高中数学统计与概率知识点
高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。
这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。
每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。
高中数学必修二统计概率知识点总结

必修第二册第九章 统计知识点总结知识点一:简单随机抽样1. 全面调查和抽样调查2.简单随机抽样的概念放回简单随机抽样不放回简单随机抽样一般地,设一个总体含有N(N 为正整数)个个体,从中逐个抽取n (1≤n<N)个个体作为样本如果抽取是放回的,且每次抽取时总体内的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做放回简单随机抽样如果抽取是不放回的,且每次抽取时总体内未进入样本的各个个体被抽到的概率都相等,我们把这样的抽样方法叫做不放回简单随机抽样放回简单随机抽样和不放回简单随机抽样统称为简单随机抽样.通过简单随机抽样获得的样本称为简单随机样本3.抽签法先把总体中的个体编号,然后把所有编号写在外观、质地等无差别的小纸片(也可以是卡片、小球等)上作为号签,并将这些小纸片放在一个不透明的盒里,充分搅拌.最后从盒中不放回地逐个抽取号签,使与号签上的编号对应的个体进入样本,直到抽足样本所需要的个体数.调查方式全面调查(普查)抽样调查定义对每一个调查对象都进行调查的方法,称为全面调查,又称普查根据一定目的,从总体中抽取一部分个体进行调查,并以此为依据对总体的情况作出估计和推断的调查方法,称为 抽样调查相关概念总体:在一个调查中,我们把调查对象的全体称为总体.个体:组成总体的每一个调查对象称为个体样本:把从总体中抽取的那部分个体 称为样本.样本量:样本中包含的个体数称为 样本量4.随机数法(1)定义:先把总体中的个体编号,用随机数工具产生已编号范围内的整数随机数,把产生的随机数作为抽中的编号,使与编号对应的个体进入样本,重复上述过程,直到抽足样本所需要的个体数.(2)产生随机数的方法:(i)用随机试验生成随机数;(ii)用信息技术生成随机数.5.总体均值和样本均值(1)总体均值:一般地,总体中有N个个体,它们的变量值分别为Y1,Y2,…,Y N,则称Y=Y1+Y2+⋯+Y NN =1N∑i=1NY i为总体均值,又称总体平均数.(2)总体均值加权平均数的形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数f i(i=1,2,…,k),则总体均值还可以写成加权平均数的形式Y=1N ∑i=1kf i Y i.(3)如果从总体中抽取一个容量为n的样本,它们的变量值分别为y1,y2,…,y n,则称y=y1+y2+⋯+y nn =1n∑i=1ny i为样本均值,又称样本平均数.6.分层随机抽样的相关概念(1)分层随机抽样的定义:一般地,按一个或多个变量把总体划分成若干个子总体,每个个体属于且仅属于一个子总体,在每个子总体中独立地进行简单随机抽样,再把所有子总体中抽取的样本合在一起作为总样本,这样的抽样方法称为分层随机抽样,每一个子总体称为层.(2)比例分配:在分层随机抽样中,如果每层样本量都与层的大小成比例,那么称这种样本量的分配方式为比例分配.(3)进行分层随机抽样的相关计算时,常用到的关系①样本容量n总体容量N =该层抽取的个体数该层的个体数;②总体中某两层的个体数之比等于样本中这两层抽取的个体数之比;③样本的平均数和各层的样本平均数的关系:w=mm+n x+nm+ny=MM+Nx+NM+Ny.1.画频率分布直方图的步骤(1)求极差:极差为一组数据中最大值与最小值的差;(2)决定组距与组数:当样本容量不超过100时,常分成5-12组,为方便起见,一般取等长组距,并且组距应力求“取整”;(3)将数据分组;(4)列频率分布表:一般分四列:分组、频数累计、频数、频率.其中频数合计应是样本容量,频率合计是⑥1;.(5)画频率分布直方图:横轴表示分组,纵轴表示频率组距=频率,各小长方形的面积的总和等于1.小长方形的面积=组距×频率组距2.其他统计图表统计图表主要应用扇形图直观描述各部分数据在全部数据中所占的比例条形图和直方图直观描述不同类别或分组数据的频数和频率反映统计对象在不同时间(或其他合适情形)的发展折线图变化情况1.第p百分位数:一般地,一组数据的第p百分位数是这样一个值,它使得这组数据中至少有p%的数据小于或等于这个值,且至少有(100-p)%的数据大于或等于这个值.2.计算一组n个数据的第p百分位数的步骤第1步,按从小到大排列原始数据.第2步,计算i=n×p%.第3步,若i不是整数,而大于i的比邻整数为j,则第p百分位数为第j项数据;若i是整数,则第p百分位数为第i项与第(i+1)项数据的平均数.3.四分位数:第25百分位数,第50百分位数,第75百分位数,这三个分位数把一组由小到大排列后的数据分成四等份,因此称为四分位数.知识点四:总体集中趋势的估计1.众数、中位数和平均数的定义(1)众数:一组数据中出现次数最多的数.(2)中位数:一组数据按大小顺序排列后,处于中间位置的数.如果这组数据是偶数个,则取中间两个数据的平均数.(3)平均数:一组数据的和除以数据个数所得到的数.2.众数、中位数、平均数与频率分布直方图的关系(1)平均数:在频率分布直方图中,样本平均数可以用每个小矩形底边中点的横坐标与小矩形的面积的乘积之和近似代替.