泛应用于建筑、道路、桥梁等领域。

随着时间的推移,混凝土的耐久性问题逐渐暴露出来,如何提高混凝土的耐久性成为了亟待解决的问题。

为了解决这一问题,我们进行了一项创新实践研究,旨在为混凝土的耐久性提供新的解决方案。

二、实验方法与过程(2.1)在进行这项研究之前,我们首先对现有的混凝土耐久性研究方法进行了梳理,发现了一些问题。

于是,我们决定采用一种全新的方法来进行实验。

这种方法叫做“摸着石头过河”,就是边摸索边实验,不断地尝试和改进。

具体来说,我们的实验过程分为以下几个步骤:1. 我们收集了大量的混凝土样本,包括不同种类、不同等级的混凝土。

2. 然后,我们将这些混凝土样本放入不同的环境中进行实验,例如高温、低温、湿度等。

3. 在实验过程中,我们密切关注混凝土的变化情况,并记录下来。

4. 根据实验结果,我们分析混凝土的耐久性问题,并提出相应的解决方案。

5. 我们将这些解决方案应用到实际工程中,以提高混凝土的耐久性。

三、实验结果与分析(3.1)经过一段时间的努力,我们终于取得了一定的成果。

根据实验结果显示,我们提出的新型混凝土材料具有较好的耐久性,能够有效抵抗各种恶劣环境的侵蚀。

这对于提高混凝土的使用寿命具有重要意义。

我们也发现了一些不足之处。

例如,新型混凝土材料的成本相对较高,这可能会影响其在市场上的推广。

我们还需要进一步研究新型混凝土材料的性能和稳定性,以确保其在实际工程中的安全使用。

四、总结与展望(4.1)通过这次创新实践研究,我们不仅提高了混凝土的耐久性,还为今后的研究提供了新的思路和方向。

在未来的日子里,我们将继续努力,不断探索和创新,为建筑工程的发展做出更大的贡献。

混凝土材料的耐久性能研究现状分析

混凝土材料的耐久性能研究现状分析

混凝土材料的耐久性能研究现状分析一、引言混凝土是建筑工程中最常用的建筑材料之一,其耐久性能一直是研究的热点问题。

混凝土材料的耐久性能直接影响着建筑物的安全、使用寿命和经济效益。

随着建筑工程的不断发展,混凝土材料的耐久性能也得到了越来越多的研究。

本文将从混凝土材料的耐久性能研究现状入手,探讨混凝土材料的耐久性能及其影响因素。

二、混凝土材料的耐久性能研究现状1.国内外研究现状混凝土材料的耐久性能研究已经成为世界范围内的热点问题。

在国外,欧洲、美国等发达国家对混凝土材料的耐久性能研究非常重视。

在国内,混凝土材料的耐久性能研究也逐渐得到了关注。

国内学者主要从混凝土的配合比、外加剂的使用、混凝土的制备工艺、环境因素等角度研究混凝土材料的耐久性能。

2.研究方法目前,研究混凝土材料的耐久性能的方法主要有以下几种:(1)实验研究法:通过实验手段,对混凝土材料的耐久性能进行研究,如抗渗、抗冻、耐久性等。

(2)数值模拟法:通过建立数学模型,对混凝土材料的耐久性能进行预测和分析。

(3)实际工程观测法:通过对已建成的混凝土结构进行观测和数据分析,研究混凝土材料的耐久性能。

三、混凝土材料的耐久性能及其影响因素1.混凝土的抗渗性混凝土的抗渗性是混凝土材料耐久性能的重要指标之一。

混凝土的抗渗性与混凝土的强度、孔隙率、水胶比等因素有关。

2.混凝土的抗冻性混凝土的抗冻性是指混凝土在冻融循环过程中的抗裂能力。

混凝土的抗冻性与混凝土的强度、孔隙率、空气含量、水胶比等因素有关。

3.混凝土的耐久性混凝土的耐久性是指混凝土在长期使用过程中所能保持的性能。

混凝土的耐久性与混凝土的强度、孔隙率、水胶比、外加剂的使用、制备工艺等因素有关。

4.混凝土的碱骨料反应混凝土的碱骨料反应是指混凝土中的碱性物质与骨料中的硅酸盐反应,导致混凝土膨胀、龟裂、剥落等现象。

混凝土的碱骨料反应与混凝土中的碱含量、骨料中的硅酸盐含量等因素有关。

四、结论混凝土材料的耐久性能是建筑工程中不可忽视的问题。

混凝土结构耐久性研究现状

混凝土结构耐久性研究现状

