初二数学PPT教学课件
合集下载
初二数学PPT课件

①②③
下列说法:①若直线PE是线段AB的垂直平分线,则EA=EB,PA=PB;②若PA=PB,EA=EB,则直线PE垂直平分线段AB;③若PA=PB,则点P必是线段AB的垂直平分线上的点;④若EA=EB,则过点E的直线垂直平分线段AB.其中正确的个数有( ) A.1个 B.2个 C.3个 D.4个 C
欣 赏
欣 赏
温故知新
对折
如果一个图形沿着一条直线 ,两侧的图形能够 ,这个图形就是轴对称图形。
对称轴
折痕所在的这条直线叫新
把一个图形沿着某一条直线 ,如果它能够 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做 。
结论:线段垂直平分线上的点与这条线段两个端点的距离相等.
反过来,若AP=BP,
结论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合.
则P在线段AB的垂直平分线上。
理解了吗?
1、因为 ,所以AB=AC。 理由: 2、因为 ,所以A在线段BC的中垂线上 理由:
BD=AD
AD+DC+BC
AC+BC
12+7=19
布置作业:
课本P37--第5题,P34—练习1
A′
A
B
C
B′
C′
折叠
与另一个图形重合
对称点
及线段的垂直平分线
02
轴对称的性质
01
12.1 轴 对 称(2)
思考?
MN⊥AF于P AP = AF
1、图中的对称点有哪些? 2、点A和F的连线与直线MN有什么样的关系?
直线MN垂直且平分线段AF
初二平行四边形课件ppt课件ppt课件

应用价值
在实际应用中,了解面积与周长的 关系可以帮助我们更好地解决与平 行四边形相关的几何问题。
03
平行四边形的应用
在几何图形中的应用
平行四边形在几何图形中具有广 泛的应用,它是一种基本的几何 图形,具有许多重要的性质和定
理。
平行四边形的对边相等、对角相 等、对角线互相平分等性质,是
解决几何问题的重要依据。
面积的推导
通过将平行四边形分割为多个三角形,再利用三角形面积公式进行推导 。
周长计算
周长公式
平行四边形的周长等于四条边的长度之和,用公式表示为 $P = text{边长1} + text{边长 2} + text{边长3} + text{边长4}$。
周长的几何意义
平行四边形的周长等于其内部任意两个相对顶点的横坐标之差与纵坐标之差的绝对值之和 的两倍,即 $2 times |text{横坐标之差}| + 2 times |text{纵坐标之差}|$。
周长的推导
通过将平行四边形分割为多个三角形,再利用三角形周长公式进行推导。
面积与周长的关系
面积与周长的关系
在平行四边形中,面积与周长之 间没有直接的关系,它们分别代
表了不同的几何量。
实例分析
通过具体实例分析,可以发现面积 与周长之间没有固定的比例关系, 它们的大小取决于平行四边形的具 体形状和大小。
05
练习与巩固
基础练习题
01
基础练习题是为了帮助学生掌握 平行四边形的基本概念和性质, 包括平行四边形的定义、性质、 判定定理等。
02
题目类型包括填空题、选择题和 简答题,难度较低,适合全体学 生练习。
提高练习题
提高练习题是在学生掌握平行四边形 基本知识的基础上,进一步提高解题 能力和思维水平。
在实际应用中,了解面积与周长的 关系可以帮助我们更好地解决与平 行四边形相关的几何问题。
03
平行四边形的应用
在几何图形中的应用
平行四边形在几何图形中具有广 泛的应用,它是一种基本的几何 图形,具有许多重要的性质和定
理。
平行四边形的对边相等、对角相 等、对角线互相平分等性质,是
解决几何问题的重要依据。
面积的推导
通过将平行四边形分割为多个三角形,再利用三角形面积公式进行推导 。
周长计算
周长公式
