初一(上)数学期末复习(一)典型题答案
【典型题】七年级数学上期末试题附答案

【典型题】七年级数学上期末试题附答案一、选择题1.某校九年级学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了2070张相片,如果全班有x 名学生,根据题意,列出方程为( )A .x(x -1)=2070B .x(x +1)=2070C .2x(x +1)=2070D .(1)2x x -=2070 2.下列图形中,能用ABC ∠,B Ð,α∠表示同一个角的是( )A .B .C .D .3.若x 是3-的相反数,5y =,则x y +的值为( )A .8-B .2C .8或2-D .8-或24.爷爷快到八十大寿了,小莉想在日历上把这一天圈起来,但不知道是哪一天,于是便去问爸爸,爸爸笑笑说:“在日历上,那一天的上下左右4个日期的和正好等于那天爷爷的年龄”.那么小莉的爷爷的生日是在( )A .16号B .18号C .20号D .22号5.8×(1+40%)x ﹣x =15故选:B .【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,掌握利润、进价、售价之间的关系.6.若x =5是方程ax ﹣8=12的解,则a 的值为( )A .3B .4C .5D .67.如图所示运算程序中,若开始输入的x 值为48,我们发现第1次输出的结果为24,第2次输出的结果为12,…第2017次输出的结果为( )A .3B .6C .4D .2 8.下列各数:(-3)2,0,212⎛⎫-- ⎪⎝⎭,227,(-1)2009,-22,-(-8),3|-|4-中,负数有( )A .2个B .3个C .4个D .5个9.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120°10.已知x =y ,则下面变形错误的是( )A .x +a =y +aB .x -a =y -aC .2x =2yD .x y a a= 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3y D .由,得3(y+1)=2y+6二、填空题13.把58°18′化成度的形式,则58°18′=______度.14.若关于x 的一元一次方程12018x-2=3x+k 的解为x=-5,则关于y 的一元一次方程12018(2y+1)-5=6y+k 的解y=________. 15.已知:﹣a =2,|b |=6,且a >b ,则a +b =_____.16.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.17.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.18.让我们轻松一下,做一个数字游戏:第一步:取一个自然数15n =,计算211n +得1a ;第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ;第三步:算出2a 的各位数字之和得3n ,再计算231n +得3a ;a ____________依此类推,则201919.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n个图形中有白色正方形__________个 (用含n 的代数式表示).20.用一个平面去截正方体(如图),下列关于截面(截出的面)形状的结论:①可能是锐角三角形;②可能是钝角三角形;③可能是长方形;④可能是梯形.其中正确结论的是______(填序号).三、解答题21.如下图时用黑色的正六边形和白色的正方形按照一定的规律组合而成的两色图案(1)当黑色的正六边形的块数为1时,有6块白色的正方形配套;当黑色的正六边形块数为2时,有11块白色的正方形配套;则当黑色的正六边形块数为3,10时,分别写出白色的正方形配套块数;(2)当白色的正方形块数为201时,求黑色的正六边形的块数.(3)组成白色的正方形的块数能否为100,如果能,求出黑色的正六边形的块数,如果不能,请说明理由22.《孙子算经》中记载:“今有三人共车,二车空二人共车,九人步,问人与车各何?”译文大意为:令有若干人乘车,每三人乘一辆车,最终剩余2辆车;若每2人共乘一辆车,最终剩余9个人无车可乘,问有多少人,多少辆车?请解答上述问题.23.“滴滴”司机沈师傅从上午8:00~9:15在东西方向的江平大道上营运,共连续运载十批乘客.若规定向东为正,向西为负,沈师傅营运十批乘客里程如下:(单位:千米)+8,-6,+3,-6,+8,+4,-8,-4,+3,+3.(1)将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面还是西面?距离多少千米?(2) 若汽车每千米耗油0.4升,则8:00~9:15汽车共耗油多少升?(3)若“滴滴”的收费标准为:起步价8元(不超过3千米),超过3千米,超过部分每千米2元.则沈师傅在上午8:00~9:15一共收入多少元?24.已知∠a=42°,求∠a的余角和补角.25.如图,已知∠AOC=90°,∠COD比∠DOA大28°,OB是∠AOC的平分线,求∠BOD 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】【详解】解:根据题意得:每人要赠送(x﹣1)张相片,有x个人,∴全班共送:(x﹣1)x=2070,故选A.【点睛】本题考查由实际问题抽象出一元二次方程.2.B解析:B【解析】【分析】根据角的表示方法进行逐一分析,即角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示.【详解】A、因为顶点B处有2个角,所以这2个角均不能用∠B表示,故本选项错误;∠表示,故本选项正确;B、因为顶点B处只有1个角,所以这个角能用∠ABC,∠B,αC 、因为顶点B 处有3个角,所以这3个角均不能用∠B 表示,故本选项错误;D 、因为顶点B 处有4个角,所以这4个角均不能用∠B 表示,故本选项错误. 故选:B .【点睛】本题考查的是角的表示方法,熟知角的三种表示方法是解答此题的关键.3.C解析:C【解析】【分析】根据相反数的意义可求得x 的值,根据绝对值的意义可求得y 的值,然后再代入x+y 中进行计算即可得答案.【详解】∵x 是3-的相反数,y 5=,∴x=3,y=±5, 当x=3,y=5时,x+y=8,当x=3,y=-5时,x+y=-2,故选C.【点睛】本题考查了相反数、绝对值以及有理数的加法运算,熟练掌握相关知识并运用分类思想是解题的关键.4.C解析:C【解析】【分析】要求小莉的爷爷的生日,就要明确日历上“上下左右4个日期”的排布方法.依此列方程求解.【详解】设那一天是x ,则左日期=x ﹣1,右日期=x+1,上日期=x ﹣7,下日期=x+7, 依题意得x ﹣1+x+1+x ﹣7+x+7=80解得:x =20故选:C .【点睛】此题关键是弄准日历的规律,知道左右上下的规律,然后依此列方程.5.无6.B解析:B【解析】把x=5代入方程ax-8=12得出5a-8=12,求出方程的解即可.【详解】把x=5代入方程ax﹣8=12得:5a﹣8=12,解得:a=4.故选:B.【点睛】本题考查了解一元一次方程和一元一次方程的解,能得出关于a的一元一次方程是解此题的关键.7.D解析:D【解析】【分析】根据题意可以写出前几次输出的结果,从而可以发现输出结果的变化规律,进而得到第2019次输出的结果.【详解】解:根据题意得:可发现第1次输出的结果是24;第2次输出的结果是24×12=12;第3次输出的结果是12×12=6;第4次输出的结果为6×12=3;第5次输出的结果为3+5=8;第6次输出的结果为812⨯=4;第7次输出的结果为412⨯=2;第8次输出的结果为212⨯=1;第9次输出的结果为1+5=6;归纳总结得到输出的结果从第3次开始以6,3,8,4,2,1循环,∵(2017-2)÷6=335.....5,则第2017次输出的结果为2.故选:D.【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中输出结果的变化规律.8.C【解析】【分析】【详解】解:(−3) ²=9,212⎛⎫--⎪⎝⎭=−14,(-1)2009=−1,-22=−4,−(−8)=8,3|-|4-=34,则所给数据中负数有:212⎛⎫-- ⎪⎝⎭,(-1)2009,-22,3|-|4-,共4个故选C9.B解析:B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 10.D解析:D【解析】解:A.B、C的变形均符合等式的基本性质,D项a不能为0,不一定成立.故选D.11.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D.由,得:3(y+1)=2y+6,此选项正确.故选D.【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题13.3【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=583°故答案为583 解析:3【解析】【分析】【详解】解:58°18′=58°+(18÷60)°=58.3°.故答案为58.3.14.-3【解析】【分析】先把x=-5代入x-2=3x+k求出k的值再把k代入(2y+1)-5=6y+k解方程求出y值即可【详解】∵关于x的一元一次方程x-2=3x+k的解为x=-5∴-2=-15+k解得解析:-3【解析】先把x=-5代入12018x-2=3x+k求出k的值,再把k代入12018(2y+1)-5=6y+k,解方程求出y值即可.【详解】∵关于x的一元一次方程12018x-2=3x+k的解为x=-5,∴52018-2=-15+k,解得k=122013 2018,∴12018(2y+1)-5=6y+1220132018,解得y=-3.故答案为-3【点睛】本题考查了一元一次方程的解及解一元一次方程,使等式两边成立的未知数的值叫做方程的解,熟练掌握一元一次方程的解法是解题关键.15.-8【解析】【分析】根据相反数的定义绝对值的性质可得ab的值根据有理数的加法可得答案【详解】∵﹣a=2|b|=6且a>b∴a=﹣2b=-6∴a+b=﹣2+(-6)=-8故答案为:-8【点睛】本题考查解析:-8.【解析】【分析】根据相反数的定义,绝对值的性质,可得a、b的值,根据有理数的加法,可得答案.【详解】∵﹣a=2,|b|=6,且a>b,∴a=﹣2,b=-6,∴a+b=﹣2+(-6)=-8,故答案为:-8.【点睛】本题考查了相反数的定义,绝对值的性质,有理数的加法运算法则,注意一个正数的绝对值有2个数.16.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒据此可得答案【详解】∵图①中火柴数量为5=1+4×1图②中火柴数量为9=1+4×2图③中火柴数量为13=1+4×3……∴摆第n解析:(4n+1)【解析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.17.两点确定一条直线【解析】【分析】根据直线的公理确定求解【详解】解:答案为:两点确定一条直线【点睛】本题考查直线的确定:两点确定一条直线熟练掌握数学公理是解题的关键解析:两点确定一条直线【解析】【分析】根据直线的公理确定求解.