混凝土结构耐久性研究现状混凝土是一种广泛应用于建筑工程中的材料,其优势在于具有较高的强度和耐久性。

然而,由于环境因素和使用条件的影响,混凝土结构可能出现耐久性问题,如开裂、腐蚀和损坏等。

因此,对混凝土结构的耐久性进行研究和改进是非常重要的。

目前,混凝土结构耐久性研究主要集中在以下几个方面:材料选择与配合比设计、防护措施、检测与监测技术以及维修与加固方法。

首先,材料选择与配合比设计是混凝土结构耐久性研究中的关键因素之一、通过选用合适的材料和优化的配合比设计,可以提高混凝土结构的耐久性。

例如,使用高性能混凝土和掺合料可以提高混凝土的抗渗透性和耐久性。

其次,防护措施也是保障混凝土结构耐久性的一项重要工作。

常见的防护措施包括涂层保护、防水处理和防腐蚀处理等。

涂层保护可以通过形成一层保护层,防止外界侵蚀物质对混凝土的侵蚀。

防水处理可以提高混凝土的抗渗性能,防止水分侵入混凝土内部。

而防腐蚀处理可以通过阻断氧气、水分和盐离子的侵入,减少混凝土结构的腐蚀损害。

第三,检测与监测技术的应用可以提前探测混凝土结构的耐久性问题,及时采取措施进行修复和加固。

目前,常见的检测与监测技术包括超声波检测、电化学测试、红外热成像和无损检测等。

这些技术可以有效评估混凝土结构的质量和耐久性,并提供修复和加固的参考依据。

最后,维修与加固方法是混凝土结构耐久性研究的重要内容之一、维修与加固方法通常包括修补、补强和防护处理等。

修补可以通过填充和修复混凝土结构的损坏部位,恢复其正常使用功能。

补强可以通过加固结构的受力部位,提高其承载能力和耐久性。

防护处理可以在混凝土表面形成一层保护层,预防外界侵蚀物质对混凝土的侵蚀。

总之,混凝土结构的耐久性研究涉及多个领域,包括材料选择与配合比设计、防护措施、检测与监测技术以及维修与加固方法。

通过不断深入研究和改进,可以提高混凝土结构的耐久性,延长其使用寿命。

钢筋混凝土耐久性论文

钢筋混凝土耐久性论文

钢筋混凝土耐久性论文钢筋混凝土是现代建筑中广泛应用的结构材料,其耐久性直接关系到建筑物的使用寿命和安全性。

随着时间的推移,钢筋混凝土结构可能会受到各种因素的侵蚀和破坏,从而影响其性能和可靠性。

因此,研究钢筋混凝土的耐久性具有重要的现实意义。

一、钢筋混凝土耐久性的影响因素1、混凝土的碳化混凝土中的碱性物质与空气中的二氧化碳发生化学反应,导致混凝土的 pH 值降低,这种现象称为混凝土的碳化。

碳化会使混凝土对钢筋的保护作用减弱,增加钢筋锈蚀的风险。

2、钢筋锈蚀钢筋锈蚀是钢筋混凝土耐久性下降的主要原因之一。

当混凝土的保护层被破坏或碳化深度达到钢筋表面时,钢筋会与外界环境中的氧气和水分接触,发生锈蚀反应。

钢筋锈蚀会导致其体积膨胀,从而使混凝土产生裂缝,进一步加速钢筋的锈蚀和混凝土的破坏。

3、冻融循环在寒冷地区,混凝土结构经常受到冻融循环的作用。

水在混凝土孔隙中冻结时会产生膨胀压力,融化时又会导致压力释放,反复的冻融循环会使混凝土内部结构受损,降低其强度和耐久性。

4、化学侵蚀混凝土可能会受到酸、碱、盐等化学物质的侵蚀。

例如,硫酸盐会与水泥水化产物反应,生成膨胀性产物,导致混凝土开裂和破坏。

5、碱骨料反应某些骨料中的活性成分与混凝土中的碱发生化学反应,产生膨胀性产物,引起混凝土开裂和破坏。

二、提高钢筋混凝土耐久性的措施1、选用优质原材料选择合适的水泥品种、骨料级配和质量良好的外加剂,以提高混凝土的性能和耐久性。

2、控制混凝土配合比合理设计混凝土的配合比,确保混凝土具有足够的强度和密实度,减少孔隙率,降低渗透性。

3、加强施工质量控制在施工过程中,要保证混凝土的搅拌、浇筑和振捣质量,确保混凝土的均匀性和密实性。

同时,要严格控制混凝土的养护条件,保证混凝土在适宜的温度和湿度环境中养护,以促进水泥的水化反应,提高混凝土的强度和耐久性。