(2)中位数:在频率分布直方图中,中位数左边和右边的直方图的面积应该相等.(3)众数:众数是最高小矩形底边的中点所对应的数据.2.众数、中位数、平均数与频率分布直方图的关系众数众数是最高小长方形底边的中点所对应的数据,表示样本数据的中心值中位数①在频率分布直方图中,中位数左边和右边的直方图面积相等,由此可以估计中位数的值,但是有偏差;②表示样本数据所占频率的等分线平均数①平均数等于每个小长方形的面积乘小长方形底边中点的横坐标之和;②平均数是频率分布直方图的重心,是频率分布直方图的平衡点1.一组数据x1,x2,…,x n的方差和标准差数据x1,x2,…,x n的方差为1n ∑i=1n(x i-x)2=1n∑i=1nx i2-x2,标准差为√1n∑i=1n(x i-x)2.2.总体方差和总体标准差(1)总体方差和标准差:如果总体中所有个体的变量值分别为Y1,Y2,…,Y N,总体的平均数为Y,则称S2= 1N ∑i=1N(Y i-Y)2为总体方差,S=√S2为总体标准差.(2)总体方差的加权形式:如果总体的N个变量值中,不同的值共有k(k≤N)个,不妨记为Y1,Y2,…,Y k,其中Y i出现的频数为f i(i=1,2,…,k),则总体方差为S2= 1N ∑i=1kf i(Y i-Y)2.3.样本方差和样本标准差如果一个样本中个体的变量值分别为y1,y2,…,y n,样本平均数为y,则称s2= 1n ∑i=1n(y i-y)2为样本方差,s=√s2为样本标准差.4.标准差的意义标准差刻画了数据的离散程度或波动幅度,标准差越大,数据的离散程度越大;标准差越小,数据的离散程度越小.5.分层随机抽样的方差设样本容量为n,平均数为x,其中两层的个体数量分别为n1,n2,两层的平均数分别为x1,x2,方差分别为s12,s22,则这个样本的方差为s2=n1n [s12+(x1-x)2]+n2n[s22+(x2-x)2].必修第二册第十章概率知识点总结知识点一:有限样本空间与随机事件1.随机试验的概念和特点(1)随机试验:我们把对随机现象的实现和对它的观察称为随机试验,简称试验,常用字母E表示.(2)随机试验的特点:(i)试验可以在相同条件下重复进行;(ii)试验的所有可能结果是明确可知的,并且不止一个;(iii)每次试验总是恰好出现这些可能结果中的一个,但事先不能确定出现哪一个结果.2.样本点和样本空间定义字母表示样本点我们把随机试验E的每个可能的基本结果称为样本点用ω表示样本点样本空间全体样本点的集合称为试验E的样本空间用Ω表示样本空间有限样本空间如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间Ω={ω1,ω2,…,ωn}3.事件的类型我们将样本空间Ω的子集称为随机事件,简称事件,并把只包含一个样本点的事件称为基本事件.随机事件一般用大写字母A,B,C,…表示.在每次试验中,当且仅当A中某个样本点出现时,称为事件A发生.Ω作为自身的子集,包含了所有的样本点,在每次试验中总有一个样本点发生,所以Ω总会发生,我们称Ω为必然事件.而空集⌀不包含任何样本点,在每次试验中都不会发生,我们称⌀为不可能事件.必然事件与不可能事件不具有随机性.为了方便统一处理,将必然事件和不可能事件作为随机事件的两个极端情形.这样,每个事件都是样本空间Ω的一个子集.知识点二:事件的关系和运算1.包含关系定义一般地,若事件A 发生,则事件B 一定发生,我们就称事件B 包含事件A(或事件A 包含于事件B)含义 A 发生导致B 发生 符号表示B ⊇A(或A ⊆B)图形表示特殊情形如果事件B 包含事件A,事件A 也包含事件B,即B ⊇A 且A ⊇B,则称事件A 与事件B 相等,记作A=B2.并事件(和事件)定义一般地,事件A 与事件B 至少有一个发生,这样的一个事件中的样本点或者在事件A 中,或者在事件B 中,我们称这个事件为事件A 与事件B 的并事件(或 和事件)含义 A 与B 至少有一个发生符号表示A ∪B(或A+B)图形表示3.交事件(积事件)定义一般地,事件A 与事件B 同时发生,这样的一个事件中的样本点既在事件A中,也在事件B 中,我们称这样的一个事件为事件A 与事件B 的交事件(或积 事件)含义 A 与B 同时发生 符号表示A ∩B(或AB)图形表示4.互斥(互不相容)一般地,如果事件A与事件B不能同时发生,也就是说A∩B是一个不可能定义事件,即A∩B=⌀,则称事件A与事件B互斥(或互不相容)含义A与B不能同时发生符号表示A∩B=⌀图形表示5.互为对立一般地,如果事件A与事件B在任何一次试验中有且仅有一个发生,即A∪B=定义Ω,且A∩B=⌀,那么称事件A与事件B互为对立.事件A的对立事件记为A 含义A与B有且仅有一个发生符号表示A∩B=⌀,且A∪B=Ω图形表示6.清楚随机事件的运算与集合运算的对应关系有助于解决此类问题.符号事件的运算集合的运算A 随机事件集合A A的对立事件A的补集AB 事件A与B的交事件集合A与B的交集A∪B 事件A与B的并事件集合A与B的并集知识点三:古典概型1.古典概型的定义试验具有如下共同特征:(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.我们将具有以上两个特征的试验称为古典概型试验,其数学模型称为古典概率模型,简称古典概型.2.