概率的常用九大公式
(完整版)概率论基本公式

概率论与数理统计基本公式第一部分 概率论基本公式1、)(;A B A B A AB A B A B A -⋃=⋃-==--例:证明:成立。
得证。
成立,也即成立,也即(不发生,从而发生,则不发生,,知由(证明:(B A B A AB A B B A AB A B B B A B A B A AB A B B A --=-⋃-⋃-==-=-⋃--)).) 2、对偶率:.----⋃=⋂⋂=⋃B A B A B A B A ; 3、概率性率:(1))()()(212121A P A P A A P A A +=⋃为不相容事件,则、有限可加:(2))()();()()(),()()(B P A P B P A P B A P A B AB P A P B A P ≥-=-⊂-=-时有:特别,(3))()()()(AB P B P A P B A P -+=⋃对任意两个事件有:)();();();()1(.4.0)(2.0)(5.0)(AB P B A P B A P AB P B P B A P A P ⋃-===--求:,,例:已知:.3.0)(1)(,7.0)()()()(3.0)()()(,5.0)(.,2.0)()()()(,=⋃-=⋃==-+=⋃=-=-∴===+∴=+---B A P B A P AB P AB P B P A P B A P AB P A P B A P A P AB P B P B A P AB P B A B B B A AB 又即是不相容事件,、且解:4、古典概型222n 2!)(n ,22)-n 2)!n 2(22nC n A P C A n n n ==!,则自成一双为:!!(解:分堆法:每堆自成一双鞋的概率只,事件堆,每堆为只,分为双鞋总共例: 5、条件概率称为无条件概率。
的条件概率,条件下,事件称为在事件)(,)()()|(B P B A A P AB P A B P =B)|P(B)P(A P(AB) A)|P(A)P(B P(AB)==乘法公式:)|()()(i i A B P A P B P i∑=全概率公式:)|()()|()()()()|(j j ji i i A B P A P A B P A P B P B A P B A P i ∑==贝叶斯公式:例:有三个罐子,1号装有2红1黑共3个球,2号装有3红1黑4个球,3号装有2红2黑4个球,某人随机从其中一罐,再从该罐中任取一个球,(1)求取得红球的概率;(2)如果取得是红球,那么是从第一个罐中取出的概率为多少?.348.0)()()|()|()2(.639.0)(31)()()(.21)|(;43)|(;32)|()|()()(}{3,2,1i }{)1(111321321i i 321≈=≈∴==========∑A P B P B A P A B P A P B P B P B P B A P B A P B A P A B P A P B P B B B A i B ii 由贝叶斯公式:,,依题意,有:由全概率公式是一个完备事件、、,由题知取得是红球。
有关概率的公式

有关概率的公式概率是描述事件发生可能性的一种数学概念。
它可以帮助我们预测和分析事件发生的可能性,而概率公式则是用来计算概率的数学公式。
首先,我们需要了解一些基本的概率概念。
在概率论中,事件的概率通常用P(A)来表示,其中A是一个事件。
概率的取值范围在0到1之间,0表示不可能发生,1表示必然发生。
在计算概率时,我们尝试使用一些公式和规则来辅助计算。
下面是一些常用的概率公式:1.加法法则:P(A或B)=P(A)+P(B)-P(A且B)加法法则用于计算两个事件中至少一个事件发生的概率。
P(A或B)表示事件A或事件B发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
2.乘法法则:P(A且B)=P(A)某P(B,A)乘法法则用于计算两个事件同时发生的概率。
P(A且B)表示事件A和事件B同时发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率。
3.条件概率:P(A,B)=P(A且B)/P(B)条件概率用于计算在已知事件B发生的条件下,事件A发生的概率。
P(A,B)表示在事件B发生的条件下,事件A发生的概率,P(A且B)表示事件A和事件B同时发生的概率。
4.独立事件:如果两个事件A和B是相互独立的,那么P(A且B)=P(A)某P(B)。
5.贝叶斯定理:P(A,B)=(P(B,A)某P(A))/P(B)贝叶斯定理用于计算在已知事件B发生的条件下,事件A发生的概率。
P(A,B)表示在事件B发生的条件下,事件A发生的概率,P(B,A)表示在事件A发生的条件下,事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。
6.全概率公式:P(B)=Σ(P(Ai)某P(B,Ai))全概率公式用于计算事件B的概率。
假设事件A1,A2,...,An是样本空间的一个划分(即这些事件互不相交且并集等于样本空间),P(Ai)表示事件Ai的概率,P(B,Ai)表示在事件Ai发生的条件下,事件B发生的概率。
概率公式总结

