储罐液位对照表'示意图

合集下载

LNG储罐检测仪表及储罐管理系统(TMS)的应用

LNG储罐检测仪表及储罐管理系统(TMS)的应用

LNG储罐检测仪表及储罐管理系统(TMS)的应用祝岩青【摘要】With the enhancement of the environment protection by the government and the pepole's awareness, the demand of green energy in resident heating, transportation and industrial production is getting bigger and bigger. In order to resolve the shortage of clean energy supply, LNG import become flourishing. LNG helps energy consumer countries diversity their energy supply, and secure the energy supply,so LNG international trade has become a hot spot in the global energy market. In order to ensure the safe and smooth operation of the LNG storage tank, the LNG storage tank management system emerges as the times requirement.%随着国家对环境保护要求的不断提高,人们的环保意识也在不断增强,民用和工业生产领域对清洁能源的需求越来越大.为了解决清洁能源供不应求的局面,LNG供应呈现出蓬勃发展的态势.进口LNG有助于能源消费国实现能源供应的多元化,保障能源供应安全.因此,LNG国际贸易已成为全球能源市场的一个热点.为了保障LNG储罐能够安全平稳地运行,储罐管理系统(TMS)便应运而生.【期刊名称】《仪器仪表用户》【年(卷),期】2018(025)006【总页数】3页(P55-56,92)【关键词】LNG;储罐;管理系统;安全【作者】祝岩青【作者单位】中国石油管道局工程有限公司设计分公司,河北廊坊 065000【正文语种】中文【中图分类】U463.50 概述近年 LNG 项目进入大规模建设时期。

储罐抗风稳定计算及锚固设计

储罐抗风稳定计算及锚固设计

储罐抗风稳定计算及锚固设计一、抗风稳定计算1.1.1 在风载荷作用下,储罐不应发生倾倒或滑移,局部提离应在储罐设计限定范围内。

设计荷载应按本规范附录F 确定。

1.1.2 自锚固自支撑式固定顶储罐的倾倒稳定性校核(图11.1.2)应满足下列公式的要求:DLR DL pi w M M M M +<+5.1/6.0 (11.1.2-1)()/2w P pi DL F DLR M F M M M M +<++ (11.1.2-2)DLR DL pi w M M M F M P +<+5.1/s (11.1.2-3)式中:w M—— 水平和垂直风压对罐壁罐底接合点的倾倒力矩(N.m); pi M —— 设计内压对罐壁罐底接合点的倾倒力矩(N.m);DL M —— 罐壁重量和罐顶支撑件重量(不包括罐顶板)对罐壁罐底接合点的反倾倒力矩(N.m);DLR M —— 罐顶板及其上附件重量对罐壁罐底接合点的反倾倒力矩(N.m); F M—— 储液重量对罐壁罐底接合点的反倾倒力矩(N.m); ws M —— 水平风压对罐壁罐底接合点的倾倒力矩(N.m);P F —— 设计内压组合系数。

图11.1.2 自锚固罐倾覆校核示意图a -罐壁水平风荷载;b -风压举升荷载;c -内压举升荷载;d -固定荷载;e -有效储液重量荷载;f -罐壁罐底接合点(力矩平衡点)1.1.3 自锚固柱支撑锥顶储罐倾倒稳定性校核应满足下式的要求:DLR DL pi w M M M F M P +<+5.1/s (11.1.3)式中:ws M—— 水平风压对罐壁罐底接合点的倾倒力矩(N.m); pi M —— 设计内压对罐壁罐底接合点的倾倒力矩(N.m);DL M —— 罐壁重量和罐顶支撑件重量(不包括罐顶板)对罐壁罐底接合点的反倾倒力矩(N.m);DLR M —— 罐顶板及其上附件重量对罐壁罐底接合点的反倾倒力矩(N.m);P F —— 设计内压组合系数。

