山东省平度市2016届高三统一抽考试题理科综合试题(含答案)

合集下载

[精品]2016年山东省高考数学理科试题和答案

[精品]2016年山东省高考数学理科试题和答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).如果事件A,B独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则AB =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A )56 (B )60 (C )120 (D )140(4)若变量x ,y满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是( )(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为( )(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的( ) (A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( )(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( ) (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i -- (2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B )133+π(C )136+π(D )16+π(6)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)函数f(x)=x+cos x)x–sin x)的最小正周期是()(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

(精校版)2016年山东理数高考试题文档版(含答案)

(精校版)2016年山东理数高考试题文档版(含答案)
绝密★启用前 2016 年普通高等学校招生全国统一考试(山东卷) 理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共 4 页。满分 150 分。考试用时 120 分钟。考试结束后,将将本试
卷和答题卡一并交回。 注意事项:

功 1.答卷前,考生务必用 0.5 毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和
(14)在[- 1,1] 上随机地取一个数 k,则事件“直线 y=kx 与圆 (x - 5)2 + y2 = 9 相交”发生的概率为 .
! (15)已知函数
f
(x)
| x x2
|,
2mx
4m,
xm xm
其中
m
0
,学.科网若存在实数
b,使得关于
x
的方程
f(x)
=b 有三个不同的根,则 m 的取值范围是________________.
三、解答题:本答题共 6 小题,共 75 分。

(16)(本小题满分 12 分)

到 在△ABC 中,角 A,B,C 的对边分别为 a,b,c,已知 2(tan A tan B) tan A tan B. cos B cos A
(Ⅰ)证明:a+b=2c;
(Ⅱ)求 cosC 的最小值. 17(本小题满分 12 分)
(i)求证:点 M 在定直线上;
(ii)直线 l 与 y 轴交于点 G,记
PFG 的面积为 S1 ,
PDM
的面积为 S2 ,求
S1 S2
的最大值及取得最大值
时点 P 的坐标.
! 功 成 到 马 考 高 您 祝
2016 年普听高等学校招生全国统一考试(山东卷)
理科数学试题参考答案