概率公式总结一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算、随机变量及其分布1、分布函数性质P(X ^b) =F(b) P(a X 岂b) =F (b) _F (a)2、散型随机变量3、续型随机变量三、多维随机变量及其分布1、 离散型二维随机变量边缘分布 P i.=P(X =X i) =' P(X =X i,Y =y j) =' P ijP j=P (丫二y j) P(X 二X j,丫二y j)pjjjjj2、 离散型二维随机变量条件分布3、 连续型二维随机变量(X ,Y )的分布函数F(X,y)「二f(u,v)dvdu4、 连续型二维随机变量边缘分布函数与边缘密度函数 分布函数: Fx (x) = : _ f (u, v)dvdu 密度函数:fx(x)二 _ f(x,v)dvP i j =P(X =X j Y =y j )P(Y =y j ) P jP ji =P (Y =yj X -xi)=P(X二X i,Y=yj )二,j =1,2…y-beF Y(y)二f (u,v)dudv5、二维随机变量的条件分布四、随机变量的数字特征1、数学期望 离散型随机变量:E(X)八X k Pk连续型随机变量:E(X)= xf(x)dxk J_2、 数学期望的性质 (1) E(C)二C,C 为常数 E[E(X)] =E(X) E(CX) =CE(X)(2)E(X Y)=E(X) E(Y) E(aX b) =aE(X) b E(C 1X^ C n X n ^C 1E(X 1^C n E(X n )⑶若XY 相互独立则:E(XY) =E(X)E(Y) ⑷ [E(XY)]2_E 2(X)E 2(Y)3、 方差: D(X) =E(X 2) _E 2(X)4、 方差的性质 (1) D(C) =0D[D(X)]=0D(aX _b) =a 2D(X)D(X) ::: E(X -C)2⑵ D(X Y) =D(X) D(Y) 2Cov(X,Y) 若XY 相互独立则: D(X土Y) =D(X)+D(Y)5、 协方差: Cov(X,Y) =E(X,Y) -E(X)E(Y) 若XY 相互独立则: Cov(X,Y) =06、 相关系数:P XY =P(X,Y)= Cov(X ,Y)若XY 相互独立则:臥=0即r'D(XHD(Y)XY 不相关7、协方差和相关系数的性质 ⑴ Cov(X,X) =D(X) C o(X,Y) =C o(¥,X) (2) Cov(X1+X2,Y)=C OV (X 1,Y)+C OV (X 2,Y)Cov(aX+c,bY+d) =a b C(X,Y)f Y (y)二'f (u, y)dufYx(yx)_ f(x,y)"f x (x) ,-:::::y ::::fx Y (xy )_f(x,y)"f Y (y)-:::::x :::.&常见数学分布的期望和方差五、大数定律和中心极限定理1、切比雪夫不等式若 E(X)i,D(X)z 2,对于任意 0 有 P{X —E(X)亠豎或 P{X —E(X)「}—晔)2、大数定律:若"X n相互独立且 …:时,十\D/E(X i )⑴若X<X n相互独立, E(XJ =\D(X i) Yi2且;「2_M 贝Vn n1 .P 1.一 Xi〔(X i), (n )二)n . d n . d3、中心极限定理(1)独立同分布的中心极限定理:均值为 「,方差为「20的独 立同分布时,当n 充分大时有:(2)拉普拉斯定理:随机变量 叫(n=1,2…)~B(n,p)则对任意 X 有:np X 1lim P{ t nEx} = J -?=e 2dt =Q(x)x r '、,np(1 - p)2二⑵若X i X n相互独立同分布,且E(XJ则当 n T 时:-Z Xi —N 卩n imYn二kW、N(0,1)ny X k -n 」_a —nk4b -n - b —n- a —n -P(a_'X k_b)=P()■:"「( )-:•:」( )k」•. n;「 ,n 匚 、n 匚 ;nn; n ;「六、数理统计1、总体和样本总体X 的分布函数F(x)样本(X 1,X‘ X n )的联合分布为 F(X 1,X2…X n) =£F(X k)2、统计量 (1)样本平均值:X.s nXi(2)样本方差:i二⑹次序统计量:设样本(X 1,X 2 X n)的观察值(X 1,X 2 X n),将x 1,x^ xn按 照由小到大的次序重新排列,得到X (1)沁)J £X (n),记取值为X (0的 样本分量为X(i),则称X (1)乞X (2)「亠)为样本(X 1,X 2 X n)的次序统计 量。
概率论公式大全

第一章随机事件和概率(1)排列组合公式从m个人中挑出n个人进行排列的可能数。
从m个人中挑出n个人进行组合的可能数。
(2)加法和乘法原理加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
乘法原理(两个步骤分别不能完成这件事):m×n某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。
(3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个)顺序问题(4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
试验的可能结果称为随机事件。
(5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:①每进行一次试验,必须发生且只能发生这一组中的一个事件;②任何事件,都是由这一组中的部分事件组成的。
这样一组事件中的每一个事件称为基本事件,用来表示。