【详解】解:答案为:两点确定一条直线.【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.18.122【解析】【分析】根据题意可以分别求得a1a2a3a4从而可以发现这组数据的特点三个一循环从而可以求得a2019的值【详解】解:由题意可得a1=52+1=26a2=(2+6)2+1=65a3=(解析:122【解析】【分析】根据题意可以分别求得a1,a2,a3,a4,从而可以发现这组数据的特点,三个一循环,从而可以求得a2019的值.【详解】解:由题意可得,a1=52+1=26,a2=(2+6)2+1=65,a3=(6+5)2+1=122,a4=(1+2+2)2+1=26,…∴2019÷3=673,∴a 2019= a 3=122,故答案为:122.【点睛】本题考查数字变化类规律探索,解题的关键是明确题意,求出前几个数,观察数的变化特点,求出a 2019的值.19.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案.【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键.20.①③④【解析】【分析】正方体的6个面都是正方形用平面去截正方体最多与6个面相交得六边形最少与3个面相交得三角形因此截面的形状可能是三角形四边形五边形六边形再根据用一个平面截正方体从不同角度截取所得形 解析:①③④【解析】【分析】正方体的6个面都是正方形,用平面去截正方体最多与6个面相交得六边形,最少与3个面相交得三角形,因此,截面的形状可能是三角形、四边形、五边形、六边形,再根据用一个平面截正方体,从不同角度截取所得形状会不同,进而得出答案.【详解】解:用平面去截正方体,得到的截面形状可能是三角形、四边形、五边形、六边形,而三角形只能是锐角三角形,不可能是直角三角形和钝角三角形.所以正确的结论是可能是锐角三角形、可能是长方形和梯形.故答案为:①③④.【点睛】本题考查了正方体的截面,注意:截面的形状随截法的不同而改变,一般为多边形或圆,也可能是不规则图形,一般的截面与几何体的几个面相交就得到几条交线,截面就是几边形.三、解答题21.(1)16;51;(2)40;(3)成白色的正方形的块数不能为100,理由见解析【解析】【分析】(1)第一副图为黑1,白6,第二幅图黑色增加1,白色增加5,第三幅图黑色增加1,白色增加5,由此可知黑色为3,10时白色的配套数量;(2)由(1)可知白色的增加规律为51n +,其中n 为黑色正六边形的数量,根据关系式求出黑色即可;(3)根据关系式判断即可.【详解】(1)观察图形可知:每增加1块黑色正六边形,配套白色正方形增加5个,当黑色的正六边形块数为3,白色正方形为16,当黑色的正六边形块数为10,白色正方形为51;故答案为:16,51;(2)观察可知每增加1块黑色正六边形,配套白色正方形增加5个故第n 个图案中有51n +个正方形,当51201n +=时,40n =;故答案为:黑色的正六边形的块数为40;(3)当51100n +=时,n 无法取整数,故白色正方形无法为100.【点睛】本题考查了图形的变化规律,解题时必须仔细观察规律,通过归纳得出结论.注意由特殊到一般的分析方法,此题的规律为:第n 个图案中有51n +个正方形.22.有39人,15辆车【解析】【分析】找准等量关系:人数是定值,列一元一次方程可解此题.【详解】解:设有x 辆车,则有3(x ﹣2)人,根据题意得:2x +9=3(x ﹣2)解的:x =153(x ﹣2)=39答:有39人,15辆车.【点睛】本题运用了列一元一次方程解应用题的知识点,找准等量关系是解此题的关键.23.(1)东面5千米,(2)21.2升,(3)96元.【解析】【分析】(1)计算沈师傅行驶的路程的代数和即可,(2)计算出每段路程的绝对值的和后乘以0.4,即为这天上午汽车共耗油数; (3)表示出每段的收入后计算它们的和即为上午的收入.【详解】解:(1)由题意得:向东为“+”,向西为“-”,则将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的距离为:()()()()()()()()()()8636848433++-+++-+++++-+-+++++,8636848433=-+-++--++,5=千米.答:将最后一批乘客送到目的地时,沈师傅距离第一批乘客出发地的东面5千米. (2)上午8:00~9:15沈师傅开车的距离是:8636848433++-+++-+++++-+-++++,8636848433=+++++++++,53=,耗油量530.421.2=⨯=升.答:这天午共耗油21.2升.(3)行程3公里费用为:5元.行程4公里费用为:()54327⎡⎤+-⨯=⎣⎦元.行程6公里费用为:()563211⎡⎤+-⨯=⎣⎦元.行程8公里的费用为:()583215⎡⎤+-⨯=⎣⎦元;故总收入为:151151115715755+++++++++=96元.答:沈师傅这天上午的收入一共是96元.【点睛】本题利用了有理数中的加法和乘法运算,注意要针对不同情况用不同的计算方法. 24.48°,138°.【解析】【分析】根据余角和补角的概念计算即可.【详解】解:∠α的余角=90°﹣42°=48°,∠α的补角=180°﹣42°=138°.【点睛】本题考查的知识点是余角和补角,解题的关键是熟练的掌握余角和补角.25.14°【解析】试题分析:先由∠COD ﹣∠DOA =28°,∠COD +∠DOA =90°,解方程求出∠COD 与∠DOA 的度数,再由OB 是∠AOC 的平分线,得出∠AOB =45°,则∠BOD =∠AOB ﹣∠DOA ,求出结果.试题解析:解:设∠AOD的度数为x,则∠COD的度数为x+28°.因为∠AOC=90°,所以可列方程x+x+28°=90°,解得x=31°,即∠AOD=31°,又因为OB是∠AOC的平分线,所以∠AOB=45°,所以∠BOD=∠BOA-∠AOD=45-31°=14°.点睛:本题主要考查了角平分线的定义及利用方程思想求角的大小.。
人教版七年级上册数学期末考试复习:第1章《有理数》填空题精选(含答案)

第1章《有理数》填空题精选1.(2019秋•翠屏区期末)如图,数轴上的点A 所表示的数为a ,化简|a |﹣|1﹣a |的结果为 .2.(2019秋•顺德区期末)手机已成现代入生活的一个重要组成部分,它给人们生活带来了许多方便.假如你家刚刚添置了一部手机,手机资费宣传单如下表:当通话时间为200min 时,选套餐 更优惠.(填“A ”或“B ”)套餐项目 月租 通话A 12元 0.2元/minB 0元 0.25元/min3.(2019秋•龙岗区校级期末)若a +b +c =0且a >b >c ,则下列几个数中:①a +b ;①ab ;①ab 2;①b 2﹣ac ; ①﹣(b +c ),一定是正数的有 (填序号).4.(2019秋•惠来县期末)A 为数轴上表示2的点,将点A 沿数轴向左平移5个单位到点B ,则点B 所表示的数的绝对值为 .5.(2019秋•揭阳期末)2019年11月11日是第11个“双十一”购物狂欢节,天猫“双十一”总成交额为2684亿,再创历史新高;其中,“2684亿”用科学记数法表示为 .6.(2019秋•黄埔区期末)如果收入100元记作+100元,那么支出120元记作 元.7.(2019秋•斗门区期末)比较大小:﹣(﹣9) ﹣(+9)填“>”,“<”,或”=”符号)8.(2019秋•高明区期末)一家商店某件服装标价为200元,现“双十二”打折促销以8折出售,则这件服装现售 .9.(2019秋•白云区期末)十八大以来我国改革开放持续向纵深发展,国民经济迅猛发展,数据显示,2018年度全国城镇固定资产投资约为636000000000元,用科学记数法表示为 .10.(2019秋•海珠区期末)截止2019年10月底,广州建成5G 基站约12000座,多个项目列入广东省首批5G 融合应用项目,将数12000用科学记数法表示,可记为 .11.(2019秋•南山区期末)通常在生产图纸上,对每个产品的合格范围有明确的规定.例如,图纸上注明一个零件的直径是φ30±0.020.03,φ30±0.020.03表示这个零件直径的标准尺寸是30mm ,实际产品的直径最大可以是30.03mm ,最小可以是 .12.(2019秋•海珠区期末)计算2×(﹣5)的结果是 .13.(2019秋•顺德区期末)将520000用科学记数法表示为 .14.(2019秋•顺德区期末)如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为 .15.(2019秋•高明区期末)港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额126900000000元,126900000000用科学记数法表示为 .16.(2019秋•花都区期末)如图,在数轴上A 、B 两点表示的数分别为﹣4、3,则线段AB 的长为 .17.(2019秋•花都区期末)比较大小:3 ﹣5(填“>”或“<”或“=”)18.(2019秋•荔湾区期末)亚洲陆地面积约为44000000平方千米,将44000000用科学记数法表示为 .19.(2019秋•龙华区期末)北京市某天的最高气温是10℃,最低气温是﹣5℃,则北京市这一天的温差是 ℃.20.(2019秋•南海区期末)在(−38)4中,底数是 .21.(2019秋•揭西县期末)计算:1﹣(﹣2)2×(−18)= .22.(2019秋•大埔县期末)计算:36×(12−13)2= .23.(2019秋•龙岗区期末)小明和小聪坐公交从学校去体育馆参加运动会,他们从学校门口的公交车站上车,上车后发现连同他们俩共13人,经过2个站点小明观察到上下车情况如下(记上车为正,下车为负):A (+4,﹣2),B (+6,﹣5).经过A ,B 这两站点后,车上还有 人.24.(2019秋•罗湖区期末)计算:﹣8﹣(﹣1)= .25.(2019秋•宝安区期末)某地中午的气温是+5℃,晚上气温比中午下降了8℃,则该地晚上的气温是 ℃.26.(2019秋•怀集县期末)如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示﹣4,点G 表示8,点C 表示 .27.(2019秋•怀集县期末)把有一列数:0,3,﹣1,﹣2.5,用“<”连接得: .28.(2019秋•怀集县期末)计算:﹣42+(﹣4)2的值是 .29.(2019秋•中山市期末)用“>”或“<”填空:13 35;−223 ﹣3.30.(2019秋•中山市期末)若|x |=3,|y |=2,则|x +y |= .31.(2019秋•中山市期末)小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为 .32.(2019秋•盐田区期末)点A ,B ,C 在同一数轴上,其中点A ,B 分别表示﹣3,1.若BC =2,则AC = (多选).A .2B .3C .5D .633.(2019秋•盐田区期末)(多选)下列各式中,计算结果为正数的是 .A .﹣(﹣1)B .﹣|﹣1|C .(﹣1)2D .(﹣1)334.(2019秋•盐田区期末)爱德华•卡斯纳与詹姆斯•纽曼在《数学和想象》一书中,引入名为“Googol ”的大数,即在1这个数字后面跟上100个0.将“Goog 1”用科学记数法表示是1× .35.(2019秋•龙岗区期末)定义新运算:a ①b =ab +b ,例如:3①2=3×2+2=8,则(﹣3)①4= .36.