平行四边形的周长等于四条边的长度之和,用公式表示为 $P = text{边长1} + text{边长 2} + text{边长3} + text{边长4}$。
周长的几何意义
平行四边形的周长等于其内部任意两个相对顶点的横坐标之差与纵坐标之差的绝对值之和 的两倍,即 $2 times |text{横坐标之差}| + 2 times |text{纵坐标之差}|$。
周长的推导
通过将平行四边形分割为多个三角形,再利用三角形周长公式进行推导。
面积与周长的关系
面积与周长的关系
在平行四边形中,面积与周长之 间没有直接的关系,它们分别代
表了不同的几何量。
实例分析
通过具体实例分析,可以发现面积 与周长之间没有固定的比例关系, 它们的大小取决于平行四边形的具 体形状和大小。
05
练习与巩固
基础练习题
01
基础练习题是为了帮助学生掌握 平行四边形的基本概念和性质, 包括平行四边形的定义、性质、 判定定理等。
02
题目类型包括填空题、选择题和 简答题,难度较低,适合全体学 生练习。
提高练习题
提高练习题是在学生掌握平行四边形 基本知识的基础上,进一步提高解题 能力和思维水平。
人教版初二数学8年级下册 第16章(二次根式)二次根式 上课课件(22张PPT)

回忆
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根.
a的平方根是
⑵什么是一个数的算术平方根?如何表示?
一个正数a的正的平方根叫做它的算术平方根. 0的算术平方根是0
用
(a≥0)表示正数a的算术平方根.
求下列各数的平方根和算术平方根.
9 的平方根 3 , 算术平方根 3 ;
计算:(1) (5)2 ;(2) (1 2)2 .
解:(1) (5)2 52 5
或 (5)2 -5 5
(2) (1 2)2 = 1- 2 =-(1- 2)= 2-1
例3 先化简再求值:
,其中 x=4.
解:
当 x=4时,x- 4- 4- .
∴当x=4时,
.
练习 1.计算:
2
8 =8
3 2=3
双重非负性
( 4)2 4
1 ( 1 )2 3
3
( 0.01)2 0.01
( 0)2 0
一般地,有
性质1
2
a a (a≥0)
例1.当x为何值时,下列各式在实数范围内Biblioteka 有意义?(1) x 3
(2) x2
解:(1)由题意,得 x+3≥0 ∴x≥-3
∴当x≥-3时, x 2 在实数范围内有意义.
2.当x取怎样的实数时, 2x 3 1 有意义?
x 1
解:由题意得
2x x 1
3 0
0,
∴
X≥
3 2
X ≠-1
∴ x 3,且x 1.
2
方法构想
一个式子中:
若含有几个二次根式,则要求所有被开方数大于等于0; 若含有分式,则要求分母的值不等于0; 若含有零指数或负指数次幂,则要求其底数不为0.
⑴什么叫做一个数的平方根?如何表示? 一般地,若一个数的平方等于a,则 这个数就叫做a的平方根.
a的平方根是
⑵什么是一个数的算术平方根?如何表示?
一个正数a的正的平方根叫做它的算术平方根. 0的算术平方根是0
用
(a≥0)表示正数a的算术平方根.
求下列各数的平方根和算术平方根.
9 的平方根 3 , 算术平方根 3 ;
计算:(1) (5)2 ;(2) (1 2)2 .
解:(1) (5)2 52 5
或 (5)2 -5 5
(2) (1 2)2 = 1- 2 =-(1- 2)= 2-1
例3 先化简再求值:
,其中 x=4.
解:
当 x=4时,x- 4- 4- .
∴当x=4时,
.
练习 1.计算:
2
8 =8
3 2=3
双重非负性
( 4)2 4
1 ( 1 )2 3
3
( 0.01)2 0.01
( 0)2 0
一般地,有
性质1
2
a a (a≥0)
例1.当x为何值时,下列各式在实数范围内Biblioteka 有意义?(1) x 3
(2) x2
解:(1)由题意,得 x+3≥0 ∴x≥-3
∴当x≥-3时, x 2 在实数范围内有意义.