基本事件的全体,称为试验的样本空间,用表示。
一个事件就是由中的部分点(基本事件)组成的集合。
通常用大写字母A,B,C,…表示事件,它们是的子集。
为必然事件,Ø为不可能事件。
不可能事件(Ø)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。
(6)事件的关系与运算①关系:如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):如果同时有,,则称事件A与事件B等价,或称A等于B:A=B。
A、B中至少有一个发生的事件:A B,或者A+B。
属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者,它表示A发生而B不发生的事件。
(完整版)概率论公式总结

第一章P(A+B)=P(A)+P(B)- P(AB)特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式概率的乘法公式全概率公式:从原因计算结果Bayes 公式:从结果找原因第二章 二项分布(Bernoulli 分布)——X~B(n,p)泊松分布——X~P(λ))()()|(B P AB P B A P =)|()()(B A P B P AB P =)|()(A B P A P =∑==n k k k B A P B P A P 1)|()()(∑==nk k k i i k B A P B P B A P B P A B P 1)|()()|()()|(),...,1,0()1()(n k p p C k X P k n k k n =-==-,,...)1,0(!)(===-k e k k X P k,λλ∑≤==≤=xk k X P x X P x F )()()(概率密度函数怎样计算概率均匀分布X~U(a,b)指数分布X~Exp ()对连续型随机变量分布函数与密度函数的重要关系:二元随机变量及其边缘分布分布规律的描述方法联合密度函数联合分布函数1)(=⎰+∞∞-dx x f )(b X a P ≤≤⎰=≤≤b adx x f b X a P )()(⎰∞-=≤=xdtt f x X P x F )()()(⎰∞-=≤=xdt t f x X P x F )()()(),(y x f ),(y x F 0),(≥y x f 1),(=⎰⎰+∞∞-+∞∞-dxdy y x f )(1)(b x a a b x f ≤≤-=联合密度与边缘密度离散型随机变量的独立性连续型随机变量的独立性第三章数学期望离散型随机变量,数学期望定义连续型随机变量,数学期望定义● E(a)=a ,其中a 为常数● E(a+bX)=a+bE(X),其中a 、b 为常数● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量随机变量g(X)的数学期望常用公式⎰+∞∞-=dyy x f x f X ),()(⎰+∞∞-=dx y x f y f Y ),()(}{}{},{j Y P i X P j Y i X P =====)()(),(y f x f y x f Y X =∑+∞-∞=⋅=k k k P x X E )(⎰+∞∞-⋅=dx x f x X E )()(∑=kk k p x g X g E )())((方差定义式 常用计算式常用公式 当X 、Y 相互独立时: 方差的性质D(a)=0,其中a 为常数D(a+bX)= abD(X),其中a 、b 为常数当X 、Y 相互独立时,D(X+Y)=D(X)+D(Y)协方差与相关系数协方差的性质∑∑=i j iji p x X E )(dxdy y x xf X E ⎰⎰=),()()()()(Y E X E Y X E +=+∑∑=i j ij j i p y x XY E )(dxdy y x xyf XY E ⎰⎰=),()()()()(,Y E X E XY E Y X =独立时与当()⎰+∞∞-⋅-=dx x f X E x X D )()()(2[]22)()()(X E X E X D -=))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+)()()(Y D X D Y X D +=+)()(),(Y D X D Y X Cov XY =ρ[][]{})()()()()(Y E X E XY E Y E Y X E X E -=--())()()(),(22X D X E X E X X Cov =-=),(),(Y X abCov bY aX Cov =独立与相关独立必定不相关、相关必定不独立、不相关不一定独立第四章正态分布标准正态分布的概率计算标准正态分布的概率计算公式)()()(a a Z P a Z P Φ=<=≤)(1)()(a a Z P a Z P Φ-=>=≥)()()(a b b Z a P Φ-Φ=≤≤1)(2)()()(-Φ=-Φ-Φ=≤≤-a a a a Z a P一般正态分布的概率计算一般正态分布的概率计算公式),(~2σμN X 222)(21)(σμσπ--=x e x f 2)(,)(σμ==X D X E )(1)(a a -Φ-=Φ)1,0(~),(~2N X Z N X σμσμ-=⇔()()(σμ-Φ=<=≤a a X P a X P (1)()(σμ-Φ-=>=≥a a X P a X P )()()(σμσμ-Φ--Φ=≤≤a b b X a P。