(2019秋•中山区期末)银行把存入9万元记作+9万元,那么支取6万元应记作 元.37.(2019秋•东莞市期末)一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作 .38.(2019秋•东莞市期末)−112的相反数是 ,1.5的倒数是 .39.(2019秋•东莞市期末)在数轴上与表示﹣4的数相距4个单位长度的点对应的数是 .40.(2019秋•揭阳期末)如果a ,b ,c 是整数,且a c =b ,那么我们规定一种记号(a ,b )=c ,例如32=9,那么记作(3,9)=2,根据以上规定,求(﹣2,16)= .41.(2019秋•南沙区期末)有理数a 、b 在数轴上的位置如图所示,则化简|a +b |+|a ﹣b |的结果为 .42.(2019秋•肇庆期末)按照下列程序计算输出值为2018时,输入的x 值为 .43.(2019秋•福田区校级期末)通常山的高度每升高100米,气温下降0.6℃,如地面气温是﹣4℃,那么高度是2400米高的山上的气温是 .44.(2019秋•潮州期末)在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .45.(2018秋•天河区期末)观察下列式子:1①3=1×2+3=5,3①1=3×2+1=7,5①4=5×2+4=14.请你想一想:(a ﹣b )①(a +b )= .(用含a ,b 的代数式表示)46.(2018秋•顺德区期末)如图,方格中的格子填上数,使得每一行、每一列以及两条对角线所填的数字之和均相等,则x 的值为 .第1章《有理数》填空题精选参考答案与试题解析一.填空题(共46小题)1.【解答】解:由数轴上A点位置可得:1<a<2,则1﹣a<0,故|a|﹣|1﹣a|=a﹣(a﹣1)=1.故答案为:1.2.【解答】解:选择A套餐费用为:12+0.2×200=52(元),选择B套餐的费用为:0.25×200=50(元),50<52,∴选择B套餐更优惠,故答案为B.3.【解答】解:∵a+b+c=0且a>b>c,∴a>0,c<0,b可以是正数,负数或0,∴①a+b=﹣c>0,①ab可以为正数,负数或0,①ab2可以是正数或0,①ac<0,∴b2﹣ac>0,①﹣(b+c)=a>0.故答案为:①①①.4.【解答】解:∵A为数轴上表示2的点,∴B点表示的数为2﹣5=﹣3,∴点B所表示的数的绝对值3,故答案为3.5.【解答】解:2684亿=268400000000=2.684×1011.故答案为:2.684×1011.6.【解答】解:“正”和“负”相对,所以,如果收入100元记作+100元,那么支出120元记作﹣120元.故答案为:﹣1207.【解答】解:∵﹣(﹣9)=9,﹣(+9)=﹣9,∴﹣(﹣9)>﹣(+9).故答案为:>8.【解答】解:由题意可知,八折后的售价为200×0.8=160元,故答案为160元.9.【解答】解:636000000000=6.36×1011.故答案为:6.36×1011.10.【解答】解:12000=1.2×104,故答案为:1.2×104.11.【解答】解:由题意可得30﹣0.02=29.98mm,则最小可以是29.98mm,故答案为29.98mm.12.【解答】解:2×(﹣5)=﹣10.故答案为:﹣10.13.【解答】解:将520000用科学记数法表示为5.2×105.故答案为:5.2×105.14.【解答】解:如图所示:x的值为2或5.故答案为:2或5.15.【解答】解:126900000000=1.269×1011,故答案为:1.269×1011.16.【解答】解:∵A 、B 两点表示的数分别为﹣4、3,∴线段AB 的长=3﹣(﹣4)=7.故答案为7.17.【解答】解:3>﹣5.故答案为:>.18.【解答】解:44000000=4.4×107.故答案为:4.4×107.19.【解答】解:10﹣(﹣5)=10+5=15(℃).故答案为:1520.【解答】解:在(−38)4中,底数为−38.故答案为:−38.21.【解答】解:原式=1﹣4×(−18)=1+12=112, 故答案为:11222.【解答】解:36×(12−13)2=36×(16)2=36×136 =1.故答案为:1.23.【解答】解:13+4﹣2+6﹣5=16人,故答案为:16.24.【解答】解:﹣8﹣(﹣1)=﹣7故答案为:﹣7.25.【解答】解:+5﹣8=﹣3(℃)答:该地晚上的气温是﹣3℃.故答案为:﹣3.26.【解答】解:AG =8﹣(﹣4)=12,图中相邻的两个点之间的距离是2个单位长度,则C 表示﹣2+2=0,是原点.故答案为:原点.27.【解答】解:﹣2.5<﹣1<0<3.故答案为:﹣2.5<﹣1<0<3.28.【解答】解:﹣42+(﹣4)2=﹣16+16=0,故答案为:0.29.【解答】解:13<35;−223>−3.故答案为:<、>.30.【解答】解:∵|x |=3,|y |=2,∴x =±3,y =±2,(1)x =3,y =2时,|x +y |=|3+2|=5(2)x =3,y =﹣2时,|x +y |=|3+(﹣2)|=1(3)x =﹣3,y =2时,|x +y |=|﹣3+2|=1(4)x =﹣3,y =﹣2时,|x +y |=|(﹣3)+(﹣2)|=5故答案为:1或5.31.【解答】解:每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.32.【解答】解:点A ,B 在数轴上表示﹣3,1.且BC =2,当点C 在点B 的右侧时,则点C 表示的数为3,此时AC =3﹣(﹣3)=6;当点C 在点B 的左侧时,则点C 表示的数为﹣1,此时AC =﹣1﹣(﹣3)=2;因此AC 的长为2或6.故答案为:A 或D .33.【解答】解:A .﹣(﹣1)=1,故A 符合题意;B .﹣|﹣1|=﹣1,故B 不合题意;C .(﹣1)2=1,故C 符合题意;D .(﹣1)3=﹣1,故C 符合题意.故答案为:A 、C34.【解答】解:Goog 1=1×10100.故答案为:1010035.【解答】解:∵a ①b =ab +b ,∴(﹣3)①4=(﹣3)×4+4=﹣12+4=﹣8.故答案为:﹣8.36.【解答】解:由题意得,存入记为“+”,则支取记为“﹣”,则支取6万元应记作:﹣6万元.故答案为:﹣6万37.【解答】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .38.【解答】解:﹣112的相反数是112;1.5的倒数是23,故答案为:112,23.39.【解答】解:在﹣4的左边时,﹣4﹣4=﹣8,。
北师大版七年级数学上册期末复习练习题(含答案)

北师大版七年级数学上册期末复习练习题(含答案)一、单选题1.如图表示互为相反数的两个点是( )A .点A 与点B B .点A 与点DC .点C 与点BD .点C 与点D 2.下列各对算式结果相等的是( )A .52和23B .25-和()55-C .()20181-和()20171--D .52-和52- 3.定义一种新运算a ⊙b =(a +b )×2,计算(﹣5)⊙3的值为( ) A .﹣7 B .﹣1 C .1 D .﹣4 4.下列各组是同类项的一组是( )A .xy 2与-12x 2yB .-2a 3b 与12ba 3C .a 3与b 3D .3x 2y 与-4x 2yz 5.在数轴上与原点的距离等于 2 的点表示的数是( )A .2B .﹣2C .﹣1 或 3D .﹣2 或 2 6.在有理数0,│-(-313)│,-│+1000│,-(-5)中最大的数是( ) A .0 B .-(-5) C .-│+1000│ D .│-(-313)│ 7.方程2x 40-=的解是( )A . x 2=-B . x 0=C . x 2=D .1 x 2= 8.如图,△ABC 的面积为1,分别取AC 、BC 两边的中点A 1、B 1,则四边形A 1ABB 1的面积为34,再分别取A 1C 、B 1C 的中点A 2、B 2,取A 2C 、B 2C 的中点A 3、B 3,依次取下去…利用这一图形,能直观地计算出233333++++4444n =( )A .1B .144n n -C .11-4nD .414n n + 9.计算|﹣3|﹣(﹣4)=( )A .﹣1B .1C .﹣7D .710.已知一个样本容量为50,在频数分布直方图中,各小长方形的高比为2:3:4:1,那么第四组的频数是( )A .5B .6C .7D .811.温家宝总理在2010年3月5日的十一届全国人大第三次会议的政府工作报告中指出,就业形势依然严峻,中央财政拟投入433亿元用于促进就业433亿用科学记数法表示应为( )A .B .C .D .12.(2014•武汉五月调考)下列运算正确的是( )A .﹣6×(﹣3)=﹣18B .﹣5﹣68=﹣63C .﹣150+250=400D .8÷(﹣16)=﹣0.5二、填空题13.若a 是有理数,则|a+1|-2的最小值是_____,此时a 2016=_____.14.若142m x y -与22n x y -的和是单项式,则n m =_______。
北师大七年级数学上期末复习经典试题及答案

北师大版七年级上册数学期末复习典型试题一、填空题: 1、-0.5 的绝对值是,相反数是,倒数是。
2、一个数的绝对值是 4,则这个数是 ,数轴上与原点的距离为5 的数是。
3、—2x 与3x —1 互为相反数,则 。
x4、(1)设 、 互为相反数, 、 互为倒数,则 2013( )- 的值是_____________。
a b c d a bcd(2)已知a 、b 互为相反数,c 、d 互为倒数,且 m 3 ,则2a 4m 2b (cd )=_________。
2 2005 a b5、已知 0,则=___________。
ab a b 6、(1)已知a 3 (b 1)2 0,则3a b 。
a b 2012(2)如果| a 1| (b 2)2 0 则的值是______________.。
,2 (3)若 x 2 y5 0 ,则 = x y 3x yx y 2 3 7、(1)单项式 - 的系数是 2 ,次数是;多项式 2xy 1的2 5次数。
(2)单项式3的系数是___________,次数是___________.2 xy38、(1)如果3x 1 2kk 0 4是关于x 的一元一次方程,则k ____。
1(2)如果3y 9-2mm 0 关于 y 的一元一次方程,则 m = .29、(1)已知x=3 是方程ax-6=a+10 的解,则a=_____________。
x(2)若 =2 是方程3x 4 a 的解,则 1 的值是 。
x a2011 2 a 2011 10、将弯曲的河道改直,可以缩短航程,是因为:两点之间, 最短11、小明将一根木条固定在墙上只用了两个钉子,他这样做的依据是____.12、如图所示, ∠AOB 是平角, ∠AOC=30 , ∠BOD=60 , OM 、ON 分别是∠AOC 、∠BOD 的平分0 0 线, ∠MON 等于_________________.14. 如图,∠AOD=80°,∠AOB=30°,OB 是∠AOC 的平分线,则∠AOC 的度数为______,∠COD 的度数为________.13、如图,图中共有 条线段,共有个三角形。
七年级数学上册期末试卷复习练习(Word版 含答案)

七年级数学上册期末试卷复习练习(Word版 含答案) 一、初一数学上学期期末试卷解答题压轴题精选(难) 1.把一副三角板放成如图所示.