2016年山东省高考数学试卷(理科)及答案

2016年山东省高考数学试卷(理科)及答案

2016年山东省高考数学试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i2.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.1404.(5分)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.125.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b 相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x ≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.210.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.12.(5分)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=.13.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.14.(5分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.三、解答题,:本大题共6小题,共75分.16.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.17.(12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.18.(12分)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.19.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.20.(13分)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.21.(14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.2016年山东省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.1.(5分)(2016•山东)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=()A.1+2i B.1﹣2i C.﹣1+2i D.﹣1﹣2i【分析】设出复数z,通过复数方程求解即可.【解答】解:复数z满足2z+=3﹣2i,设z=a+bi,可得:2a+2bi+a﹣bi=3﹣2i.解得a=1,b=﹣2.z=1﹣2i.故选:B.2.(5分)(2016•山东)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=()A.(﹣1,1)B.(0,1) C.(﹣1,+∞)D.(0,+∞)【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),B={x|x2﹣1<0}=(﹣1,1),∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).故选:C.3.(5分)(2016•山东)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56 B.60 C.120 D.140【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,故自习时间不少于22.5小时的频率为:0.7×200=140,故选:D4.(5分)(2016•山东)若变量x,y满足,则x2+y2的最大值是()A.4 B.9 C.10 D.12【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.【解答】解:由约束条件作出可行域如图,∵A(0,﹣3),C(0,2),∴|OA|>|OC|,联立,解得B(3,﹣1).∵,∴x2+y2的最大值是10.故选:C.5.(5分)(2016•山东)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()A.+πB.+πC.+πD.1+π【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,半球的直径为棱锥的底面对角线,由棱锥的底底面棱长为1,可得2R=.故R=,故半球的体积为:=π,棱锥的底面面积为:1,高为1,故棱锥的体积V=,故组合体的体积为:+π,故选:C6.(5分)(2016•山东)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】根据空间直线与直线,平面与平面位置关系的几何特征,结合充要条件的定义,可得答案.【解答】解:当“直线a和直线b相交”时,“平面α和平面β相交”成立,当“平面α和平面β相交”时,“直线a和直线b相交”不一定成立,故“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件,故选:A7.(5分)(2016•山东)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是()A.B.πC. D.2π【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期.【解答】解:函数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos (x+)=2sin(2x+),∴T=π,故选:B8.(5分)(2016•山东)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为()A.4 B.﹣4 C.D.﹣【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.【解答】解:∵4||=3||,cos<,>=,⊥(t+),∴•(t+)=t•+2=t||•||•+||2=()||2=0,解得:t=﹣4,故选:B.9.(5分)(2016•山东)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=()A.﹣2 B.1 C.0 D.2【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.【解答】解:∵当x>时,f(x+)=f(x﹣),∴当x>时,f(x+1)=f(x),即周期为1.∴f(6)=f(1),∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),∴f(1)=﹣f(﹣1),∵当x<0时,f(x)=x3﹣1,∴f(﹣1)=﹣2,∴f(1)=﹣f(﹣1)=2,∴f(6)=2.故选:D.10.(5分)(2016•山东)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sinx B.y=lnx C.y=e x D.y=x3【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,当y=sinx时,y′=cosx,满足条件;当y=lnx时,y′=>0恒成立,不满足条件;当y=e x时,y′=e x>0恒成立,不满足条件;当y=x3时,y′=3x2>0恒成立,不满足条件;故选:A二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•山东)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为3.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.【解答】解:∵输入的a,b的值分别为0和9,i=1.第一次执行循环体后:a=1,b=8,不满足条件a>b,故i=2;第二次执行循环体后:a=3,b=6,不满足条件a>b,故i=3;第三次执行循环体后:a=6,b=3,满足条件a>b,故输出的i值为:3,故答案为:312.(5分)(2016•山东)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=﹣2.=(ax2)5﹣r,化简可得求的x5【分析】利用二项展开式的通项公式T r+1的系数.=(ax2)5﹣r=a5﹣【解答】解:(ax2+)5的展开式的通项公式T r+1r,令10﹣=5,解得r=2.∵(ax2+)5的展开式中x5的系数是﹣80∴a3=﹣80,得a=﹣2.13.(5分)(2016•山东)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD 的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是2.【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.【解答】解:令x=c,代入双曲线的方程可得y=±b=±,由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),由2|AB|=3|BC|,可得2•=3•2c,即为2b2=3ac,由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,解得e=2(负的舍去).