古典概型的概率计算公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)= kn =n(A)n(Ω),其中n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.知识点四:概率的基本性质1.概率的基本性质性质1 对任意的事件A,都有P(A)≥0.性质2 必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(⌀)=0.性质3 如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B).性质4 如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B).性质5 如果A⊆B,那么P(A)≤P(B).性质6 设A,B是一个随机试验中的两个事件,我们有P(A∪B)=P(A)+P(B)-P(A∩B).知识点五:事件的相互独立性1.相互独立事件的定义:对任意两个事件A与B,如果P(AB)=P(A)P(B)成立,则称事件A 与事件B相互独立,简称为独立.2.相互独立事件的性质:当事件A,B相互独立时,则事件A与事件B相互独立,事件A与事件B相互独立,事件A与事件B相互独立.【提示】公式P(AB)=P(A)P(B)可以推广到一般情形:如果事件A1,A2,…,A n相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2·…·A n)=P(A1)P(A2)·…·P(A n).3. 两个事件是否相互独立的判断方法(1)直接法:由事件本身的性质直接判定两个事件发生是否相互影响.(2)公式法:若P(AB)=P(A)P(B),则事件A,B为相互独立事件.4.求相互独立事件同时发生的概率的步骤:①首先确定各事件之间是相互独立的.②求出每个事件的概率,再求积.5.事件间的独立性关系已知两个事件A,B相互独立,它们的概率分别为P(A),P(B),则有事件表示概率A,B同时发生AB P(A)P(B)A,B都不发生A B P(A)P(B)A,B恰有一个发生(A B)∪(A B) P(A)P(B)+P(A)P(B)A,B中至少有一个发生(A B)∪(A B)∪(AB) P(A)P(B)+P(A)P(B)+P(A)P(B)A,B中至多有一个发生(A B)∪(A B)∪(A B) P(A)P(B)+P(A)P(B)+P(A)P(B)。
高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结在高中数学学习过程中,概率与统计是重要的一部分内容。
本文将对概率与统计的相关知识点进行总结,以帮助同学们更好地掌握这一部分内容。
一、概率基础知识1. 随机事件与样本空间:随机事件是指在相同条件下,可能发生也可能不发生的事件;样本空间是指随机试验的所有可能结果的集合。
2. 事件的概率:事件A发生的概率是指在相同条件下,事件A发生的可能性大小。
概率的取值范围在0和1之间,其中0表示不可能事件,1表示必然事件。
3. 事件的互斥与独立:如果两个事件A和B不能同时发生,称它们互斥;如果事件A发生与否不影响事件B发生的概率,称它们独立。
二、概率计算方法1. 相对频率法:通过大量重复实验,计算事件A发生的频率来估计概率。
2. 等可能概型法:当样本空间中各个基本事件发生的机会相等时,可以通过事件A包含的基本事件数除以总的基本事件数来计算概率。
3. 排列与组合:排列是指从n个不同元素中取出m个元素按一定顺序排列的可能性数量;组合是指从n个不同元素中取出m个元素的可能性数量,不考虑元素的顺序。
三、离散和连续型随机变量1. 随机变量:随机变量是定义在样本空间上的实值函数,用来描述随机试验的结果。
2. 离散随机变量:在有限次试验中只取有限个或可列个值的随机变量,称为离散随机变量。
离散随机变量的概率分布可以通过概率质量函数来表示。
3. 连续型随机变量:在某一区间内可以取到任意值的随机变量,称为连续型随机变量。
连续型随机变量的概率分布可以通过概率密度函数来表示。
四、概率分布1. 二项分布:是n个独立重复的伯努利试验中成功次数的离散概率分布。
2. 泊松分布:是描述单位时间或单位面积内随机事件发生次数的离散概率分布。
3. 正态分布:又称为高斯分布,是实数上最常见的连续概率分布之一,具有钟形曲线的特点。
五、统计分析方法1. 参数估计:通过样本数据来估计总体的某些未知参数,如均值、方差等。
2. 假设检验:根据采集的样本数据,对总体的某个特征或假设进行判断和推断。
高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。
2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。
3、互斥事件不可能同时发生的两个事件叫互斥事件。
如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。
4、对立事件对立事件是指两个事件必有一个发生的互斥事件。
例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。
而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。
对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。