(1)当OD平分∠AOB时,求∠COB; (2)若摆成如图2,OB、OD重合,OM平分∠AOD,ON平分∠AOC,求∠MON; (3)将三角板OCD绕O点旋转,把OD旋转到∠AOB的内部或外部,(2)中的条件不变,试问∠MON的角度是否变化?若不变,求出它的值,并说理由. 【答案】 (1)解:∵OD平分∠AOB,∠AOB=90°
∴∠DOB=∠AOB=45° ∵∠DOC=30° ∴∠COB=∠DOB-∠DOC=45°-30°=15° (2)解:如图,
∵OM平分∠AOD,ON平分∠AOC ∴∠MOA=∠AOD=45° ∠AON=∠AOC=(90°+30°)=60° ∴∠MON=∠AON-∠AOM=60°-45°=15° (3)解:把OD旋转到∠AOB的内部时,如图, ∵OM平分∠AOD,ON平分∠AOC ∴∠MOA=∠AOD=(90°-∠BOD)=45°-∠BOD ∠AON=∠AOC=(∠AOB+∠COD-∠BOD)=60°-∠BOD ∴∠MON=∠AON-∠MOA=15° 把OD旋转到∠AOB的外部时,如图,
设∠AOC=α,则∠AOD=360°-30°-α=330°-α ∵OM平分∠AOD,ON平分∠AOC
∴∠MOA=∠AOD=(330°-α)=165°-α ∠AON=∠AOC=α ∠MON=∠MOA+∠AON=165°-α+α=165° ∴∠MON=15°或∠MON=165°
【解析】【分析】(1)利用角平分线的定义求出∠DOB的度数,再根据∠COB=∠DOB-∠DOC,就可求出结果。
(2)利用角平分线的定义分别求出∠MOA和∠AON的度数,再求出∠MON的度数。
(3)把OD旋转到∠AOB的内部时,利用角平分线的定义,可推出∠MOA=45°-∠BOD,∠AON=60°-∠BOD,从而可求出∠MON的度数;把OD旋转到∠AOB的外部时,设 ∠AOC=α,利用角平分线的定义,可表示出∠MOA=165°-α,∠AON=α,再根据∠MON=∠MOA+∠AON,就可得出答案。
人教版七年级上册数学期末综合复习解答题专题训练(含答案)

人教版七年级上册数学期末综合复习解答题专题训练一、有理数的计算:1.计算:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9).(2).(3).(4)﹣24+3×(﹣1)6﹣(﹣2)3.2.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)3.计算(1);(2);(3);(4).4.为庆祝端午节,和平加油站开展了加油每满10L返现金5元(不足10L不返现金)的活动.出租车司机王师傅只在东西走向的路上开车接送乘客,他7:00从甲地出发(向东行驶的里程数记作正数),到8:00为止,他所行驶的里程记录如下(单位:公里)+4,﹣3,﹣6,+13,﹣10,﹣4,+5.(1)计算到8:00时,王司机在甲地的哪个方向,距甲地多远?(2)若王师傅当日工作10小时,每小时行驶的里程相同,该车每百公里耗油6L,每升油5元,则王师傅当日在该加油站加油共花费多少元?5.已知13=1=×12×22,13+23=9=×22×32,13+23+33=36=×32×42,…,按照这个规律完成下列问题:(1)13+23+33+43+53==×2×2.(2)猜想:13+23+33+…+n3=.(3)利用(2)中的结论计算:(写出计算过程)113+123+133+143+153+163+…+393+403.6.定义新运算“@”与“⊕”:a@b=,a⊕b=.(1)计算3@(﹣2)﹣(﹣2)⊕(﹣1)的值;(2)若A=3b@(﹣a)+a⊕(2﹣3b),B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b),比较A 和B的大小.二、解一元一次方程:7.解方程:(1)4x﹣3=7﹣x;(2)4x﹣2(3x﹣2)=2(x﹣1);(3);(4).8.解方程:(1)5x﹣4=2(2x﹣3);(2)﹣=1;(3)﹣=1+;(4)﹣=0.75.9.解方程(1)3x﹣5=8;(2)﹣2x+3=4x﹣9;(3)3(x+2)﹣2(x+2)=2x+4;(4).10.解下列方程.(1)2(x﹣2)﹣3(4x﹣1)=9(1﹣x);(2)﹣=﹣2;(3)﹣=1+(4)=0.75三、整式的加减11.若多项式2mx2﹣x2+5x+8﹣(7x2﹣3y+5x)的值与x无关,求m2﹣[2m2﹣(5m﹣4)+m]的值.12.先化简,再求值:(1)(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中.(2),其中13.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.14.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.15.先化简,再求值:2(x2y+xy2)﹣2(x2y﹣x)﹣2xy2﹣2y,其中x=﹣2,y=2.16.先化简,再求值:4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣)],其中x=﹣1,y=2.17.a、b、c三个数在数轴上位置如图所示,且|a|=|b|(1)求出a、b、c各数的绝对值;(2)比较a,﹣a、﹣c的大小;(3)化简|a+b|+|a﹣b|+|a+c|+|b﹣c|.18.有理数a、b、c在数轴上的位置如图.(1)判断正负,用“>”或“<”填空:c﹣b0,a+b0,﹣a+c0(2)化简:|c﹣b|+|a|.19.化简已知a,b,c在数轴上的位置如图所示:(1)化简:|a+b|﹣|c﹣b|+|b﹣a|(2)若a的绝对值的相反数是﹣2,﹣b的倒数是它本身,c2=4,求﹣a+2b+c﹣(a+b﹣c)的值.20.已知有理数a、b、c在数轴上的位置,(1)a+b0;a+c0;b﹣c0;(用“>,<,=”填空)(2)试化简|a+b|﹣|a+c|+|b﹣c|.四、几何图形初步:21.如图,C是线段AB上一点,M,N分别是AC,BC的中点.(1)若AC=6cm,BC=4cm,求线段MN的长;(2)若线段CM与线段CN的长度之比为2:1,且线段CN=2cm,求线段AB的长.22.如图,C、D是线段AB上的点,AD=7cm,CB=7cm.(1)线段AC与BD相等吗?请说明理由.(2)如果M是CD的中点,MD=2cm,求线段AB的长.23.如图,延长线段AB到点F,延长线段BA到点E,若点M、N分别是线段AE、BF的中点,若AE:AB:BF=1:2:3,且EF=24cm,求线段MN的长.24.如图,点C在线段AB上,点M、N分别是线段AC,BC的中点.线段AB=14cm.(1)求线段MN的长;(2)若点C在线段AB的延长线上,求线段MN的长;(3)若点C在直线AB上,求线段MN的长.25.如图,AB:BC:CD=2:3:4,AB的中点M与CD的中点N的距离是3cm,则线段BC的长度.26.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,若∠BOC比∠DOE大75o.求∠AOD和∠EOF的度数.27.如图,直线AB,CD相交于点O,EO⊥CD于点O,FO⊥AB于点O.若∠AOE=50°,求∠BOC和∠COF.28.如图,直线AB,CD相交于点O,EO⊥AB,垂足为O.(1)若∠EOC=35°,求∠AOD的度数;(2)若∠BOC=2∠AOC,求∠DOE的度数.参考答案1.解:(1)(﹣5)+(﹣4)﹣(+101)﹣(﹣9)=﹣5﹣4﹣101+9=﹣101.(2)=﹣18﹣1÷(﹣16)=﹣18﹣(﹣)=﹣17.(3)=(5﹣5×)×(﹣4)=(5﹣)×(﹣4)=×(﹣4)=﹣15.(4)﹣24+3×(﹣1)6﹣(﹣2)3=﹣16+3×1﹣(﹣8)=﹣16+3+8=﹣5.2.解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.3.解:(1)=++﹣=﹣+=﹣=﹣;(2)=(﹣)×÷(﹣6)2﹣1=(﹣)×÷36﹣1=(﹣)××﹣1=﹣1=﹣;(3)=﹣1×(﹣9×﹣2)×(﹣)=﹣1×(﹣4﹣2)×(﹣)=﹣1×(﹣6)×(﹣)=﹣9;(4)=×(﹣25)﹣49×(﹣+)=(﹣1)﹣49×+49×﹣49×=(﹣1)﹣42+﹣1=﹣33.4.解:(1)4﹣3﹣6+13﹣10﹣4+5=﹣1(公里),∴王师傅在甲地的西1公里位置;(2)10×(4+3+6+13+10+4+5)=450(公里),450÷100×6=27(L),27×5﹣2×5=125(元).∴王师傅当日在该加油站加油共花费125元.5.解:(1)13+23+33+43+53=225=×52×62(2)猜想:13+23+33+…+n3=×n2×(n+1)2(3)利用(2)中的结论计算:113+123+133+143+153+163+…+393+403.解:原式=13+23+33+...+393+403﹣(13+23+33+ (103)=×402×412﹣×102×112=672400﹣3025=6693756.解:(1)3@(﹣2)﹣(﹣2)⊕(﹣1)=﹣=+=1;(2)A=3b@(﹣a)+a⊕(2﹣3b)=+=3b﹣1,B=a@(﹣3b)+(﹣a)⊕(﹣2﹣9b)=+=3b+1,则A<B.7.解:(1)∵4x﹣3=7﹣x,∴4x+x=7+3.∴5x=10.∴x=2.(2)∵4x﹣2(3x﹣2)=2(x﹣1),∴4x﹣6x+4=2x﹣2.∴4x﹣6x﹣2x=﹣2﹣4.∴﹣4x=﹣6.∴x=.(3)∵,∴6x﹣3(3x+2)=18﹣2(5x﹣2).∴6x﹣9x﹣6=18﹣10x+4.∴6x﹣9x+10x=18+4+6.∴7x=28.∴x=4.(4)∵,∴30(0.6x+0.5)﹣100(0.03x+0.2)=2(x﹣9).∴18x+15﹣3x﹣20=2x﹣18.∴18x﹣3x﹣2x=﹣18+20﹣15.∴13x=﹣13.∴x=﹣1.8.解:(1)5x﹣4=2(2x﹣3),5x﹣4=4x﹣6,x=﹣2.(2)﹣=1,5(x﹣3)﹣2(4x+1)=10,5x﹣15﹣8x﹣2=10,﹣3x=10+15+2,x=﹣9;(3)﹣=1+,6x﹣2(5x+11)=12+4(2x﹣4),6x﹣10x﹣22=12+8x﹣16,6x﹣10x﹣8x=12﹣16+22,﹣12x=18,x=﹣;(4)﹣=0.75,﹣=0.75,2(30+2x)﹣4(20+3x)=3,60+4x﹣80﹣12x=3,4x﹣12x=3﹣60+80,﹣8x=23,x=﹣.9.解:(1)3x﹣5=8移项,3x=8+5.合并同类项,3x=13.x的系数化为1,x=.∴这个方程的解为x=.(2)﹣2x+3=4x﹣9移项,﹣2x﹣4x=﹣9﹣3.合并同类项,﹣6x=﹣12.x的系数化为1,x=2.∴这个方程的解为x=2.(3)3(x+2)﹣2(x+2)=2x+4去括号,3x+6﹣2x﹣4=2x+4.移项,3x﹣2x﹣2x=4+4﹣6.合并同类项,﹣x=2.x的系数化为1,x=﹣2.∴这个方程的解为x=﹣2.(4)去分母,3(3y﹣1)﹣12=2(5y﹣7).去括号,9y﹣3﹣12=10y﹣14.移项,9y﹣10y=﹣14+12+3.合并同类项,﹣y=1.y的系数化为1,y=﹣1.∴这个方程的解为y=﹣1.10.解:(1)去括号得:2x﹣4﹣12x+3=9﹣9x,移项合并得:﹣x=10,解得:x=﹣10;(2)去分母得:4x﹣2﹣5x﹣2=3﹣6x﹣12,移项合并得:5x=﹣5,解得:x=﹣1;(3)去分母得:3x﹣5x﹣11=6+4x﹣8,移项合并得:﹣6x=9,解得:x=﹣1.5;(4)方程整理得:﹣=0.75,即15+x﹣20﹣3x=0.75,移项合并得:﹣2x=5.75,解得:x=﹣.11.解:原式=2mx2﹣x2+5x+8﹣7x2+3y﹣5x=(2m﹣8)x2+3y+8,因为此多项式的值与x无关,所以2m﹣8=0,解得:m=4.m2﹣[2m2﹣(5m﹣4)+m]=m2﹣(2m2﹣5m+4+m)=﹣m2+4m﹣4,当=4时,原式=﹣42+4×4﹣4=﹣4.12.解:(1)∵(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a)=5a2+2a+1﹣12+32a﹣8a2+3a2﹣a=33a﹣11,∴当a=时,原式=33a﹣11=33×﹣11=0;(2)∵=2x2﹣2x2﹣2+5x2﹣3=5x2﹣5,∴x=﹣时,原式=5x2﹣5=5×(﹣)2﹣5=﹣.13.解:原式=3x2﹣6xy﹣[3x2﹣2y+2xy+2y]=3x2﹣6xy﹣(3x2+2xy)=3x2﹣6xy﹣3x2﹣2xy=﹣8xy当时原式=﹣8×(﹣)×(﹣3)=﹣12.14.解:(1)原式=4x﹣6y﹣3x﹣2y﹣1=x﹣8y﹣1,将x=2,y=﹣0.5代入,得原式=x﹣8y﹣1=2﹣8×(﹣0.5)﹣1=2+4﹣1=5;(2)原式=﹣3a2+4ab+a2﹣4a﹣4ab=﹣2a2﹣4a,当a=﹣2时,原式=﹣8+8=0.15.解:原式=2x2y+2xy2﹣2x2y+2x﹣2xy2﹣2y=2x﹣2y,当x=﹣2,y=2时,原式=﹣4﹣4=﹣8.16.