4、增加混凝土保护层厚度适当增加混凝土保护层的厚度,可以有效地延缓钢筋锈蚀的发生,提高混凝土结构的耐久性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

·综述·混凝土耐久性研究现状和研究方向卢 木(清华大学土木工程系 100084) 摘 要: 阐述了混凝土耐久性研究的背景、意义和动态,从材料、构件和结构三个层次总结归纳了国内外混凝土耐久性研究的成果,并提出了今后的研究方向。

关键词: 混凝土耐久性 碳化 钢筋锈蚀 冻融 寿命预测RECEN T STUDY AND RESEARC H DIRECTION SOF CONCRETE DURABILITYLu M u(Dept.of Civil Eng rg.,Tsingh ua Univ. 100084)Abstract: Presented in this paper is a discription of th e background,significance and present dev elopm ent of concrete du rability s tudies.Recent accomplis hments are summ arized on th ree levels-material,component and structure.Directions of fu tu re res earch are also proposed.Keywords: concrete durability carbonation reinforcing s teel corrosion freeze-thaw s ervicelife p rediction1 引 言随着我国现代化进程的加快,各类社会基础设施的建设方兴未艾。

这些构筑物大都为钢筋混凝土结构,其设计方法除了传统的强度、刚度等力学性能指标设计,还要考虑耐久性、经济性进行寿命设计。

跨世纪的建筑不仅要求具有安全性、功能性,而且要求具有足够的耐久性[1]。

到本世纪末,我国现有房屋将有50%进入老化阶段,也就是说将有23.4亿m2的建筑面临耐久性问题[2]。

如何对这些建筑进行科学的耐久性、经济性评定以及剩余寿命的预测,是当今土木工程领域的研究热点。

如何找到一种简便易行的钢筋混凝土结构剩余寿命的预测方法,该方法综合地考虑了结构的耐久性、安全性和经济性,并将其有机地结合起来,从而为在役结构的维修决策和新建结构的寿命设计提供依据,已成为当今混凝土研究的迫切任务。

2 混凝土耐久性研究的背景所谓混凝土的耐久性,是指在使用过程中,在内部的或外部的,人为的或自然的因素作用下,混凝土保持自身工作能力的一种性收稿日期: 1996-11-25能[3]。

或者说结构在设计使用年限内抵抗外界环境或内部本身所产生的侵蚀破坏作用的能力[4]。

由于钢筋混凝土结构耐久性不足造成的后果是非常严重的。

美国1975年由于腐蚀引起的损失达700亿美元,1985年则达1680亿美元;目前,整个混凝土工程的价值约为6万亿美元,而今后每年用于维修或重建的费用预计将高达3000亿美元[5]。

美国1991年仅修复由于耐久性不足而损坏的桥梁就耗资910亿美元。

英国每年用于修复钢筋混凝土结构的费用就达200亿英镑。

而日本目前每年仅用于房屋结构维修的费用即达400亿日元以上。

日本引以为自豪的新干线使用不到10年,就出现大面积混凝土开裂、剥蚀现象。

我国现有建筑物的老化现象也是很严重的。

据统计,我国现有建筑面积50亿m2,其中约23亿m2需分期分批进行鉴定加固,近10亿m2急需维修加固才能使用[6,7]。

1989年,建设部科技发展司混凝土结构耐久性综合调查组对北京、西宁、贵阳和杭州的一些建筑物进行了调查,其结果表明,建国初期的建筑均已达到必须大修的状态;现有大多数工业建筑不能满足安全、经济使用50年的要求,一般使用25~30年就需大修加固[6]。