2.当x取怎样的实数时, 2x 3 1 有意义?
x 1
解:由题意得
2x x 1
3 0
0,
∴
X≥
3 2
X ≠-1
∴ x 3,且x 1.
2
方法构想
一个式子中:
若含有几个二次根式,则要求所有被开方数大于等于0; 若含有分式,则要求分母的值不等于0; 若含有零指数或负指数次幂,则要求其底数不为0.
人教版八年级数学上册《12-2 三角形全等的判定(第1课时)》教学课件PPT初二优秀公开课

例2 已知:如图,AB=AC,AD=AE,BD=CE. 求证:∠BAC=∠DAE.
分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.
分析:要证∠BAC=∠DAE,而这两个角所在 三角形显然不全等,我们可以利用等式的性质 将它转化为证∠BAD=∠CAE;由已知的三组相等线段可证明 △ABD≌ △ACE,根据全等三角形的性质可得∠BAD=∠CAE.
探究新知
这说明有三个角对应相等的两个三角形不一定全等.
探究新知
②三条边
已知两个三角形的三条边都分别为3cm、4cm、6cm .它 们一定全等吗?
3cm
4cm
6cm
6cm 4cm
4cm 6cm
3cm
3cm
探究新知
做一做 先任意画出一个△ABC,再画出一个△A′B′C′,使A′B′= AB ,B′C′
=BC, A′ C′ =AC.把画好的△A′B′C′剪下,放到△ABC上,它们全
D HC
课堂小结
边边边
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
应用
思路分析 书写步骤
结合图形找隐含条件和现有 条件,找准备条件
四步骤
注意
1.说明两三角形全等所需的条件应按对 应边的顺序书写 2.结论中所出现的边必须在所证明的两 个三角形中
课后作业
作 业 内 容
教材作业
从课后习题中选 取 自主安排 配套练习册练 习
3.已知△ABC ≌ △DEF,找出其中相等的边与角.
A
D
B
①AB=DE
④ ∠A=∠D
C
E
② BC=EF
⑤ ∠B=∠E
F
③ CA=FD
⑥ ∠C=∠F
即:三条边分别相等,三个角分别相等的两个三角形全等.
初二下数学ppt课件

1. 判断题:所有的等腰三角形都是直角三角形。答案: 错。等腰三角形不一定是直角三角形,只有等腰直角三 角形才是直角三角形。
2. 画出线段AB的中点C。答案:由于题目没有提供线 段AB的具体长度和位置,因此无法画出线段AB的中点 C。
THANKS
感谢观看
总结词
理解函数的基本定义和性质是学习函 数的基础。
详细描述
函数是数学中描述两个变量之间关系 的一种方法,它规定了每一个输入值 唯一对应一个输出值。函数的基本性 质包括确定性、单值性和对应性。
一次函数
总结词
一次函数是函数的一种基本形式,它对于理解和应用其他更复杂的函数至关重 要。
详细描述
一次函数的一般形式为 y = ax + b,其中 a 和 b 是常数,a ≠ 0。它描述的是 一个直线方程,通过改变 a 和 b 的值,可以改变直线的斜率和截距。
统计初步
总体与样本
总体是研究对象的全体,样本是从总体中抽取的一部分对 象,样本的特性可以用来推断总体的特性。
平均数、中位数和众数
平均数是所有数据之和除以数据的个数,中位数是将数据 从小到大排序后位于中间的数,众数是数据中出现次数最 多的数。
方差与标准差
方差是描述数据离散程度的量,标准差是方差的平方根, 它们可以用来比较不同数据的离散程度。
分式的乘除法
理解分式乘除法的法则,能够进行分 式的乘除运算。
二次根式
二次根式的性质
理解二次根式的定义和性质,掌 握二次根式的非负性。
二次根式的乘除法
理解二次根式乘除法的法则,能够 进行二次根式的乘除运算。
二次根式的加减法
理解同底数幂的乘法法则,能够进 行二次根式的加减运算。
03
八年级数学北师大版初二下册--第四单元 4.2《提公因式法》课件

北师版初中数学八年级下册
第四单元
第二课
导入新课
1、分解因式的概念: 把一个多项式化为几个整式乘积的形式,
叫做把这个多项式分解因式.