解:原式=4xy﹣(x2+5xy﹣y2﹣2x2﹣6xy+y2)=4xy﹣(﹣x2﹣xy)=5xy+x2,因为x=﹣1,y=2,所以原式=5×(﹣1)×2+(﹣1)2=﹣9.17.解:(1)∵从数轴可知:c<b<0<a,∴|a|=a,|b|=﹣b,|c|=﹣c;(2)∵从数轴可知:c<b<0<a,|c|>|a|,∴﹣a<a<﹣c;(3)根据题意得:a+b=0,a﹣b>0,a+c<0,b﹣c>0,则|a+b|+|a﹣b|+|a+c|+|b﹣c|=0+a﹣b﹣a﹣c+b﹣c=﹣2c.18.解:由图可知,a<0,b>0,c>0,且|b|<|a|<|c|,(1)c﹣b>0,a+b<0,﹣a+c>0;(2)原式=c﹣b﹣a.故答案为:>,<,>.19.解:(1)∵a+b>0,c﹣b<0,b﹣a<0,∴原式=a+b+c﹣b﹣b+a=2a﹣b+c;(2)由题意,得a=2,b=﹣1,c=﹣2,∴﹣a+2b+c﹣(a+b﹣c)=﹣a+2b+c﹣a﹣b+c=﹣2a+b+2c=﹣4﹣1﹣4=﹣9.20.解:(1)由数轴可得:c<a<0<b,∴a+b<0,a+c<0,b﹣c>0,(2)∵a+b<0,a+c<0,b﹣c>0,∴|a+b|﹣|a+c|+|b﹣c|=﹣a﹣b+a+c+b﹣c=0.故答案为:(1)<;<;>;(2)原式=0.21.解:(1)因为M,N分别是AC,BC的中点,所以,,所以MN=CM+CN=3+2=5(cm).(2)因为线段CM与线段CN的长度之比为2:1,CN=2cm,所以线段CM=4cm.因为M,N分别是AC,BC的中点,所以AC=2CM=8cm,BC=2CN=4cm,所以AB=AC+BC=8+4=12(cm).22.解:(1)相等,因为AD=7cm,CB=7cm.所以AD=CB,因为AC=AD﹣CD,BD=CB﹣CD,所以AC=BD;(2)因为M是CD的中点,所以CM=MD,由(1)得,AC=BD,所以AC+CM=BD+MD,所以AM=MB,因为AD=7cm,MD=2 cm,所以AM=7﹣2=5(cm),所以AB=2AM=10(cm).23.解:设EA=xcm,则AB=2xcm,BF=3xcm,EF=6xcm.∵点M,N分别是线段EA,BF的中点,∴EM=MA=xcm,BN=NF=xcm.∵AB=2xcm,∴MN=MA+AB+BN=4xcm.∵EF=24cm,∴6x=24,解得:x=4,∴MN=4x=16cm.24.解:(1)∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC+CN=AC+BC=AB=7cm.(2)当点C在线段AB的延长线上时,如下图:∵点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=MC﹣NC==AC﹣BC=AB=7cm.(3)由(1)、(2)小题知,当点C在线段AB上或点C在线段AB的延长线上时,MN=AB=7cm.当点C在线段AB的反向延长线上时,如下图:点M,N分别是线段AC,BC的中点.∴MC=AC,CN=BC.∴MN=NC﹣MC=BC﹣AC=AB=7cm.综上:当点C在直线AB上时MN=7cm.25.解:设AB=2xcm,BC=3xcm,CD=4xcm,∵M是AB的中点,N是CD的中点,∴MB=xcm,CN=2xcm,∴MB+BC+CN=x+3x+2x=3,∴x=0.5,∴3x=1.5,即BC=1.5cm.26.解:设∠BOD=2x,∵OE平分∠BOD,∴∠DOE=∠EOB==x,∵∠BOC=∠DOE+75°=x+75°.∴x+75°+2x=180°,解得:x=35°,∴∠BOD=2×35°=70°,∴∠AOD=180°﹣∠BOD=180°﹣70°=110°,∵FO⊥CD,∴∠BOF=90°﹣∠BOD=90°﹣70°=20°,∴∠EOF=∠FOB+∠BOE=20°+35°=55°.所以∠AOD和∠EOF的度数分别为:110°、55°.27.解:∵EO⊥CD于点O,∴∠DOE=90°,∴∠AOD=∠DOE﹣∠AOE=90°﹣50°=40°,∵∠BOC和∠AOD为对顶角,∴∠BOC=∠AOD=40°,∵FO⊥AB于点O,∴∠BOF=90°,∴∠COF=∠BOF+∠BOC=90°+40°=130°.28.解:(1)∵EO⊥AB,∴∠BOE=90°,∵∠EOC=35°,∴∠BOC=∠BOE+∠EOC=125°.∴∠AOD=∠BOC=125°,答:∠AOD的度数为125°;(2)∵∠AOC+∠BOC=180°,∠BOC=2∠AOC,∴∠AOC+2∠AOC=180°∴∠AOC=60°,∴∠BOD=∠AOC=60°,∴∠EOD=∠BOE+∠BOD=90°+60°=150°,答:∠DOE的度数为150°.。
七年级数学上册期末复习综合测试题(含答案)
七年级数学上册期末复习综合测试题(含答案)一.精心选择(本大题有12小题,每小题2分,共24分)1.12021-的倒数是( ) A .2021- B .12021- C .2021 D .120212.关于直线,下列说法正确的是( )A .可以量长度B .有两个端点C .可以用两个小写字母来表示D .没有端点 3.下列说法不正确的是( )A .2a 是2个数a 的和B .2a 是2和a 的积C .2a 是偶数D .2a 是单项式4.下列各组中的两项,是同类项的为( ) A .25x y 与xyB .25x y -与2yxC .25ax 与2yx D .38与3x5.在下列方程中:①0x =;②21x y -=;③20n n +=;④532yy =+;⑤221x x -=+.其中一元一次方程的个数是( ). A .1 B .2 C .3 D .46.钟表上的时间指示为两点半,这时时针和分针之间的夹角为( ) A .120° B .105° C .100° D .90° 7.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .12-B .12C .56-D .568.图(1)是一个长为2a ,宽为2b (a b >)的长方形,用剪刀沿图中虚线剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空余的正方形的面积是( )A .abB .2()a b +C .22a b - D .2()a b -9.当1x =时,代数式31px qx ++的值为2021,则当1x =-时,31px qx ++的值为( ) A .2019- B .2021- C .2020 D .202110.如图,将一副三角板的直角顶点重合放置于点A 处(两块三角板看成在同一平面内),将其中一块三角板绕点A 旋转的过程中,下列结论一定成立的是( )A .BAD DAC ∠=∠B .BAD EAC ∠≠∠C .90BAE DAC ∠-∠=︒D .180BAE DAC ∠+∠=︒11.一件夹克衫先按成本价提高60%标价,再将标价打7折出售,结果获利36元,设这件夹克衫的成本价是x 元,那么根据题意,所列方程正确的是( ) A .0.7160%6()3x x +=- B .0.7160%6()3x x +=+ C .0.7160%6(3)x x +=-D .0.7160%6(3)x x +=+12.人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n 个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是( )A .150B .200C .355D .505二.准确填空(本大题有6个小题,每小题3分,共18分)13.如果零上2℃记为2+℃,那么3-℃表示_______________. 14.3015︒'=__________°.15.一个长方形的宽为cm x ,长比宽的2倍多1 cm ,这个长方形的周长为__________cm .16.若27x a b 与3ya b -的和为单项式,则xy =_______.17.如图,线段AB 表示一根对折以后的绳子,现从P 处把绳子剪断,剪断后的各段绳子中最长的一段为32cm ,若12AP PB =,则这条绳子的原长为__________cm .18.做一个数字游戏:第一步:取一个自然数18n =,计算211n +得1a ; 第二步:算出1a 的各位数字之和得2n ,计算221n +得2a ; 第三步:算出2a 的各位数字之和得3n ,计算231n +得3a ;…,以此类推,则2021a =__________.三.细心解答(本大题有8个小题,共58分)19.(本小题满分6分)计算:()32142⎛⎫-⨯- ⎪⎝⎭20.(本小题满分6分)已知232A a ab b =-+-,22B a ab =-,化简2A B -.21.(本小题满分6分) 以下是小明解方程1323x x +--=1的解答过程. 解:去分母,得31231()()x x +--=.去括号,得31231x x +-+=.移项,合并同类项,得3x =-.小明的解答过程是否有错误?如果有错误,写出正确的解答过程. 22.(本小题满分6分)已知:如图,点D 、C 、E 是线段AB 上依次排列的三点,当点C 、D 分别是AB 和AE 的中点,且15AB =, 4.5CE =时,求线段CD 的长.23.(本小题满分8分)将连续偶数2,4,6,8,…排成如图数表.(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为a ,用代数式表示十字框中的五个数的和.(3)若将十字框上下左右移动,可框住另外的五个数,所框五个数的和能等于2020吗?若能,写出这五个数;如不能,请说明理由. 24.(本小题满分8分)为了预防新冠肺炎的发生,学校免费为师生提供防疫物品.某校购进洗手液与84消毒液共400瓶.已知洗手液的价格是25元/瓶,84消毒液的价格是15元/瓶,总共消费了7200元.该校购进洗手液和84消毒液各多少瓶?25.(本小题满分9分)已知:点O 是直线AB 上的一点,90COD ∠=︒.OE 是BOD ∠的平分线. (1)当点C 、D 、E 在直线AB 的同侧(如图)时,①若35COE ∠=︒,求AOD ∠的度数. ②若COE α∠=,则AOD ∠=________.(用含α的式子表示) (2)当点C 与点D 、E 在直线AB 的两侧(如图)时,(1)中②的结论是否仍然成立?请给你的结论并说明理由.26.(本小题满分9分)如图,甲、乙两人(看成点)分别在数轴3-和5的位置上,沿数轴做移动游戏.每次的移动游戏规则如下:裁判先捂住一枚硬币,再让两人猜向上一面是正是反,而后根据所猜结果进行移动.①若都对或都错,则甲向东移动1个单位,同时乙向西移动1个单位; ②若甲对乙错,则甲向东移动4个单位,同时乙向东移动2个单位; ③若甲错乙对,则甲向西移动2个单位,同时乙向西移动4个单位.(1)若第一次移动游戏,甲、乙两人都猜对了,则甲、乙两人之间的距离是_______个单位; (2)若完成了10次移动游戏,发现甲、乙每次所猜结果均为一对一错.设乙猜对n 次,且他最终停留的位置对应的数为m .请你用含n 的代数式表示m ; (3)经过_______次移动游戏,甲、乙两人相遇。
北师大版七年级数学上册期末数轴有关压轴题专题复习练习题(含答案)