储罐的结构

储罐的结构

球瓣在不同带位 置尺寸大小不 一,互换有限; 下料成型复杂, 板材利用率低; 球极板尺寸往往 较小,人孔、接 管等容易拥挤, 有时焊缝不易错 开。
焊缝布置复杂, 施工组装困难, 对球壳板的制造 精度要求高。
适用于各种 容量的球 罐。
容积小于 1 2 0 m 3球 罐 。
5.2 储罐的结构
过程设备设计
5.2.3 球形储罐
罐体 支座 人孔和接管 附件
21
过程设备设计
5.2 储罐的结构
5.2.3 球形储罐
过程设备设计
分类
22
外观
球形 椭球形
壳体构造方式
球壳层数 球壳组合方案
单数 多数
桔瓣式 足球瓣
支撑方式
支柱式支座 筒形或锥形裙式支座
混合式
5.2 储罐的结构
典型结构示例
圆球形单层纯桔瓣式 赤道正切球罐
1-球壳
8-可熔塞
2-上部支柱 9-接地凸缘
3-内部筋板 10-底板
4-外部端板 11-下部支耳
5-内部导环 12-下部支柱
6-防火隔热层 13-上部支耳
7-防火层夹子
36
过程设备设计
图5-12 支柱结构图
5.2 储罐的结构
支柱的结构
支柱 底板 端板
过程设备设计
单段式 双段式
单段式
由一根圆管或卷制圆筒组成,其上端与球壳相接的圆弧 形状通常由制造厂完成,下端与底板焊好,然后运到现 场与球罐进行组装和焊接。
1-球壳;2-液位计导管;3-避雷针;
4-安全泄放阀;5-操作平台;6-盘梯;
26
7-喷淋水管;8-支柱;9-拉杆
5.2 储罐的结构
过程设备设计

硫酸储罐腐蚀穿孔原因及应对措施

硫酸储罐腐蚀穿孔原因及应对措施

硫酸储罐腐蚀穿孔原因及应对措施摘要:根据硫酸储罐在运行中发生的腐蚀、穿孔和渗漏问题,从硫酸腐蚀的发生、流速、液位波动、差压变送器、吹管、罐壁清洗等几个方面,对硫酸储罐腐蚀、穿孔和渗漏的成因进行了分析。