2、整式的乘法与因式分解有什么关系吗?
分解因式与整式乘法是互逆运算. 3、口答:
(1)x(x+1)=_x_2_+_x__
(3)x2+x=_x_(_x_+_1_)_
(2)2x(3x+7)=_6_x_2_-_1_4_x__ (4)6x2-14x=_2_x_(_3_x_+_7_)
注意:把(x-3)看成一个整体.
新课学习
(2)y(x+1)+y2(x+1)2. 分析:多项式可看成y(x+1)与+y2(x+1)两项.
相同的部分是y(x+1), 则公因式为y(x+1)
解:y(x+1)+y2(x+1)2 =y(x+1)[1+y(x+1)] =y(x+1)(xy+y+1 )
新课学习
ma+mb+mc=m(a+b+c) 提公因式法一般步骤: 1、找到该多项式的公因式; 2、将原式除以公因式,得到一个新多项式; 3、把它与公因式相乘.
新课学习
如何准确地找到多项式的公因式呢?
1、系数 所有项的系数的最大公因数; 2、字母 应提取每一项都有的字母,且字母的 )a(x-y)+b(y-x) 分析:多项式可看成a(x-y)与+b(y-x)两项.
其中x-y与y-x互为相反数, 可将+b(y-x)变为-b(x-y), 则a(x-y)与-b(x-y)的公因式为(x-y) 解:a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) 注意:指数为奇数时,交换位置,要添加“-”
第四单元
第二课
导入新课
1、分解因式的概念: 把一个多项式化为几个整式乘积的形式,
叫做把这个多项式分解因式.
2、整式的乘法与因式分解有什么关系吗?
分解因式与整式乘法是互逆运算. 3、口答:
(1)x(x+1)=_x_2_+_x__
(3)x2+x=_x_(_x_+_1_)_
(2)2x(3x+7)=_6_x_2_-_1_4_x__ (4)6x2-14x=_2_x_(_3_x_+_7_)
注意:把(x-3)看成一个整体.
新课学习
(2)y(x+1)+y2(x+1)2. 分析:多项式可看成y(x+1)与+y2(x+1)两项.
相同的部分是y(x+1), 则公因式为y(x+1)
解:y(x+1)+y2(x+1)2 =y(x+1)[1+y(x+1)] =y(x+1)(xy+y+1 )
新课学习
ma+mb+mc=m(a+b+c) 提公因式法一般步骤: 1、找到该多项式的公因式; 2、将原式除以公因式,得到一个新多项式; 3、把它与公因式相乘.
新课学习
如何准确地找到多项式的公因式呢?
1、系数 所有项的系数的最大公因数; 2、字母 应提取每一项都有的字母,且字母的 )a(x-y)+b(y-x) 分析:多项式可看成a(x-y)与+b(y-x)两项.