北师大版七年级数学上册期末数轴有关压轴题专题复习练习题1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =,(1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ;(2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.3、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m 和数n 的两点之间的距离等于|m ﹣n |.如果表示数a 和﹣2的两点之间的距离是3,那么a = ;(2)若数轴上表示数a 的点位于﹣4与2之间,求|a +4|+|a ﹣2|的值;(3)当a 取何值时,|a +5|+|a ﹣1|+|a ﹣4|的值最小,最小值是多少?请说明理由.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为,,m的值为;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc0,a+b0,ab﹣ac0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)10、数轴上两个质点A .B 所对应的数为﹣8、4,A .B 两点各自以一定的速度在数轴上运动,且A 点的运动速度为2个单位/秒.(1)点A .B 两点同时出发相向而行,在4秒后相遇,求B 点的运动速度;(2)A 、B 两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A 、B 两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C 点从原点出发作同方向的运动,且在运动过程中,始终有CA =2CB ,若干秒钟后,C 停留在﹣10处,求此时B 点的位置?11、如图,在数轴上A 点表示数a ,B 点表示数b ,AB 表示A 点和B 点之间的距离,C 是AB的中点,且a 、b 满足|a+3|+(b+3a )2=0.(1)求点C 表示的数;(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动,若AP+BQ=2PQ ,求时间t ;(3)若点P 从A 向右运动,点M 为AP 中点,在P 点到达点B 之前:①的值不变;②2BM ﹣BP 的值不变,其中只有一个正确,请你找出正确的结论并求出其值.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c . (1)请求出a 、b 、c 的值;(2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C 之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.13、如图,在数轴上点A 表示的数是8,若动点P 从原点O 出发,以2个单位/秒的速度向左运动,同时另一动点Q 从点A 出发,以4个单位/秒的速度也向左运动,到达原点后立即以原来的速度返回,向右运动,设运动的时间为t (秒).(1)当t =0.5时,求点Q 到原点O 的距离;(2)当t =2.5时求点Q 到原点O 的距离;(3)当点Q 到原点O 的距离为4时,求点P 到原点O 的距离.14、已知,A ,B 在数轴上对应的数分别用a ,b 表示,且. (1)数轴上点A表示的数是 ,点B 表示的数是(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,当C 点在数轴上且满足AC=3BC 时,求C 点对应的数.15、阅读理解:若A 、B 、C 为数轴上三点,若点C 到A 的距离是点C 到B 的距离2倍,我们就称点C 是【A ,B 】的好点.例如,如图1,点A 表示的数为﹣1,点B 表示的数为2.表示1的点C 到点A 的距离是2,到点B 的距离是1,那么点C 是【A ,B 】的好点.又如,表示0的点D 到点A 的距离是1,到点B 的距离是2.那么点D 就不是【A ,B 】的好点,但点D 是【B ,A 】的好点:知识运用:051-b 5a 2=++)((1)如图1,点B是【D,C】的好点吗?是(填是或不是);(2)如图2,A、B为数轴上两点,点A所表示的数为﹣40,点B所表示的数为20.现有一只电子蚂蚁P从点B出发,以2个单位每秒的速度向左运动,到达点A停止当t为何值时,P、A和B中恰有一个点为其余两点的好点?16、如图,数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,a、c满足|a+3|+(c﹣8)2=0,AB表示点A、B之间的距离,且AB=|a﹣b|.(1)a=,b=;(2)若将数轴折叠,使得A点与C点重合,则点B与数表示的点重合;(3)点A、B.、C在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AC=,BC=.(用含t的代数式表示)(4)在(3)的条件下,请问:3BC﹣2AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.17、已知数轴上两点A、B对应的数分别是6,﹣8,M、N、P为数轴上三个动点,点M从A点出发,速度为每秒2个单位,点N从点B出发,速度为M点的3倍,点P从原点出发,速度为每秒1个单位.(1)若点M向右运动,同时点N向左运动,求多长时间点M与点N相距54个单位?(2)若点M、N、P同时都向右运动,求多长时间点P到点M,N的距离相等?(3)当时间t满足t1<t≤t2时,M、N两点之间,N、P两点之间,M、P两点之间分别有55个、44个、11个整数点,请直接写出t 1,t 2的值.参考答案:1、有理数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,若a =-2,b =-3,c =, (1)填空:A ,B 之间的距离为,之间的距离为 ,A ,C 之间的距离为 ;(2)问在数轴上是否存在一点P ,使P 与A 的距离是P 与C 的距离的3倍,若存在,请求出P 点对应的有理数;若不存在,请说明理由.解:(1)1 ,311,38 (2)存在.设P 点对应的有理数为x. ①当点P 在点A 的左边时,有-2-x=3(32-x ) 解之得:x=2 (不合条件,舍去) ②当点P 在点A 和点C 之间时,有x -(-2)= 3 (32-x) 解之得:x=0③当点P 在点C 的右边时,有x -(-2)= 3 (x -32) 解之得:x=2综上所述,满足条件的P 点对应的有理数为0或2.2、操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使1表示的点与-1表示的点重合,则-3表示的点与________表示的点重合;操作二:(2)折叠纸面,使-1表示的点与3表示的点重合,回答以下问题:①5表示的点与数________表示的点重合;②若数轴上A 、B 两点之间距离为11(A 在B 的左侧),且A 、B 两点经折叠后重合,求A 、B 两点表示的数是多少.解:(1)3 (2)①-3 ②由题意可得,A 、B 两点距离对称点的距离为11÷2=5.5.∵对称点是表示1的点,∴A 、B 两点表示的数分别是-4.5,6.5.、323、结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是 3 ;表示﹣3和2两点之间的距离是 5 ;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5 ;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.【解答】解:(1)3,5,1或﹣5;(2)因为|a+4|+|a﹣2|表示数轴上数a和﹣4,2之间距离的和.又因为数a位于﹣4与2之间,所以|a+4|+|a﹣2|=6;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.所以当a=1时,式子的值最小,此时|a+5|+|a﹣1|+|a﹣4|的最小值是9.4、数轴上从左到右的三个点A,B,C所对应的数分别为a,b,c.其中AB=2017,BC=1000,如图所示.(1)若以B为原点,写出点A,C所对应的数,并计算a+b+c的值.(2)若原点O在A,B两点之间,求|a|+|b|+|b﹣c|的值.(3)若O是原点,且OB=17,求a+b﹣c的值.【答案】解:(1)∵点B为原点,AB=2017,BC=1000,∴点A表示的数为a=﹣2017,点C表示的数是c=1000,∴a+b+c=﹣2017+0+1000=﹣1017.(2)∵原点在A,B两点之间,∴|a|+|b|+|b﹣c|=AB+BC=2017+1000=3017.答:|a|+|b|+|b﹣c|的值为3017.(3)若原点O在点B的左边,则点A,B,C所对应数分别是a=﹣2000,b=17,c=1017,则a+b﹣c=﹣2000+17﹣1017=﹣3000;若原点O在点B的右边,则点A,B,C所对应数分别是a=﹣2034,b=﹣17,c=983,则a+b﹣c=﹣2034﹣17﹣983=﹣3034.5、如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m.(1)若点C为原点,BC=1,则点A,B所对应的数分别为﹣3 ,﹣1 ,m的值为﹣4 ;(2)若点B为原点,AC=6,求m的值.(3)若原点O到点C的距离为8,且OC=AB,求m的值.【答案】解:(1)∵点C为原点,BC=1,∴B所对应的数为﹣1,∵AB=2BC,∴AB=2,∴点A所对应的数为﹣3,∴m=﹣3﹣1+0=﹣4;故答案为:﹣3,﹣1,﹣4;(2)∵点B为原点,AC=6,AB=2BC,∴点A所对应的数为﹣4,点C所对应的数为2,∴m=﹣4+2+0=﹣2;(3)∵原点O到点C的距离为8,∴点C所对应的数为±8,∵OC=AB,∴AB=8,当点C对应的数为8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为4,点A所对应的数为﹣4,∴m=4﹣4+8=8;当点C所对应的数为﹣8,∵AB=8,AB=2BC,∴BC=4,∴点B所对应的数为﹣12,点A所对应的数为﹣20,∴m=﹣20﹣12﹣8=﹣40综上所述m=8或﹣40.6、如图所示,点A、B在数轴上分别表示有理数a、b,A、B两点之间距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.回答下列问题:(1)若x表示一个有理数,|x﹣2019|+|x﹣2020|有最小值吗?若有,请求出最小值,若没有,写出理由.(2)求|x﹣1|+2|x﹣3|+3|x﹣4|的最小值.(3)已知(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,求x+2y+3z的最大值和最小值.解:(1)|x﹣2019|+|x﹣2020|表示数轴上表示x的点到表示2019、2020点的距离之和,要使距离之和最小,则2019≤x≤2020,∴|x﹣2019|+|x﹣2020|的最小值为2020﹣2019=1,答:|x﹣2019|+|x﹣2020|的最小值为1;(2)由(1)得,当x=3时,|x﹣1|+2|x﹣3|+3|x﹣4|的值最小,最小值为5.(3)当﹣1≤x≤2时,|x+1|+|x﹣2|的最小值为3,当﹣1≤y≤2时,|y﹣2|+|y+1|的最小值为3,当﹣1≤z≤3时,|z﹣3|+|z+1|的最小值为4,∵(|x+1|+|x﹣2|)(|y﹣2|+|y+1|)(|z﹣3|+|z+1|)=36,∴各自均取最小值,当x=﹣1、y=﹣1、z=﹣1时,x+2y+3z的值最小,x+2y+3z=﹣6,当x=2、y=2、z=3时,x+2y+3z的值最小,x+2y+3z=15,答:x+2y+3z的最大值为15,最小值为﹣6.7、已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c﹣10)2=0;(1)求a、b、c的值;(2)动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)动点P从A出发向右运动,速度为每秒1个单位长度,同时动点Q从C出发向左运动,速度为每秒2个单位的速度.设移动时间为t秒.求t为何值时,P、Q两点之间的距离为8?解:(1)∵|a+24|+|b+10|+(c﹣10)2=0,∴a+24=0,b+10=0,c﹣10=0,解得:a=﹣24,b=﹣10,c=10.(2)AB=﹣10﹣(﹣24)=14.①当点P在线段AB上时,t=2(14﹣t),解得:t=,∴点P的对应的数是﹣24+=﹣;②当点P在线段AB的延长线上时,t=2(t﹣14),解得:t=28,∴点P的对应的数是﹣24+28=4.综上所述,点P所对应的数是﹣或4.(3)点P、Q相遇前,t+2t+8=34,解得:t=;点P、Q相遇后,t+2t﹣8=34,解得:t=14.综上所述:当Q点开始运动后第秒或14秒时,P、Q两点之间的距离为8.8、已知A,B,C三点在数轴上的位置如图所示,它们表示的数分别是a,b,c.(1)填空:abc<0,a+b>0,ab﹣ac>0;(填“>”,“=”或“<”)(2)若|a|=2且点B到点A,C的距离相等,①当b2=16时,求c的值;②P是数轴上B,C两点之间的一个动点,设点P表示的数为x,当P点在运动过程中,bx+cx+|x﹣c|﹣10|x+a|的值保持不变,求b的值.【解答】解:(1)∵a<0<b<c,∴abc<0,a+b>0,ab﹣ac>0,故答案为:<,>,>;(2)①∵|a|=2 且a<0,∴a=﹣2,∵b2=16 且b>0,∴b=4,∵点B到点A,C的距离相等,∴|4﹣(﹣2)|=|c﹣4|,∴c=10;②依题意,得bx+cx+|x﹣c|﹣10|x+a|=bx+cx+c﹣x﹣10x﹣10a=(b+c﹣11)x﹣10a+c,∴原式=(b+c﹣11)x﹣10a+c∵当P点在运动过程中,原式的值保持不变,即原式的值与x无关,∴b+c﹣11=0,∵b+2=c﹣b,∴b=3.9、如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条使数轴上表示﹣1的点与表示5的点重合,则折痕与数轴的交点表示的数是 2 ;(2)如果数轴上两点之间的距离为6+m2(m为常数),这两点经过(1)的折叠方式后折痕与数轴的交点与(1)中的交点相同,求左边这个点表示的数;(用含m的代数式表示)(3)如图2,若将此纸条沿A,B处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,求最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【解答】解:(1)由折叠时,点﹣1与5是对称的,∴﹣1和5的中点为折痕与数轴的交点,∴交点为2,故答案为2;(2)设两个点左边的为x,右边的为y,∵两点之间的距离为6+m2,∴y﹣x=6+m2,由(1)知交点为2,∴x+y=4,∴x=﹣1﹣,∴左边的这个点表示的数是﹣1﹣.