2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。
5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。
相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。
2)必然事件与任何事件都是相互独立的。
3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。
6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。
如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。
(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。
四、 中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。
五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。
高中数学概率与统计知识点归纳

高中数学概率与统计知识点归纳一、概率概率是数学中一个重要的概念,用来描述事件发生的可能性大小。
在高中数学中,概率主要涉及以下几个知识点:1. 事件与样本空间- 事件是指某种结果的集合,样本空间是指所有可能结果的集合。
- 事件的概率可以通过计算事件出现的次数与样本空间的大小的比值来求得。
2. 事件的运算- 事件的运算包括并、交、差、余等操作。
- 并的概率等于两个事件概率之和减去交的概率。
- 交的概率等于两个事件概率之和减去并的概率。
- 差的概率等于一个事件概率减去另一个事件概率。
- 余的概率等于样本空间的概率减去一个事件的概率。
3. 条件概率- 条件概率是指在给定某个条件下,发生某个事件的概率。
- 条件概率可以通过计算事件在给定条件下的概率与给定条件的概率的比值来求得。
4. 独立事件- 独立事件是指事件之间互不影响,一个事件的发生不会影响另一个事件的发生。
- 独立事件的概率可以通过计算各个事件概率之积来求得。
5. 伯努利试验与二项分布- 伯努利试验是指只有两种可能结果的试验,每次试验的结果独立且概率不变。
- 伯努利试验的概率可以通过二项分布来计算。
二、统计统计是一门研究数据收集、分析和解释的学科,在高中数学中,统计主要涉及以下几个知识点:1. 数据的收集和整理- 数据的收集可以通过观察、实验或调查等方式获取。
- 数据的整理包括数据的分类、汇总和统计量的计算等操作。
2. 图表的制作和分析- 图表是一种直观展示数据的方式,包括条形图、折线图、饼图等。
- 图表的制作需要根据数据的特点选择合适的类型,并设置合理的比例尺和坐标轴。
- 图表的分析可以通过观察图表的形状、趋势和比较来理解数据的规律和关系。
3. 描述统计和统计推断- 描述统计是通过统计量对数据进行概括和描述,包括均值、中位数、众数、标准差等。
- 统计推断是根据样本数据对总体进行推断,包括估计总体参数和检验假设等。
4. 相关与回归分析- 相关分析用于研究两个变量之间的相关关系,可以通过计算相关系数来衡量。
高中数学概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。
一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。
在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。
1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。
样本空间中的元素称为样本点。
事件是指样本空间的子集,即某些样本点的集合。
1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。
互斥事件是指两个事件不可能同时发生的事件。
1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。
概率的取值范围在0到1之间,且所有可能事件的概率之和为1。
二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。
2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。
在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。
2.2 频率概率频率概率适用于大量重复试验的情况。
频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。
2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。
3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。
排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。
数学高三数学概率与统计知识总结与题型解析