概率统计公式大全

概率统计公式大全概率统计是一门研究事件发生的可能性及其规律性的学科。
它以概率论为基础,通过概率模型和统计方法对随机现象进行建模、分析和预测。
在概率统计中,有很多重要的公式和定理,下面将简单介绍几个常用的公式。
1.加法原理加法原理是计算多个事件并集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的并集事件的概率可以表示为P(A∪B)=P(A)+P(B)-P(A∩B)。
2.乘法原理乘法原理是计算多个事件交集概率的基本方法,它表述为:如果A和B是两个事件,那么它们的交集事件的概率可以表示为P(A∩B)=P(A)*P(B,A),其中P(B,A)表示在事件A发生的条件下事件B发生的概率。
3.条件概率条件概率是指在其中一事件已经发生的条件下,另一事件发生的概率。
条件概率可以表示为P(A,B)=P(A∩B)/P(B),其中P(B)不为0。
4.全概率公式全概率公式是计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(A)=P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn)。
5.贝叶斯定理贝叶斯定理是利用条件概率和全概率公式来计算事件的概率的重要方法,它表述为:如果B1、B2、..、Bn是一组互不相容的事件,且它们的并集构成了样本空间S,那么对于任意事件A,可以表示为P(Bi,A)=P(A,Bi)*P(Bi)/(P(A,B1)*P(B1)+P(A,B2)*P(B2)+...+P(A,Bn)*P(Bn))。
6.期望值期望值是度量随机变量平均取值的重要统计量,它可以表示为E(X)=∑x*P(X=x),其中x为随机变量X的取值,P(X=x)为X取值为x的概率。
7.方差方差是衡量随机变量取值的波动性的统计量,它可以表示为Var(X)= E((X - E(X))^2),其中E(X)为随机变量X的期望值。
概率公式大全(精编文档).doc

【最新整理,下载后即可编辑】第一章随机事件和概率第七章参数估计单正态总体均值和方差的假设检验公式整理1.随机事件及其概率吸收律:AAB A AA A =⋃=∅⋃Ω=Ω⋃)(AB A A A AA =⋃⋂∅=∅⋂=Ω⋂)()(AB A B A B A -==-反演律:B A B A =⋃B A AB ⋃=n i in i iA A 11=== n i in i iA A 11===2.概率的定义及其计算)(1)(A P A P -=若B A ⊂ )()()(A P B P A B P -=-⇒对任意两个事件A , B , 有 )()()(AB P B P A B P -=- 加法公式:对任意两个事件A , B , 有)()()()(AB P B P A P B A P -+=⋃ )()()(B P A P B A P +≤⋃)()1()()()()(2111111n n nnk j i kjinj i jini i ni i A A A P A A A P A A P A P A P -≤<<≤≤<≤==-+++-=∑∑∑3.条件概率 ()=A B P )()(A P AB P 乘法公式())0)(()()(>=A P A B P A P AB P()())0)(()()(12112112121>=--n n n n A A A P A A A A P A A P A P A A A P 全概率公式∑==ni i AB P A P 1)()( )()(1i ni i B A P B P ⋅=∑=Bayes 公式)(A B P k )()(A P AB P k =∑==n i i i k k B A P B P B A P B P 1)()()()( 4.随机变量及其分布 分布函数计算)()()()()(a F b F a X P b X P b X a P -=≤-≤=≤<5.离散型随机变量 (1) 0 – 1 分布1,0,)1()(1=-==-k p p k X P k k(2) 二项分布 ),(p n B 若P ( A ) = pn k p p C k X P k n kk n ,,1,0,)1()( =-==-*Possion 定理0lim >=∞→λn n np有,2,1,0!)1(lim ==---∞→k k ep p C kkn n k nkn n λλ(3) Poisson 分布)(λP,2,1,0,!)(===-k k ek X P kλλ6.连续型随机变量 (1) 均匀分布 ),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a a b x f⎪⎪⎩⎪⎪⎨⎧--=1,,0)(a b a x x F(2) 指数分布 )(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ(3) 正态分布 N (μ , σ 2 )+∞<<∞-=--x e x f x 222)(21)(σμσπ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x e x x 2221)(πϕ+∞<<∞-=Φ⎰∞--x te x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lk Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=相关系数)()(),cov(Y D X D Y X XY =ρ⎰∞---=xt t ex F d 21)(222)(σμσπ*N (0,1) — 标准正态分布 +∞<<∞-=-x ex x 2221)(πϕ+∞<<∞-=Φ⎰∞--x te x xt d 21)(22π7.