(3)对折n次后,每两条相邻折痕间的距离=,∴最右端的折痕与数轴的交点表示的数为4﹣.10、数轴上两个质点A.B所对应的数为﹣8、4,A.B两点各自以一定的速度在数轴上运动,且A点的运动速度为2个单位/秒.(1)点A.B两点同时出发相向而行,在4秒后相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CA=2CB,若干秒钟后,C停留在﹣10处,求此时B点的位置?解(1)设B点的运动速度为x个单位/秒,A.B两点同时出发相向而行,他们的时间均为4秒,则有:(2+x)×4=12.解得x=1,所以B点的运动速度为1个单位/秒;(2)设经过时间为t.则B在A的前方,B点经过的路程﹣A点经过的路程=6,则2t﹣t=6,解得t=6.A在B的前方,A点经过的路程﹣B点经过的路程=6,则2t﹣t=12+6,解得t=18.(3)设点C的速度为y个单位/秒,运动时间为t,始终有CA=2CB,即:8+(2﹣y)t=2×[4+(y﹣1)t].解得y=.当C停留在﹣10处,所用时间为:秒.B的位置为.11、如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,C是AB的中点,且a、b满足|a+3|+(b+3a)2=0.(1)求点C表示的数;(2)点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,若AP+BQ=2PQ,求时间t;(3)若点P从A向右运动,点M为AP中点,在P点到达点B之前:①的值不变;②2BM﹣BP的值不变,其中只有一个正确,请你找出正确的结论并求出其值.【解答】解:(1)∵|a+3|+(b+3a)2=0,∴a+3=0,b+3a=0,解得a=﹣3,b=9,∴=3,∴点C表示的数是3;(2)∵AB=9+3=12,点P从A点以3个单位每秒向右运动,点Q同时从B点以2个单位每秒向左运动,∴AP=3t,BQ=2t,PQ=12﹣5t.∵AP+BQ=2PQ,∴3t+2t=24﹣10t,解得t=;还有一种情况,当P运动到Q的左边时,PQ=5t﹣12,方程变为2t+3t=2(5t﹣12),求得t=24/5(6分)(3)∵PA+PB=AB为定值,PC先变小后变大,∴的值是变化的,∴①错误,②正确;∵BM=PB+,∴2BM=2PB+AP,∴2BM﹣BP=PB+AP=AB=12.12、已知:a 是最大的负整数,且a 、b 、c 满足()052=++-b a c . (1)请求出a 、b 、c 的值;(2)所对应的点分别为A 、B 、C ,点P 为动点,其对应的数为x ,当点P 在B 到C 之间运动时,化简:31--+x x ;(写出化简过程)(3)在(1)、(2)的条件下,点A 、B 、C 开始在数轴上运动,若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒2个单位长度和5个单位长度的速度向右运动,假设秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB .请问:BC-AB 的值是否随着时间t 的变化而改变?若变化,请说明理由;若不变,请求其值.解答:(1)依题意得,a=-1,c-5=0,a+b=0解得a=-1,b=1,c=5(2)当点P 在B 到C 之间运动时,1<x<5因此,当1<x ≤3时,x+1>0,x-3≤0,原式=x+1+x-3=2x-2;当3<x<5时, x+1>0,x-3>0,原式=x+1-(x-3)=4.(3)不变。
初一数学 第一学期期末复习提纲(附答案)
初一数学第一学期期末复习(七册上)北京四中2009.12.28一. 知识网络:第一部分: 有理数有理数概念运算科有学理数数相倒绝比非运记的轴反对较负加减乘除乘算数分数数值大数法法法法方律法小类第二部分: 整式的加减列代数式单项式概念多项式整式的加减整式同类项加减运算第三部分: 一元一次方程等式、等式的性质方程、方程的解、估算方程的解一元一次方程一元一次方程的定义、一般式一元一次方程的解法利用方程解应用问题(注意应用题的类型)1近似数和有效数字第四部分: 图形的认识初步画一条线段等于已知线段(七册上P129) 作图: (尺规)*画一个角等于已知角余角和补角余角和补角的性质方位角角平面图形角的度量及分类角的比较与运算角平分线立体图形点、线、面、体从不同的方向看物体——三视图展开立体图形直线的性质直线、射线、线段线段的有关性质两点之间线段最短线段的中点比较大小几何图形二. 复习建议:1. 认真学习《数学课程标准》, 研究课本;制定出符合学生实际的复习计划和要求(包括具体的落实方案);2. 夯实基础:认真落实基础知识和基本能力(计算能力,审题能力,识图能力,分析能力等);3. 数学思想方法的渗透和培养:方程思想、数形结合、分类讨论、转化思想、函数思想等;4. 对几何图形的认识,渗透图形变换思想(平移、轴对称、旋转);几何语言文、图、式的互译;5. 注意培养学生应用数学的意识(阅读、归纳、应用的能力等)三.练习题:(一)填空题. 1. 12的相反数是__________, 它在数轴上的对应点到原点的距离是________. 72. 将149 500 000 保留三位有效数字为___________________.3. 大于 3.2 且小于1.9的整数是______________________.2x2y4. 单项式的系数是__________, 次数是__________ . 75. 2a2y n 1 与223ay是同类项, 则n = ________ . 36. 若x2y1+ (y +1)2 = 0, 则y x = ____________.7. 已知2a与2 a互为相反数, 则a = _______________. 28. 已知2.4682 = 6.091024, 则24.682 = ____________________.9. 已知关于x的方程ax + 5 = 2 3a与方程x = 10的解相同, 则a = _________.10. 已知数a , b , c 在数轴上的对应点如图所示,化简b + | a+b | | c| | b c | = __________ .11. 57.32 = ______________’ ______ "12. 2714’24" = ____________13. 1740’ 3 =______________.14. 计算: 180 375’ 4 + 93.1 5 = _________________.15. 互余两角的差是18, 其中较大角的补角是16. 一个角的补角和这个角的余角互为补角, 则这个角的一半是__________. ab2417. a,b,c,d为有理数,现规定一种运算:=ad bc,那么当=18时cd(1x)5x的值是.18. 有一个两位数, 个位数字与十位数字的和是9, 如果将个位数字与十位数字对调后所得新数比原数大9, 则原来的两位数是_____________.19. 用“”定义新运算: 对于任意的有理数a、b, 都有a b = b2 +1.例如: 7 4 = 42 +1 = 17. 那么5 3 = ________;当m为有理数时, 则m(m2) = ________.20. 观察下列等式:13 = 12, 13 + 23 = 32, 13 + 23 + 33 = 62, 13 + 23 + 33 + 43 = 102, ……想一想等式左边各项幂的底数与右边幂的底数有什么关系? 猜一猜有什么规律, 并把第n ( n为正整数) 个等式写出来: ____________________________.21. 在什么条件下, 下列等式成立(1) a b a b ___________________.(3) a b a b ___________________.22. 有理数a, b, c在数轴上对应的点如图:(2) a b a b __________________. (4) aa______________________. bb则a ba b acb cc a___________. acc ba c23. 在右边的日历中, 带阴影的方框里有四个数, 随着方框的移动,请你探究这四个数的关系. 设最小的一个数为a, 则这四个数之和为_________ (用含a 的代数式表示).324. 按如图所示的程序计算,若开始输入的x值为14,则第一次得到的结果为7,第2次得到的结果为10,……,请你探索第2009次得到的结果为___________.25. 定义一种对正整数n的“ F ” 运算:①当n为奇数时,结果为3n5;②当n为偶数时,结果为nn(其中k是使为奇数的正整数),并且运算重复进行,例如,取n=26,则:kk2211……若n=449,则第449次“ F ” 运算的结果是________.26. 将正偶数按下表排成五列:第一列第二列第三列4122028 第四列 6 10 22 26 24 第五列8 第一行2 第二行16 14 18 30 第三行第四行32…………………………………………………………根据上面排列规律, 则2010应在第______行,第_________列.27. 在五环图案15米和10米, 那么最高的地方比最低的地方高( ) .(A) 10米(B) 25米(C) 35米(D) 5米2. 下列说法中, 正确的是( )(A) 零除以任何有理数都得零(B) 倒数等于它本身的有理数只有1(C) 绝对值等于它本身的有理数只有1 (D) 相反数等于它本身的有理数只有043. 下面结论中正确的是( )(A) 21比大73(B) 3112的倒数是(C)最小的负整数是 1(D) 0.5 > 2274. 下列各数中, 最小的数是( )23(A) ( 2 3)2 (B) 2(C) 32 (3)2 (D) (1) 4 3 25. 若 1 < x < 0时, 则x, x2, x3 的大小关系是( )(A) x < x2 < x3 (B) x < x3 < x2 (C) x3 < x < x2 (D) x2 < x3 < x6. 下列计算正确的是( )11 (A) 283(B) 1 4 411(C) 28 224(D) 42167. 如果数 a , b, 满足ab<0, a+b>0, 那么下列不等式正确的是( )(A) | a | > | b | (B) | a | < | b | (C) 当a>0, b<0时, | a | > | b |(D) 当a<0, b>0时, | a | > | b |8. 一根1m长的绳子, 第一次剪去一半, 第二次剪去剩下的一半, 如此剪下去, 第六次以后剩下的绳子的长度为( )1(A) m 231(B) m 251(C) m 261(D) m 2129. 9点30分这一时刻, 分针与时针的夹角是( )(A) 75°(B) 105°(C) 90°(D) 125°10. 下列说法正确的是( )(A) 近似数3.5和3.50精确度相同(B) 近似数0.0120有3个有效数字(C) 近似数7.05×104精确到百分位(D) 近似数3千和3000的有效数字都是311. 对方程(A)(C) x3x4 1.6的下列变形中, 正确的是( ) 0.50.3 (B) x3x416 53x3x4 1.6 5310x310x416 5310x4 1.6 3 (D) 2x312. 甲能在11天).(A) 10天(B) 12.1天(C) 9.9天(D) 9天13. 一个长方形的周长为26 cm, 这个长方形的长减少1 cm, 宽增加2 cm, 就可成为一个正方形, 设长方形的长为x cm, 则可列方程( ).(A) x126x 2 (B) x113x 2(C) x126x 2 (D) x1(13x) 214. 已知:2若1022445533,…,22,332,442,552331515242488bb102符合前面式子的规律,则a b的值为()aa(A) 179 (B) 140 (C) 109 (D) 210515. 一件工作甲独做要a天完成, 乙独做要b天完成, 如果两人合作3天完成此工作的( )1111(A) 3 (a + b) (B) 3 (a b) (C) 3(D) 3ab ab16. 某个体商贩在一次买卖中同时卖出两件上衣, 每件售价均为135元, 若按成本计算, 其中一件盈利25%, 一件亏本25%, 则在这次买卖中他( )(A) 不赚不赔(B) 赚9元(C) 赔18元(D) 赚18元17. 若一个角个角;……若一个角个角18. 如图, 射线OC, OD 将平角∠AOB三等分, OE平分∠AOC, OF平分∠BOD, 则∠EOF为( )F(A) 120(B) 150(C) 90(D) 6019. 