故答案为:2.14.(5分)(2016•山东)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为.【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.【解答】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.圆心到直线y=kx的距离为,要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.故答案为:.15.(5分)(2016•山东)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是(3,+∞).【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.【解答】解:当m>0时,函数f(x)=的图象如下:∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,∴y要使得关于x的方程f(x)=b有三个不同的根,必须4m﹣m2<m(m>0),即m2>3m(m>0),解得m>3,∴m的取值范围是(3,+∞),故答案为:(3,+∞).三、解答题,:本大题共6小题,共75分.16.(12分)(2016•山东)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.(Ⅰ)证明:a+b=2c;(Ⅱ)求cosC的最小值.【分析】(Ⅰ)由切化弦公式,带入并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;(Ⅱ)根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c2﹣2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值.【解答】解:(Ⅰ)证明:由得:;∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;∴2sin(A+B)=sinA+sinB;即sinA+sinB=2sinC(1);根据正弦定理,;∴,带入(1)得:;∴a+b=2c;(Ⅱ)a+b=2c;∴(a+b)2=a2+b2+2ab=4c2;∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;又a,b>0;∴;∴由余弦定理,=;∴cosC的最小值为.17.(12分)(2016•山东)在如图所示的圆台中,AC是下底面圆O的直径,EF 是上底面圆O′的直径,FB是圆台的一条母线.(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.【分析】(Ⅰ)取FC中点Q,连结GQ、QH,推导出平面GQH∥平面ABC,由此能证明GH∥平面ABC.(Ⅱ)由AB=BC,知BO⊥AC,以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BC﹣A的余弦值.【解答】证明:(Ⅰ)取FC中点Q,连结GQ、QH,∵G、H为EC、FB的中点,∴GQ,QH,又∵EF∥BO,∴GQ∥BO,∴平面GQH∥平面ABC,∵GH⊂面GQH,∴GH∥平面ABC.解:(Ⅱ)∵AB=BC,∴BO⊥AC,又∵OO′⊥面ABC,∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),=(﹣2,﹣,﹣3),=(2,2,0),由题意可知面ABC的法向量为=(0,0,3),设=(x0,y0,z0)为面FCB的法向量,则,即,取x0=1,则=(1,﹣1,﹣),∴cos<,>==﹣.∵二面角F﹣BC﹣A的平面角是锐角,∴二面角F﹣BC﹣A的余弦值为.18.(12分)(2016•山东)已知数列{a n}的前n项和S n=3n2+8n,{b n}是等差数列,且a n=b n+b n+1.(Ⅰ)求数列{b n}的通项公式;(Ⅱ)令c n=,求数列{c n}的前n项和T n.【分析】(Ⅰ)求出数列{a n}的通项公式,再求数列{b n}的通项公式;(Ⅱ)求出数列{c n}的通项,利用错位相减法求数列{c n}的前n项和T n.【解答】解:(Ⅰ)S n=3n2+8n,∴n≥2时,a n=S n﹣S n﹣1=6n+5,n=1时,a1=S1=11,∴a n=6n+5;∵a n=b n+b n+1,=b n﹣1+b n,∴a n﹣1∴a n﹣a n﹣1=b n+1﹣b n﹣1.∴2d=6,∴d=3,∵a1=b1+b2,∴11=2b1+3,∴b1=4,∴b n=4+3(n﹣1)=3n+1;(Ⅱ)c n===6(n+1)•2n,∴T n=6[2•2+3•22+…+(n+1)•2n]①,∴2T n=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,①﹣②可得﹣T n=6[2•2+22+23+…+2n﹣(n+1)•2n+1]=12+6×﹣6(n+1)•2n+1=(﹣6n)•2n+1=﹣3n•2n+2,∴T n=3n•2n+2.19.(12分)(2016•山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X012346P∴数学期望EX=0×+1×+2×+3×+4×+6×==20.(13分)(2016•山东)已知f(x)=a(x﹣lnx)+,a∈R.(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;(Ⅱ)构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立.【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,得f′(x)=a(1﹣)+==(x>0).若a≤0,则ax2﹣2<0恒成立,∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,当x∈(1,)时,f′(x)<0,f(x)为减函数;若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,当x∈(,1)时,f′(x)<0,f(x)为减函数;(Ⅱ)解:∵a=1,令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;又,设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,且φ(1)=1,φ(2)=﹣10,∴在[1,2]上存在x0,使得x∈(1,x0)时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,∴F(x)>恒成立.即f(x)>f′(x)+对于任意的x∈[1,2]成立.21.(14分)(2016•山东)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.(I)求椭圆C的方程;(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.(i)求证:点M在定直线上;(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.【分析】(I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c 的关系,解得a,b,进而得到椭圆的方程;(Ⅱ)(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再令x=x0,可得y=﹣.进而得到定直线;(ii)由直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),运用三角形的面积公式,可得S1=|FG|•|x0|=x0•(+y0),S2=|PM|•|x0﹣|,化简整理,再1+2x02=t(t≥1),整理可得t的二次方程,进而得到最大值及此时P的坐标.【解答】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),即有b=,a2﹣c2=,解得a=1,c=,可得椭圆的方程为x2+4y2=1;(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,由y=x2的导数为y′=x,即有切线的斜率为x0,则切线的方程为y﹣y0=x0(x﹣x0),可化为y=x0x﹣y0,代入椭圆方程,可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,△=64x02y02﹣4(1+4x02)(4y02﹣1)>0,可得1+4x02>4y02.设A(x1,y1),B(x2,y2),可得x1+x2=,即有中点D(,﹣),直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.即有点M在定直线y=﹣上;(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);S2=|PM|•|x0﹣|=(y0+)•=x0•,则=,令1+2x02=t(t≥1),则====2+﹣=﹣(﹣)2+,则当t=2,即x0=时,取得最大值,此时点P的坐标为(,).。