钢筋混凝土结构的耐久性问题已越来越引起人们关注。

美国学者用“五倍定律”形象地说明了耐久性的重要性,特别是设计对耐久性问题的重要性。

设计时,对新建项目在钢筋防护方面每节省一美元,就意味着,发现钢筋锈蚀时采取措施多追加维修费5美元,顺筋开裂时多追加维修费25美元,严重破坏时则多追加维修费125美元。

这一可怕的放大效应,使得各国政府投入大量资金用于钢筋混凝土结构的耐久性问题的研究。

3 混凝土耐久性研究的意义对在役钢筋混凝土结构进行耐久性评定和剩余寿命预测,不仅可以揭示潜在危险,及时做出维修或拆除决策,避免重大事故的发生,而且研究成果可直接用于结构设计。

通过对结构的耐久性预评估,修改设计方案,使所建结构具有足够的耐久性,从而做到防患于未然。

对已有建筑进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法,可以说是混凝土耐久性研究最主要的背景。

世界发达国家在经过了大规模的新建之后,重点已转向对旧建筑的维修改造上。

英国1978年用于投资改造的费用为1965年的 3.76倍。

瑞典建筑业的首要任务是对已有建筑物进行更新改造。

在我国,国情决定了基建投资不能一味追求新建项目,应将眼光转向危旧房屋的扩建、改建上。

我国现有房屋20%~30%具有改造条件,改建比新建可以较快地收回投资[8]。

除了对已有建筑进行耐久性评定之外,对新建项目进行耐久性预评估和寿命设计,可以揭示影响结构寿命的内部和外部因素,对于提高工程的设计水平和施工质量也有一定的意义。

4 混凝土耐久性的研究动态对混凝土结构耐久性问题的研究可追溯到三四十年代,但最近十几年才受到广泛重视。

美国ACI437委员会于1991年提出了“已有混凝土房屋抗力评估”的最新报告,提出了检测试验的详细方法和步骤[9]。

美国联邦公路管理局制定计划,研究了桥面板耐久性检测和钢筋锈蚀的防护问题。

日本建设省从1980年就组织进行“建筑物耐久性提高技术”的开发研究,并于1985年提交了研究成果概要报告,1986年开始陆续出版发行了《建筑物耐久性系列规程》。

日本建筑学会(AIJ)1988年推出了《建筑物使用指南》, 1992年又推出了《建筑物现状调查、诊断、维修指南》;同年,欧洲混凝土委员会颁布的《耐久性混凝土结构设计指南》反映了当今欧洲混凝土结构耐久性研究的水平。

有关混凝土耐久性国际会议已召开多次,反映了各国研究的最新成果。

1987年,国际桥梁与结构学会(IABSE)在巴黎召开“混凝土的未来”国际会议;1988年在丹麦召开了“混凝土结构的重新评估”国际会议;1989年美国和葡萄牙都举办了有关结构耐久性的国际会议;1991年美国和加拿大联合举行了第二届混凝土结构耐久性国际学术会议; 1993年IABSE在丹麦哥本哈根召开了结构残余能力国际学术会议;由欧洲RILEM等公司发起的建筑材料与构件的耐久性国际会议[10],自1976年以来,每三年举行一次。

钢筋混凝土结构的耐久性问题在我国也日益受到重视。

1990年4月,建设部组织成立全国建筑物鉴定与加固委员会,至今已召开三届学术交流会。

全国钢筋混凝土标准技术委员会混凝土结构耐久性学组于1991年成立,中国土木工程学会混凝土与预应力混凝土学会混凝土耐久性专业委员会也于1992年11月在济南成立。

我国的混凝土耐久性研究已进入有组织的工作阶段。

建设部在“七五”和“八五”期间都专门设立课题研究混凝土的耐久性问题。

“七五”攻关课题为“大气条件下钢筋混凝土结构耐久性及其使用年限”,包括结构的耐久性调查、钢筋锈蚀、混凝土碳化、温湿度对碳化的影响等;“八五”攻关课题为“预应力混凝土结构及混凝土耐久性技术”,包括拟建混凝土结构耐久性设计方法,在用混凝土结构的耐久性检测和评估方法,在一定条件下诸因素对混凝土结构耐久性的综合影响以及建立混凝土结构耐久性数据库等,目前已取得一些成果。