甲从O点出发, 沿北偏西30方向走了50米到达A点, 乙也从O点出发, 沿南偏东35方向走了80米到达B点, 则∠AOB = ( )(A) 65 (B) 115 (C) 175(D) 18520. 如图,它们是一个物体的三视图,该物体的形状是( ).主视图左视图(A) (B) (C) (D)俯视图21. 桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()(A) (B) (C) (22. 右图是画有一条对角线的平行四边形纸片ABCD,用A围成一个无上下底面的三棱柱纸筒, 则所围成的三棱柱纸( )A(D)A(D)A(D)A(D)B(C)B(CB(C(C)(A) (B) (C)(D)6 此纸片可以筒可能是23. 右图所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是()24. 如图所示的是由几个小立方块所搭成的几何体的俯视图,小正方形中的ABC...位置小立方块的个数,请画出相应几何体的主视图和左视图.(三)计算下列各题.①13.742586.3335②54214412 29③252775367 6376④133 12520.533484⑤32162584⑥123234111224 2⑦111 123214 3342(四)解下列方程.①2x3116x②5x8562x7③x x1x 222 5④3x1 13x14x172x1⑤0.2x0.50.030.02xx 50.50.03 2⑥. 32x1 2483x336x9⑦c (d + x) = ab (x c) d (c + d0)7 D3.42数字表示在该21(五)化简求值.1. 3a (a + 4b 1) + 3 (b 2).131 2. 先化简, 再求值a2b a2b3abc a2c4a2c3abc, 其中a = 1, b = 3, c = 1. 2323. 已知2x2 + x 5 = 0, 求代数式6x3 +7x2 13x +11的值.(六)列一元一次方程解下列应用题.1. 用化肥给田施肥, 每亩用3千克还差8.5千克, 每亩用2.5千克还剩1.5千克. 求有多少千克化肥?2. A, B两地的路程为360千米, 甲车从A地出发开往B地, 每小时行驶72千米, 甲车出发25分钟后, 乙车从B地出发开往A地, 每小时行驶48千米, 两车相遇后, 各车仍按原速度原方向继续行驶, 直到两车相距100千米停止. 问: 甲车从出发开始到现在共行驶了多少小时?3. 某商品的价格是商场按获利润25%计算出的, 后因库存积压和急需回收资金, 决定降价出售. 如果每件商品仍能获得10%的利润, 试问应按现售价的几折出售?4. 在社会实践活动中, 某校甲, 乙, 丙三位同学一同调查了高峰时段北京的二环路, 三环路, 四环路的车流量(每小时通过观察点的汽车辆数), 三位同学汇报高峰时段的车流量情况如下:甲同学说: “二环路车流量为每小时10 000辆”;乙同学说: “四环路比三环路车流量每小时多2 000辆”;丙同学说: “三环路车流量的3倍与四环路车流量的差是二环路车流量的2倍”.请你根据它们所提供的信息, 求出高峰时段三环路, 四环路的车流量各是多少?5. 某车间加工A型和B型两种零件, 平均一个工人每小时能加工7个A型零件或3个B型零件. 而且3个A型与2个B型配套, 就可以包装进库房, 剩余不能配套的只能暂时存放起来. 如果B型零件单独存放, 对环境的要求远高于A型零件. 已知该车间原有工人69名.(1) 怎样分配工人工作才能保证生产出的产品及时包装运进库房?(2) 后来因为工作调动, 有4名工人调离了该车间. 那么你认为现在应该怎样分配工人工作最合适呢? 请通过计算说明你的依据.6. 一个两位数, 个位上的数字是十位上的数字的2倍, 先将这两位数的两个数字对调, 得到第二个两位数, 再将第二个两位数的十位数字加上1, 个位数字减去1, 得到的第三个两位数恰好是原两位数的2倍, 求原两位数.7. x表示一个2位数, y表示一个三位数, 若把x放在y的左边组成一个5位数记作M1, 把y放在x的左边组成一个5位数记作M2, 求证: M1 M2 是9的倍数88. (1) 据《北京日报》2000年5月16日报道: 北京市人均水资源占有量只有300立方米, 仅是全国人均占有量的, 世界人均占有量的方米? 世界人均水资源占有量是多少立方米?(2) 北京市一年漏掉的水, 相当于新建一个自来水厂. 据不完全统计, 全市至少有6105个水龙头, 2105个抽水马桶漏水. 如果一个关不紧的水龙头, 一个月能漏掉a立方米水; 一个漏水马桶, 一个月漏掉b立方米水. 那么一年造成的水流失量是多少立方米? (用含a, b的代数式表示);(3) 水源透支令人担忧, 节约用水迫在眉睫. 针对居民用水浪费现象, 北京市将制定居民用水标准, 规定三口之家楼房每月标准用水量, 超标部分加价收费.假设不超标部分每立方米水费1.3元, 超标部分每立方米水费2.9元. 某住楼房的三口之家每月用水12立方米, 交水费22元, 请你通过列方程求出北京市规定三口之家楼房每月标准用水量是多少立方米.9.北京市实施交通管理新措施以来,全市公共交通客运量显著增加.据统计,20XX年10月11日至20XX年2月28日期间,地面公交日均客运量与轨道交通日均客运量总和为1 696万人次,地面公交日均客运量比轨道交通日均客运量的4倍少69万人次.在此期间,地面公交和轨道交通日均客运量各为多少万人次?(七)解答题.1. 已知∠的2倍与∠β的3倍互补, 且∠比∠β小20, 求∠与∠β2. 作线段MN = 10 mm, 向延长MN至P, 使MP = 15 mm, 反向延长MN 至Q, 使MQ =中点, B为NP的中点, 求A, B之间的距离AMNBP 181. 问: 全国人均水资源占有量是多少立321MP. 若A为QM的2求BC的长AD = 11.7 cm. DF 3. 已知A, B, C 三点共线, 且线段AB = 17 cm. 点D为BC中点, 4. 已知: 如图, ∠ABC=∠ADC, DE是∠ADC的平分线, BF是∠ABC的平分线求证: ∠1 = ∠2证明: ∵DE是∠ADC的平分线( )∴∠1 = _________ ( )∵BF是∠ABC的平分线( )∴∠2 = _________ ( )又∵∠ABC = ∠ADC ( )∴∠1 = ∠2 ( )5. 如图所示, ∠AOC = ∠DOB = 90, ∠BOC与∠AOD 的度数之比为3 : 7, 求∠BOC, ∠AOD的度数9DA E B6. 若∠AOB = 170, ∠AOC = 70, ∠BOD = 60, 求∠COD的度数7. 如图, 已知O是直线AC上一点, OB是一条射线,BD1OD平分AOB, OE在BOC BOE=EOC,2 DOE=70°, 求EOC的度数.A O CEOC8. 请将下面的三阶幻方补全,使得处于同一横行、同一竖列、同一斜对角线上的3个数相加都相等.9. a为何值时,3是关于x的方程3|a|-2x=6x+3的解10. 方程x(八)通过阅读, 探索、研究问题的解法. 1. 阅读下列材料: ∵1111111, 1323352 33 a的解是自然数, 其中a 是非负整数. 试求代数式a2 2(a + 1) 的值. 3 111111111, …, . ,5572571719217191111133557171911111111111=12323525721719111111119= =1233557171919解答问题:在和式111中, 第五项为________ , 第n项为________ , 上述求和的想法是: 通过逆133557用________________ 法则, 将和式中各分数转化为两个实数之差, 使得除首末两项外的中间各项可以________________ , 从而达到求和的目的.2. (1) 阅读下面材料:点A、B在数轴上分别表示实数a、b, A、B两点之间的距离表示为AB. 当A、B两点中有一点在原点时, 不妨设点A在原点, 如图甲, AB=OB=∣b∣=∣a b∣; 当A、B两点都不在原点时,10图乙图甲O (A) AB B①如图乙, 点A、B都在原点的右边, AB = OB OA = | b | | a | = b a = |a b |; ②如图丙, 点A、B都在原点的左边,AB = OB OA = | b | | a | = b (a) = | a b | ; ③如图丁, 点A、B在原点的两边AB = OA + OB = | a | + | b | = a + (b) = | a b |. 综上, 数轴上A、B两点之间的距离AB=∣a b∣.(2) 回答下列问题:①数轴上表示2和5的两点之间的距离是______ , 数轴上表示2和5的两点之间的距离是______ , 数轴上表示1和3的两点之间的距离是______ ;②数轴上表示x和1的两点分别是点A和B,则A、B之间的距离是______ , 如果AB=2, 那么x=________ ;③当代数式∣x +2∣+∣x 5∣取最小值时, 相应的x的取值范围是____________. ④当代数式x x2x5取最小值时, 相应的x的值是_________. ⑤当代数式x5x2取最大值时, 相应的x的取值范围是_________________.11图丁图丙BAO参考答案(若有质疑请发校友录上,以便及时更正)三、练习题:(一)填空题:1.127, 1272.1.50×1083.-3, -2, -1, 0, 14. 27, 35.46.-17.-28.609.10249.3710.b-a11.57°19′12″12.27.2413.5°53′20″14.57°17′12″15.126°16.22.5°17.318.4519.10, 26220.13+23+33+…n3=n(n1)221.(1)a、b同号或一项为0;(2)a、b且a b;(3)a、b为任意实数;(4)b≠0;22.原式=+a b b ca b c b c aa c(1) 1=-1-1+1-1-1=-31223.这四个数分别为:a+(a+1)+(a+7)+(a+8)=4a+1624.8第一次:7;第二次:10;第三次:5;第四次:8;第五次:4;︳第六次:7;… 7,10,5,8,4,︳7,10,5,8,4,︳…2009÷5=401 (4)25.14491352169152181…449,1352,169,152,1,8,︳1,8 …(449-3)÷2=22326.252,427.(二)1.C6.A11.D16.C19.D24.主视图左视图13 F①F②F①F②F①F②F①2.D 7.C 12.A 3.A 8.C 4.C 9.B 5.B 10.B 15.C 18.A 23.D 13.B 14.C 17.3,6,10,20.C (n1)(n2) 221.C 22.D(三)1.x abc d(13.7)(4235)86.335=-13.7+4.4-86.3+3.6 =-(13.6+86.3)+(4.4+3.6) =-100+8=-922.54214(4122)9 =5494( 29) 29=63.25(277)5(3667)37(6) =25(277)5(277)277(6) =277(2556) =27726 =70274.125342310.533(4)8 =122342(532) =12(234645) =10(235644)20 =361205.321625(84) =81615125(32)=50146.12311(24) 23412=12311(24)(24)(24)(24) 23412=12161822 127.11232231411342 =1 123 491 148 =11123 2 =1 16 2 =76(四)1.2x+3=11-6x解:8x=8x=12.5(x+8)-5=6(2x-7)解:5x+40-5=12x-427x=77X=113.x x 122x 25解:10x5x5202x 45x5162x7x11x117154.3x1 13x14x172x1解:132x1133x10132x133x1313230136x5136x 55.0.2x0.50.50.030.02xx 50.03 2 解:2x532xx53 5212x303020x15x75 8x15x75 23x75x75236.382(x1) 243x33(6x9) 解:2x x 124x 64x x18x125x13x1357.c(d x)ab(x c)d (c+d) (c d0)解:cd cx ab dx cd (c d)x abx abc d(五)1.3a (a + 4b 1) + 3 (b 2).=3a a4b +1 + 3b 6=.2a b 5162. 12a2b 32a2b3abc13a2c4a2c3abc = 12a2b(32a2b3abc a2c4a2c)3abc =132a2b2a2b3abc a2c4a2c3abc=2a2b3a2c将a1,b3,c1代入,原式=212(3)3(1)2 1=6+3=9答:代数式的值为9。