其中x-y与y-x互为相反数, 可将+b(y-x)变为-b(x-y), 则a(x-y)与-b(x-y)的公因式为(x-y) 解:a(x-y)+b(y-x) =a(x-y)-b(x-y) =(x-y)(a-b) 注意:指数为奇数时,交换位置,要添加“-”
《初二数学反证法》课件

避免偷换概念
在推导过程中,要避免将不同的 概念混为一谈,以确保推导的逻 辑严密性。
掌握反证法的适用范围
适用于直接证明困难的情况
反证法常常适用于直接证明某个命题很困难的情况,通过假设原命题的结论不成立,找到矛盾,从而证明原命题 的正确性。
适用于真假较易判断的命题
反证法适用于真假较易判断的命题,因为一旦找到矛盾,就可以很容易地判断原命题的真假。
它是一种间接的证明方法,常 常用于那些直接证明比较困难 的问题。
在数学中,反证法是一种常用 的证明技巧,尤其在初等数学 中。
反证法的起源与发展
反证法的思想可以追溯到古希腊的哲 学家和数学家,如亚里士多德等。
随着数学的发展,反证法的应用越来 越广泛,成为数学证明中的重要方法 之一。
在中国古代的数学著作中,也出现了 反证法的应用,如《九章算术》等。
反证法的应用场景
在几何学中,反证法常常用于证明一些与图形有关的命题,如线段的性质、角的性 质等。
在代数中,反证法可以用于证明一些不等式、恒等式等。
在初等数学中,反证法是一种非常常用的证明方法,尤其在竞赛数学中更为常见。
01
反证法的证明步骤
假设命题结论不成立
提出与原命题相反的 假设。
确保假设与原命题的 结论相矛盾。
《初二数学反证法》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 反证法简介 • 反证法的证明步骤 • 反证法的应用实例 • 反证法的注意事项 • 练习与思考
01
反证法简介
反证法的定义
反证法是一种证明方法,通过 否定待证明的命题,然后推导 出矛盾,从而肯定原命题。
总结词
在推导过程中,要避免将不同的 概念混为一谈,以确保推导的逻 辑严密性。
掌握反证法的适用范围
适用于直接证明困难的情况
反证法常常适用于直接证明某个命题很困难的情况,通过假设原命题的结论不成立,找到矛盾,从而证明原命题 的正确性。
适用于真假较易判断的命题
反证法适用于真假较易判断的命题,因为一旦找到矛盾,就可以很容易地判断原命题的真假。
它是一种间接的证明方法,常 常用于那些直接证明比较困难 的问题。
在数学中,反证法是一种常用 的证明技巧,尤其在初等数学 中。
反证法的起源与发展
反证法的思想可以追溯到古希腊的哲 学家和数学家,如亚里士多德等。
随着数学的发展,反证法的应用越来 越广泛,成为数学证明中的重要方法 之一。
在中国古代的数学著作中,也出现了 反证法的应用,如《九章算术》等。
反证法的应用场景
在几何学中,反证法常常用于证明一些与图形有关的命题,如线段的性质、角的性 质等。
在代数中,反证法可以用于证明一些不等式、恒等式等。
在初等数学中,反证法是一种非常常用的证明方法,尤其在竞赛数学中更为常见。
01
反证法的证明步骤
假设命题结论不成立
提出与原命题相反的 假设。
确保假设与原命题的 结论相矛盾。
《初二数学反证法》 ppt课件
THE FIRST LESSON OF THE SCHOOL YEAR
目录CONTENTS
• 反证法简介 • 反证法的证明步骤 • 反证法的应用实例 • 反证法的注意事项 • 练习与思考
01
反证法简介
反证法的定义
反证法是一种证明方法,通过 否定待证明的命题,然后推导 出矛盾,从而肯定原命题。
总结词
初二数学《勾股定理》PPT课件

如果直角三角形两直角边分别为a, b,斜边为c,那么
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
即直角三角形两直角边的平方和等于 斜边的平方.
a
c
勾
弦
b
股
在RT△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
勾股定理的各种表达式:
c2=a2+b2 a2=c2-b2 b2=c2-a2
5米
B
A
C
12米
解:∵BC⊥AC, ∴在Rt△ABC中, AC=12,BC=5, 根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
625
576
144
169
如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
B
A
勾 股 定 理
C
一、情景引入
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
电线杆折断之前的高度=BC+AB=5米+AB的长
SA+SB=SC
图甲
图乙
A的面积
B的面积
C的面积
4
4
A
B
C
C
图甲
1.观察图甲,小方格 的边长为1. ⑴正方形A、B、C的 面积各为多少?
A.3米 B.4米 C.5米 D.6米
C
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米