为了有效地控制硫酸储罐的腐蚀速度,分析其影响因素,确保硫酸储罐长时间的安全使用,还应根据硫酸储罐的具体服役情况,从而提出相应的处理措施。

关键词:硫酸储罐腐蚀温度液位硫酸是一种有机酸,其腐蚀强度很高。

它是化肥,医药,冶金,染料,人造纤维,精细化工,矿物加工,制药,炼油厂,以及各类有机及无机化学品的原材料。

在化学工业中得到了广泛的应用,素有“化工之母”的美称。

由于硫酸与三大元素(氨,磷,钾)和硫肥的母体是密不可分的,所以又被称作“肥料之母”。

由于硫酸极具腐蚀性,因此,在生产、运输、使用中,安全贮存是十分重要的。

合理选用硫酸储罐材料,合理对硫酸储罐进行设计,合理地管理和运用电化学保护、钝化保护和涂层保护,以保证硫酸储罐在生产中能够进行正常服役[[1]]。

1硫酸腐蚀原理及特点碳钢的腐蚀是一种典型的电化学腐蚀方法。

其化学反应如下:金属材料属性、表面条件、杂质、硫酸浓度(pH)、温度等因素都会对金属进行氢去极化腐蚀。

另外,平均流速、固体颗粒、污垢等物理因素也会对其产生一定的影响。

2硫酸储罐的设计2.1类型及概况硫酸的贮存可分为钢、塑料和玻璃纤维三种。

硫化胶又可分成印刷版和未印版两大类。

根据储罐的摆放方式又可分为垂直和横向两种。

在这篇文章中,只讨论了常温下的硫酸贮存。

由于没有大的水蒸汽压强,所以没有必要采用内部悬架。

为了隔绝空气,雨水和其他污染,需要用一块坚固的布来阻止容器内的液体泄露。

水箱的外壁装有加固件及其它支架,保证不会出现裂纹或其他问题。

为了安全起见,操作平台通常不安装在硫酸储罐顶部。

为了方便使用和维护,可以安装单独的工作台。

如果需要安装罐顶平台,在罐顶设计中应充分考虑罐顶平台、管道支架和其他设备的自重以及附加荷载。

储罐液位检测

储罐液位检测

如何才能拍摄清晰的液位线?
储罐的外壳通常处于环境温度下,使用红外热像进行检测时外壳的温差相对较小,要得到一幅清晰的红外热 图,我们建议: 1 尽量选择热灵敏度较高的热像仪。 2 拍摄时要注意尽量避免测量阳光直设,在阴影处拍摄液位线不容易受到阳光干扰,效果较好。 3 拍摄时注意观察周围有无其他热源,特别对于表面较光亮的储罐,其外壳较易反射周围热源,造成检测干扰,故在拍 摄时若周围有热源,请改变拍摄角度。 4 若储罐内存储的是常温液体,则检测液位线最好在环境温度变化较为明显时刻进行(如早晨太阳升起1小时后至12点前 升温较为明显,下午太阳落山后1至2小时内降温较为明显) 5 调色板模式最好设置在灰度或铁红,这样热像图的液位线较为清晰。 Fluke Corporation 热像仪可望可及,问题点即拍即得
更多热像仪信息请参考: http://www .f液 位 检 测
热像仪应用 — PDM
PDM - Tank liquid level - 20080425
储罐虽然有液位计对液位进行控制,但液位计的失灵会导致空罐和满罐,使生 产突然中断或造成储罐溢出事故,造成巨大损失;红外热像仪可以直接在外表 面拍摄出液位线,帮助设备维护人员及时发现有故障的液位计,或者对存储容 量有明显偏差的罐体进行深入检测,避免潜在的危险。
更多热像仪信息请参考: http://www .fluke. com. cn/
版本号:V1.0
储罐液面 泥浆面 泥浆面
2 液位计在使用时有下列缺点: a) 压差式液位计:测量管容易被储罐内的液体沉积堵塞而失灵。 b) 机械式液位计(如浮子式液位计):液位计的钢带受罐内腐蚀性液体/气体的影响而锈蚀,造成浮子卡死而失灵。 c) 雷达/电容式液位计:储罐内往往有气液混相的情况,对于液位计有较大的干扰影响,造成液位显示偏差。 在液位计无法正常工作或没有液位计的时候,若没有红外热像仪,则需要由设备维护人员爬到罐顶进行目测,一般 正规的操作流程是:办理登高证;带上保险带;必须有另外一名设备维护人员在附近作为监护,以免意外的发生。 使用红外热像仪只需一名设备维护人员,不需办理任何手续,在储罐附近即可进行液位的检测,同时使用红外热像 仪不受储罐内的液体/气体的影响,有利于客户及时发现问题,避免损失。

艾默生雷达液位计资料(RTG40B,2210-R)

艾默生雷达液位计资料(RTG40B,2210-R)

艾默⽣雷达液位计资料(RTG40B,2210-R)艾默⽣雷达液位计资料⽬录⼀、雷达液位计结构组成与⼯作原理⼆、雷达液位计测量系统结构组成三、雷达液位计⼯具软件及使⽤四、雷达液位计校定五、罗斯蒙特2210 显⽰装置六、雷达液位计故障判断处理⼀、雷达液位计结构组成与⼯作原理1、结构组成:雷达液位计是由发射器头(TH)与天线组成。

发射器头⼀般是通⽤的,同系列雷达液位计间可以互换。

天线有多种形式,从⽽形成多种型号的雷达液位计。

发射器头由表体和电⼦单元(THE)组成。

电⼦单元由微波单元、信号处理、数据通信、电源及瞬变保护电路板等构成。

⼆、雷达液位计测量系统结构组成及接线1、计测量系统结构组成:SAAB雷达液位计测量系统是由RTG液位计、FCU现场通讯单元、RTL/2现场总线、DAU现场数据采集单元、多点温度计MST(RTD 测温元件Pt100)等组成,如下图所⽰,通过FCU与DCS通讯。

雷达液位计:RTG39、RTG40,罐旁指⽰仪:DAU2100、RDU40、751,DU2210-R ,多点温度计:MST2、相关技术参数3、电⽓连接:罗斯蒙特PRO系列变送器具有两个分开的接线盒X1和X2分别⽤来连接设备电源、输出和显⽰装置。