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

【精校版】2016年山东省高考数学(理)试题(Word版,含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分、共4页。

满分150分。

考试用时120分钟。

考试结束后、将将本试卷和答题卡一并交回。

注意事项:1.答卷前、考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后、用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动、用橡皮擦干净后、在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答、答案必须写在答题卡各题目指定区域内相应的位置、不能写在试卷上;如需改动、先划掉原来的答案、然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案、解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥、那么P(A+B)=P(A)+P(B).如果事件A 、B 独立、那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、选择题:本大题共10小题、每小题5分、共50分、在每小题给出的四个选项中、只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位、则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =( ) (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时)、制成了如图所示的频率分布直方图、其中自习时间的范围是[17.5,30]、样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图、这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x、y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体、其三视图如图所示.则该几何体的体积为()(A)1233+π(B)13+(C)13+(D)1+(6)已知直线a、b分别在两个不同的平面α、β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m 、n 满足4│m │=3│n │、cos<m 、n >=13.若n ⊥(t m +n )、则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时、3()1f x x =-;当11x -≤≤时、()()f x f x -=-;当12x >时、11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点、使得函数的图象在这两点处的切线互相垂直、则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题、每小题5分、共25分。

2016年山东高考试题及答案-理科数学

2016年山东高考试题及答案-理科数学

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B = (A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )133+π(C )136+π(D )16+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=x +cos x )x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为(A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东卷(理科数学)含答案

绝密★启用前2016年普通高等学校招生全国统一考试理科数学(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式: 如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足其中i 为虚数单位,则z =【B 】(A )1+2i (B )12i (C ) (D )(2)设集合则=【C 】232i,z z +=--12i -+12i --2{|2,},{|10},x A y y x B x x ==∈=-<R A B(A )(B ) (C ) (D )(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是,样本数据分组为.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是【D 】(A )56 (B )60(C )120(D )140(4)若变量x ,y 满足则的最大值是【C 】(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为【C 】(1,1)-(0,1)(1,)-+∞(0,)+∞[17.5,30][17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30]2,239,0,x y x y x 22x y(A )(B )(C )(D ) (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的【A 】(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(7)函数f (x )=sin x +cos x )cos x –sin x )的最小正周期是【B 】(A )(B )π (C )(D )2π(8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=.若n ⊥(t m +n ),则实数t 的值为【B 】(A )4 (B )–4 (C )(D )–(9)已知函数f (x )的定义域为R .当x <0时,;当时,;当时, .则f (6)=【D 】1233+π133+π136+π16+π2π23π1394943()1f x x =-11x -≤≤()()f x f x -=-12x >11()()22f x f x +=-(A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是【A 】 (A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年-山东理数高考试题文档版(含答案)

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤.参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).如果事件A ,B 独立,那么P(AB)=P(A)·P(B)第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =( )(A )1+2i (B )1-2i (C )12i -+ (D )12i -- (2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B U =( )(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是( )(A)56 (B)60 (C)120 (D)140(4)若变量x,y满足2,239,0,x yx yxì+?ïïïï-?íïï锍ïî则22x y+的最大值是()(A)4 (B)9 (C)10 (D)12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为()(A)1233+π(B)1233+π(C)1236+π(D)216+π(6)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的()(A)充分不必要条件(B)必要不充分条件学.科.网(C)充要条件(D)既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是( )(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为( ) (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= ( ) (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是( )(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

2016年山东省高考理科数学试题及答案

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1。

答卷前,考生务必用0。

5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3。

第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4。

填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤。

参考公式:如果事件A ,B 互斥,那么P (A+B )=P(A )+P(B )。

第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A)(1,1)- (B)(0,1) (C )(1,)-+∞ (D)(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] 。

根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C)120 (D )140(4)若变量x ,y 满足2,239,0,xy xy x 则22x y 的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示。