多维随机变量及其分布二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(边缘分布函数与边缘密度函数⎰⎰∞-+∞∞-=x X dvdu v u f x F ),()(⎰+∞∞-=dv v x f x f X ),()(⎰⎰∞-+∞∞-=yY dudv v u f y F ),()(⎰+∞∞-=du y u f y f Y ),()(8. 连续型二维随机变量(1) 区域G 上的均匀分布,U ( G )⎪⎩⎪⎨⎧∈=其他,0),(,1),(Gy x A y x f(2)二维正态分布+∞<<-∞+∞<<∞-⨯-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+------y x ey x f y y x x ,121),(2222212121212)())((2)()1(21221σμσσμμρσμρρσπσ9. 二维随机变量的 条件分布0)()()(),(>=x f x y f x f y x f X X Y X0)()()(>=y f y x f y f Y Y X Y⎰⎰+∞∞-+∞∞-==dy y f y x f dy y x f x f Y Y X X )()(),()(⎰⎰+∞∞-+∞∞-==dx x f x y f dx y x f y f X X Y Y )()(),()()(y x f Y X )(),(y f y x f Y =)()()(y f x f x y f Y X X Y = )(x y f X Y )(),(x f y x f X =)()()(x f y f y x f X Y Y X = 10.随机变量的数字特征数学期望∑+∞==1)(k kk p x X E⎰+∞∞-=dx x xf X E )()(随机变量函数的数学期望 X 的 k 阶原点矩)(k X EX 的 k 阶绝对原点矩)|(|k X E X 的 k 阶中心矩)))(((k X E X E - X 的 方差)()))(((2X D X E X E =-X ,Y 的 k + l 阶混合原点矩)(l k Y X E X ,Y 的 k + l 阶混合中心矩()lk Y E Y X E X E ))(())((--X ,Y 的 二阶混合原点矩)(XY EX ,Y 的二阶混合中心矩 X ,Y 的协方差 ()))())(((Y E Y X E X E -- X ,Y 的相关系数XY Y D X D Y E Y X E X E ρ=⎪⎪⎭⎫⎝⎛--)()())())((( X 的方差D (X ) =E ((X - E (X ))2))()()(22X E X E X D -=协方差()))())(((),cov(Y E Y X E X E Y X --=)()()(Y E X E XY E -=())()()(21Y D X D Y X D --±±=【最新整理,下载后即可编辑】 相关系数)()(),cov(Y D X D Y X XY =ρ。
概率论常用公式

概率论常用公式 概率论是研究随机事件发生的规律性的数学学科,广泛应用于统计学、工程学、金融学等领域。
在概率论的学习和应用过程中,学习常用的概率论公式是非常重要的。
本文将介绍一些常见的概率论常用公式,供大家参考。
1. 基本概率公式 概率是一个介于0和1之间的数,表示某个随机事件发生的可能性。
根据概率的定义,我们可以得出基本的概率公式:P(A) = N(A) / N(S) 其中,P(A)表示事件A发生的概率,N(A)表示事件A发生的次数,N(S)表示样本空间中的总事件数。
2. 加法法则 当两个事件A和B互斥(即两个事件不同时发生)时,可以使用加法法则计算它们的概率:P(A U B) = P(A) + P(B)其中,P(A U B)表示事件A或事件B发生的概率。
3. 乘法法则 当两个事件A和B同时发生时,可以使用乘法法则计算它们的联合概率:P(A ∩ B) = P(A) * P(B|A) 其中,P(A ∩ B)表示事件A和事件B同时发生的概率,P(B|A)表示在事件A发生的条件下事件B发生的概率。
4. 条件概率公式 条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率可以使用以下公式计算:P(B|A) = P(A ∩ B) / P(A) 其中,P(B|A)表示在事件A发生的条件下事件B发生的概率,P(A ∩ B)表示事件A和事件B同时发生的概率,P(A)表示事件A发生的概率。
5. 独立性如果两个事件A和B满足以下条件,则称它们是独立的:P(A ∩ B) = P(A) * P(B) 即事件A和事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
6. 全概率公式 全概率公式用于计算一个事件在发生的各种可能性下的概率。
它可以使用以下公式表示:P(B) = ΣP(Ai) * P(B|Ai) 其中,P(B)表示事件B发生的概率,P(Ai)表示事件Ai发生的概率,P(B|Ai)表示在事件Ai发生的条件下事件B发生的概率,Σ表示求和符号。