5 混凝土耐久性研究的现状和评述钢筋混凝土结构的耐久性研究,分为材料的耐久性研究、构件的耐久性研究和结构耐久性研究三个层次,其中前两个层次已经研究得较为深入。

5.1材料耐久性研究材料耐久性的研究已经比较深入,成果主要集中在混凝土碳化、钢筋锈蚀、冻融循环等方面,并考虑了大气、海洋、化学侵蚀等不同的工作环境对材料耐久性的影响。

5.1.1混凝土碳化研究一般认为,混凝土碳化是由于大气中的CO2与混凝土中的碱性物质发生反应,使混凝土表面碱性降低[11]。

在建立理论模型时,国内、国外大都假设:(1)CO2在混凝土中的扩散遵循Fick第一定律;(2)CO2的浓度呈线性分布,锋面处浓度为0。

Meyer、Nishi、阿列克谢耶夫等都得到了混凝土碳化的理论公式[12,13],但其中的一些参数一般很难测定,工程上一般采用下述碳化模式:X=K t 这一公式已为1990CEB-FIP模式规范所采用,式中碳化系数K体现了混凝土的抗碳化能力,与水灰比、水泥品种和用量、环境因素、养护方法等有关,对于其取值, Kishitani[13]、山东建研所[14]、上海建材学院[15]、中国建研院结构所[16]、清华大学[17,18]、西安建筑科技大学[19]等都各自提出了经验计算公式。

5.1.2 钢筋锈蚀研究混凝土中钢筋的锈蚀是一个电化学过程。

国外这方面研究得比较早,且许多成果已被国内所引用。

国内主要是在国外成果的基础上,进行修正和补充研究。

因此,国内的成果基本反映了当今世界的研究现状。

文献[2]基于O2在混凝土中的扩散服从Fick第一定律的假设,利用Farady定律建立了大气环境中钢筋锈蚀模型[2],但公式需测定电量,工程应用比较困难。

中国建研院考虑水泥品种、混凝土养护条件、环境作用等多种因素建立了钢筋锈蚀的一般规律[20]。

西安建筑科技大学牛荻涛等人根据工程调查结果,给出了一般室内环境钢筋锈蚀开始时间的确定方法;利用腐蚀电化学原理建立了一般室内环境中钢筋锈蚀量的预测模型[21]。

关于混凝土和锈蚀后钢筋经时变化的力学性能,国内外已有较多的研究。

文献[22,23]在总结分析国内外混凝土长期曝露试验和经年建筑物实测结果基础上,模拟给出了一般大气环境下和海洋环境下混凝土强度经时变化模型。

冶金工业部建筑研究总院通过对试验数据的模拟,考虑坑蚀提出了钢筋锈蚀后伸长率、屈服强度和抗拉强度的变化规律[24]。

试验证明,锈蚀后钢筋的伸长率与局部剩余面积比成指数关系,而屈服强度和抗拉强度则与局部重量(或断处面积)之比成线性关系,但仅适于截面锈蚀率小于5%的情形。

中国建研院结构所利用快速试验方法研究了Υ12和Υ钢筋的力学性能,并分别给出了大气条件下极限延伸率和极限抗拉强度与截面损失率的线性关系式[20],适于截面锈蚀率小于10%的情形。

文献[25]根据钢筋混凝土构件内锈蚀钢筋的试验结果,给出了钢筋锈蚀后力学性能的变化规律,截面锈蚀率达60%仍可适用。

文献推荐了考虑应力集中影响对结构进行鉴定时的公式。

5.1.3冻融破坏研究对于混凝土冻融破坏的研究,现已形成较为完整的基础理论。

相关文档
最新文档