2016年山东省高考理科数学试题及答案.doc

绝密★启用前2016年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。

满分150分。

考试用时120分钟。

考试结束后,将将本试卷和答题卡一并交回。

注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上。

2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。

答案写在试卷上无效。

3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共50分)一、 选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的(1)若复数z 满足232i,z z +=-其中i 为虚数单位,则z =(A )1+2i (B )1-2i (C )12i -+ (D )12i --(2)设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =(A )(1,1)- (B )(0,1) (C )(1,)-+∞ (D )(0,)+∞(3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30] .根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(A )56 (B )60(C )120 (D )140(4)若变量x ,y 满足2,239,0,x y x y x ì+?ïïïï-?íïï锍ïî则22x y +的最大值是(A )4 (B )9 (C )10 (D )12(5)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(A )1233+π(B )1233+π(C )1236+π(D )216+π (6)已知直线a ,b 分别在两个不同的平面α,β内.则“直线a 和直线b 相交”是“平面α和平面β相交”的(A )充分不必要条件(B )必要不充分条件学.科.网(C )充要条件(D )既不充分也不必要条件(7)函数f (x )=(3sin x +cos x )(3cos x –sin x )的最小正周期是(A )2π(B )π (C )23π(D )2π (8)已知非零向量m ,n 满足4│m │=3│n │,cos<m ,n >=13.若n ⊥(t m +n ),则实数t 的值为 (A )4 (B )–4 (C )94(D )–94(9)已知函数f (x )的定义域为R .当x <0时,3()1f x x =-;当11x -≤≤时,()()f x f x -=-;当12x >时,11()()22f x f x +=- .则f (6)= (A )−2(B )−1(C )0(D )2(10)若函数y =f (x )的图象上存在两点,学科.网使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质.下列函数中具有T 性质的是(A )y =sin x (B )y =ln x (C )y =e x (D )y =x 3第Ⅱ卷(共100分)二、填空题:本大题共5小题,每小题5分,共25分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年度第一学期学情检测 高三理科综合试题 2015.12 本试卷分第Ⅰ卷和第Ⅱ卷两部分,共16页。满分300分。考试时间150分钟。答题前考生务必用0.5毫米黑色签字笔将自己的姓名、考生号填写在试卷和答题卡规定的位臵。

第Ⅰ卷 注意事项: 1.第Ⅰ卷共21小题,共126分。 2.每小题选出答案后,用2B铅笔把答题纸上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。不涂在答题卡上,只答在试卷上无效。 以下数据可供答题时参考:

相对原子质量:H l C 12 N 14 O 16 Na 23 Al 27 S 32 Cu 64

一.选择题:本题共13小题,每小题6分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.下图表示生物体内进行的能量释放、转移和利用过程。下列有关叙述正确的是

A.a过程的完成一定伴随H2O和CO2

的生成

B.在人体剧烈运动过程中,肌肉细胞产生的A中不含有乳酸 C.人体细胞中完成过程c的场所主要是线粒体 D.人体内的a过程会受肾上腺素和甲状腺激素的影响 2.如图表示一段运动神经元轴突的纵切面,①为轴突,②为髓鞘细胞(髓鞘细胞是一种绝缘细胞,它包裹着轴突,轴突膜被它包裹的地方无机盐离子难以通过).髓鞘细胞间的空隙称为朗飞氏结,Ⅱ、Ⅲ表示轴突膜内胞质中的特定部位.据图分析正确的是 A. ①和②都是可兴奋的细胞 B. 兴奋部位在恢复静息电位的过程中,①内的Na+通过Na+通道扩散到膜外 C. 适宜刺激时,K+从Ⅱ处流向Ⅰ处的同时从Ⅲ处流向② D. 若相邻的两个Ⅰ间能形成局部电流,则朗飞氏结能加快神经冲动传导的速率 3.下列有关变异和进化的叙述,不正确的是 A.新物种形成的标志是产生了生殖隔离,进化的实质是种群基因频率的改变 B.种群中控制某性状的全部等位基因称为种群的基因库 C.具有生殖隔离的两个物种未必存在地理隔离 D.生物变异的有利性是相对的,自然选择决定生物进化的方向 4.下列关于遗传学核心概念的理解和应用,正确的是 A.位于同源染色体上同一位点,控制相同性状的两个基因称为等位基因 B.基因型为AaBbCcDdEe的细胞含5个染色体组 C.一个基因型为AaXbY的果蝇,产生了一个AaaXb的精子,则与此同时产生的另三个精子的基