采⽤DC或AC作为具有较宽输⼊范围的内置电源,变送器供电单元可⾃动将电压调整到指定电压极限范围内的适⽤电压。

变送器输出为⾮本质安全HART/4-20mA 主要模拟输出或⾮本质安全基⾦会现场总线。

罗斯蒙特PRO 变送器连接⽰意图3.1 端⼦块X1接线端⼦1-2:⽤于连接⾮本质安全HART/4-20 mA主要模拟输出或⾮本质安全基⾦会现场总线。

端⼦3-4:⽤于连接电源输⼊。

端⼦A:电⽓安全接地端⼦。

变送器端⼦块X1 接线图3.2 端⼦块X2接线通过四根导线,将显⽰装置与接线盒内的X2端⼦块连接。

端⼦A:与显⽰装置接地端⼦连接。

端⼦5:与显⽰装置的电源线相连接。

端⼦6和7:与显⽰装置的信号线连接。

压力容器卧式储罐设计

压力容器卧式储罐设计
设计压力取最大工作压力的倍,即
工作温度为 ,设计温度取
主要元件材料的选择
筒体、封头材料的选择
根据GB150-1998表4-1,选用筒体、封头材料为低合金钢Q345R(钢材标准为GB-6654) 。Q345R适用范围:用于介质含有少量硫化物,具有一定腐蚀性,壁厚较大( )的压力容器,取腐蚀余量 ,钢板负偏差C1=。
Q345R
在下列温度(℃)下的许用应力(MPa)
100
150
200
250
185
185
153
143
130
鞍座材料的选择
根据JB/T4731,鞍座选用材料为Q235-A,其许用应力
地脚螺栓的材料选择
地脚螺栓选用符合GB/T 700规定的Q235,Q235的许用应力
第三章设备的结构设计
圆筒、封头厚度的设计
液化石油气具有易燃易爆的特点,液化石油气储罐属于具有较大危险的储存容器。针对液化石油气储罐的危险特性,结合本专业《过程设备与压力容器设计》所学的知识,在设计上充分考虑液化石油气储罐各项参数,确保液化石油气储罐能安全运行,对化工行业具有重要的现实意义。
本次设计的主要标准有:《固定式压力容器》、《压力容器安全技术监察规程》、JB4731-2005《钢制卧式容器》。各零部件标准主要有:JB/T 4736-2002《补强圈》、HG 20592-20614《钢制管法兰、垫片、紧固件》、JB/T《鞍式支座》、HG205《钢制人孔和手孔》等。
液化石油气特点
气态的液化石油比空气重约倍,该气体的空气混合物爆炸范围是%~%,遇明火即发生爆炸。所以使用时一定要防止泄漏,不可麻痹大意,以免造成危害。因此,往槽车、贮罐以及钢瓶充灌时要严格控制灌装量,以确保安全。因为液化石油气是由多种碳氢化合物组成的,所以液化石油气的液态比重即为各组成成份的平均比重,如在常温20℃时,液态丙烷的比重为,液态丁烷的比重为~,因此,液化石油气的液态比重大体可认为在左右,即为水的一半。

lng储罐液位及泄放设计

lng储罐液位及泄放设计

山 东 化 工 收稿日期:2020-01-17作者简介:陈锐莹(1987—),女,北京人,工程师,主要从事LNG接收站及储罐工艺系统设计及研究工作。

LNG储罐液位及泄放设计陈锐莹,姜夏雪,张 晨,安东雨,衣 鹏(中海石油气电集团,北京 100028)摘要:LNG储罐液位及泄放设计是LNG储罐工艺设计的关键,目前国家相关规范仅规定了计算的原则,本文整合设计经验,提出一套用于LNG储罐液位及泄放计算的设计思路,明确了计算方法及工况组合方案,可以用于在工程项目中实施应用。

关键词:LNG储罐;液位;泄放中图分类号:TE972 文献标识码:A 文章编号:1008-021X(2020)07-0160-02TheDesignofLiquidLevelandReliefinLNGTanksChenRuiying,JiangXiaxue,ZhangChen,AnDongyu,YiPeng(Gaspower,CNOOC,Beijing 100028,China)Abstract:ThedesignofliquidlevelandreliefisthekeypointinthewholeLNGtankengineeringdesignprocess.Presentlyonlytheprinciplesofcalculationisoutlinedbythenationalstandard.ThispaperproposedasetofdesigninglogicforthecalculationofLNGtank'sliquidlevelandreliefprocess.Thispaperalsocoveredthecalculationmethodunderdifferentworkingconditions,whichcouldbeappliedinengineeringprojects.Keywords:LNGtanks;liquidlevel;relief LNG储罐的主要功能是接卸及储存由LNG运输船运来的LNG,利用外输系统输送至下游用户。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档