因型为AXb、Y、Y D.一个不含32P标记的双链DNA分子,在含有32P标记的脱氧核苷酸原料中经过n次复制后,形成的DNA分子中含有32P的DNA分子数为2n-2

5.某班学生以新鲜菠菜叶为材料,进行叶绿体中色素的提取和分离的实验时,由于各组操作不同,出现了下图所示的四种不同层析结果。下列分析不合理的是

A.甲可能将层析液没及了滤液细线 B.乙可能是因为研磨时未加入SiO2 C.丙是正确操作得到的理想结果 D.丁可能是因为研磨时未加入CaCO3 6. 下列关于胰岛细胞中物质运输的途径,可能存在的是 A.CO2

:细胞质基质产生→细胞膜→细胞外

B.RNA聚合酶:核糖体→细胞质基质→细胞核 C.胰岛素:高尔基体→内质网→细胞膜→细胞外 D.葡萄糖:细胞外→细胞膜→细胞质基质→线粒体 7.下列有关物质的性质与其应用不相对应的是 A.MgO、Al2O3

的熔点很高,可制作耐高温材料

B.NaHCO3

能与碱反应,食品工业上用作焙制糕点的膨松剂

甲 乙 丙 丁 色素相对含量

点样处 距离

色素相对含量

点样处 距离

色素相对含量

点样处 距离

色素相对含量

点样处 距离 C.Al具有良好的延展性和抗腐蚀性,可制成铝箔包装物品 D.利用钠蒸气放电发光的性质制造的高压钠灯,可发出射程远、透雾能力强的黄光 8.NA

表示阿伏加德罗常数的值,下列说法正确的是

A.标准状况下,11.2 L CCl4含有的分子数目为0.5NA B.1 mol Na2O2固体中含离子总数为3NA C.将10mL 1mol·L-1FeCl3溶液滴入沸水中,所得氢氧化铁胶粒数为0.01NA

D.0.1 molH2O和D2O组成的混合物中含有中子数是NA

9.新型纳米材料MFe2Ox(3MFe2Ox能使工业废气中的SO2

转化为S,转化过程表示如右图:则下列判断正确的是

A.MFe2Ox是还原剂 B.SO2

是该反应的催化剂

C.x>y D.氧化性:MFe2Oy>SO2 10.下列实验能达到预期目的是 编号 实验内容 实验目的

A 室温下,用pH试纸分别测定浓度为0.1mol/LNaClO溶液和0.1mol/LCH3COONa溶液的pH 比较HClO和CH3COOH的

酸性强弱

B 向含有酚酞的Na2CO3溶液中加入少量BaC12固体,溶液红色变浅 证明Na2CO3溶液中存在水解平衡

C 向10mL 0.2mol/L NaOH溶液中滴入2滴0.1mol/L MgCl2

溶液,产生白色沉淀后,再滴加2滴0.1mol/L FeCl3溶液,

又生成红褐色沉淀 证明在相同温度下Ksp:

Mg(OH)2>Fe(OH)3

D 分别测定室温下等物质的量浓度的Na2SO3与Na2CO3溶液的pH,后者较大 证明非金属性S>C

11.下列实验或操作合理的是 12.设计如下图原电池(2KMnO4+10FeSO4+8H2SO4=2MnSO4+5Fe2(SO4)3+K2SO4+8H2O),盐桥中装有饱和溶液。下列说法正确的是

A.外电路电子的流向是从a到b B.电池工作时,盐桥中的SO4

2-移向甲烧杯

C.a电极上发生的反应为:MnO4-+8H++5e-═Mn2++4H2O D.双液原电池工作时产生大量的热量 13.常温下,pH=11的氨水和pH=1的盐酸等体积混合(混合溶液体积为两溶液体积之和),恰好完全中和,则下列说法错误的是 A.氨水的浓度等于盐酸的浓度 B.原氨水中有1%的含氮微粒为NH4+ C.氨水中水电离出的c(H+)是盐酸中水电离出的c(H+)的100倍 D.混合溶液中c(NH4+)+c(NH3•H2O)+c(NH3)=5×10﹣4mol•L﹣1 二.选择题:本大题共8小题,每小题6分。在每小题给出的四个选项中,第14—18题只有一项符合题目要求,第19~21题有多项符合题目要求。全部选对的得6分,选对但不全的得3分.有选错的得0分。 14.关于科学家和他们的贡献,下列说法正确的是 A.英国物理学家牛顿在《两种新科学的对话》著作中提出了三条运动定律(即牛顿运动定律) B.20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体 C.英国物理学家库仑利用扭秤实验准确的测得了万有引力常量 D.英国物理学家密立根发现电子,并指出:阴极射线是高速运转的电子流 15.近来,我国大部分地区都出现了雾霾天气,给人们的正常生活造成了极大的影响。在一雾霾天,某人驾驶一辆小汽车以30m/s的速度行驶在高速公路上,突然发现正前方30m处有一辆大卡车以10m/s的速度同方向匀速行驶,小汽车紧急刹车,但刹车过程中刹车失灵。如图a、b分别为小汽车和大卡车的v-t图象,以下说法正确的是 A.因刹车失灵前小汽车已减速,不会追尾 B.在t=5s时追尾 C.在t=3s时追尾 D.由于初始距离太近,即使刹车不失灵也会追尾 16.如图所示,有5000个质量均为m的小球,将它们用长度相等的轻绳依次连接,再将其左端用细绳固定在天花板上,右端施加一水平力使全部小球静止。若连接天花板的细绳与水平方向的夹角为450,则第2011个小球与2012个小球之间的轻绳与水平方向的夹角α的正切值等于

A.20112089 B.50002011 C.29892011 D. 50002989 17.R1和R2

是材料相同、厚度相同、上下表面都为正方形的导体,但

R1的尺寸比R2

大得多,把它们分别连接在如图所示的电路的A、B两端,

接R1时电压表的读数为U1,接R2时电压表的读数为U2,则下列判断正确的是 A.R1=R2 B.R1>R2 C.U1U2 18.如图所示x轴上各点的电场强度如图所示,场强方向与x轴平行,规定沿x轴正方向为正。一负点电荷从坐标原点O以一定的初速度沿x轴正方向运动,点电荷到达x2位臵速度第一次为零,在x3

位臵第二次速度为零,不计粒子的重力.下列说法正确的是

A.点电荷从O点运动到x2,再运动到x3

的过程中,速度先均匀减

小再均匀增大,然后减小再增大 B.点电荷从O点运动到x2,再运动到x3

的过程中,加速度先减小

再增大,然后保持不变

C.O点与x2和O点与x3电势差32OxOxUU D.点电荷在x2、x3

位臵的电势能最大

19.现在,人造地球卫星发挥着越来越重要的作用。马航MH370航班与地面失去联系的一年多时间里,我国共调动了21颗卫星为搜救行动提供技术支持。假设某颗做匀速圆周运动的卫星A,其轨道在赤道平面内,距离地面的高度为地球半径的2.5倍,取同步卫星B离地面高度为地球半径的6倍,则 A.卫星B的线速度小于第一宇宙速度 B.卫星B的向心加速度是地球表面重力加速度的12.25倍 C.同步卫星B的向心加速度为地球表面赤道上物体随地球自转向心加速度的6倍 D.卫星B的周期是于卫星A的周期的8倍 20.如图所示,AB为斜面,BC为水平面.从A点以水平速度v向右抛出小球时,其落点与A点的水平距离为s1;从A点以水平速度3v向右抛出小球时,其落点与A点的水平距离为s2.不计空气阻力,则s1∶s2可能为

相关文档
最新文档