数学高三数学概率与统计知识总结与题型解析概率与统计是高中数学中的一个重要部分,也是数学高考中的一个重点考点。
掌握好概率与统计的知识对于高三学生来说非常重要。
本文将对高三数学概率与统计的知识进行总结,并解析一些常见的题型。
一、概率的基本概念和性质概率是研究随机试验结果出现的可能性的数学理论。
在概率的研究中,有几个基本概念和性质需要掌握。
1.1 试验、样本空间和事件随机试验是指具有以下三个特点的试验:可以在相同的条件下重复进行,每次试验的结果不确定,且试验的结果有多种可能性。
样本空间是指一个随机试验的所有可能结果的集合。
事件是样本空间的一个子集,表示随机试验中我们关心的一些结果。
1.2 概率的定义和性质概率的定义可以通过两种方式来描述:频率定义和古典定义。
频率定义是指当试验重复进行很多次时,事件发生的频率趋近于概率值。
古典定义是指在满足条件的情况下,事件发生的可能性与样本空间中元素个数的比值。
概率具有以下几个性质:非负性、规范性、可列可加性、互斥性和独立性。
1.3 条件概率和乘法定理条件概率是指在另一个事件已经发生的条件下,某个事件发生的概率。
条件概率可以通过乘法定理来计算。
二、离散型随机变量离散型随机变量是指在有限或可数无限个取值中取一个确定值的变量。
离散型随机变量具有以下几个重要的性质:概率函数、分布函数、数学期望、方差等。
2.1 二项分布二项分布是指在n次独立的伯努利试验中,事件发生的次数所符合的概率分布。
如果事件发生的概率为p,不发生的概率为q=1-p,那么在n次试验中,事件发生k次的概率可以由二项分布来计算。
2.2 泊松分布泊松分布是在一定时间或空间范围内,某个事件发生的概率符合的分布。
泊松分布的参数λ表示单位时间或单位空间内事件的平均发生率。
三、连续型随机变量连续型随机变量是指在一个或者几个区间内取值的变量。
连续型随机变量具有以下几个重要的性质:概率密度函数、分布函数、数学期望、方差等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学统计与概率知识点(文)第一部分: 统计一、什么是众数。
一组数据中出现次数最多的那个数据,叫做这组数据的众数。
众数的特点。
①众数在一组数据中出现的次数最多;②众数反映了一组数据的集中趋势,当众数出现的次数越多,它就越能代表这组数据的整体状况,并且它能比较直观地了解到一组数据的大致情况。
但是,当一组数据大小不同,差异又很大时,就很难判断众数的准确值了。
此外,当一组数据的那个众数出现的次数不具明显优势时,用它来反映一组数据的典型水平是不大可靠的。
3. 众数与平均数的区别。
众数表示一组数据中出现次数最多的那个数据;平均数是一组数据中表示平均每份的数量。
二、. 中位数的概念。
一组数据按大小顺序排列,位于最中间的一个数据(当有偶数个数据时,为最中间两个数据的平均数)叫做这组数据的中位数。
三. 众数、中位数及平均数的求法。
①众数由所给数据可直接求出; ②求中位数时,首先要先排序(从小到大或从大到小),然后根据数据的个数,当数据为奇数个时,最中间的一个数就是中位数; 当数据为偶数个时,最中间两个数的平均数就是中位数。
③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平均数。
四、中位数与众数的特点。
⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若这组数据是偶数个时,则中间的两个数据的平均数是中位数;⑶中位数的单位与数据的单位相同;⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单位相同;(6)众数可能是一个或多个甚至没有;(7)平均数、众数和中位数都是描述一组数据集中趋势的量。
五.平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量;⑵平均数、众数和中位数都有单位;⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系,所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。
六、对于样本数据x1,x2,⋯,x n,设想通过各数据到其平均数的平均距离来反映样本数据的分散程度,那么这个平均距离如何计算?|x1- x|+ |x2- x|+L + |x n - x|思考4:反映样本数据的分散程度的大n小,最常用的统计量是标准差,一般用s 表示. 假设样本数据x1,x2,⋯,x n的平均数为x ,则标准差的计算公式是:七、简单随即抽样的含义一般地, 设一个总体有N 个个体, 从中逐个不放回地抽取n 个个体作为样本(n≤N), 如果每次抽取时总体内的各个个体被抽到的机会都相等, 则这种抽样方法叫做简单随机抽样.八、根据你的理解,简单随机抽样有哪些主要特点?(1)总体的个体数有限;(2)样本的抽取是逐个进行的,每次只抽取一个个体;(3)抽取的样本不放回,样本中无重复个体;(4)每个个体被抽到的机会都相等,抽样具有公平性.九、抽签法的操作步骤?第一步,将总体中的所有个体编号,并把号码写在形状、大小相同的号签上. 第二步,将号签放在一个容器中,并搅拌均匀第三步,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.十一、抽签法有哪些优点和缺点?优点:简单易行,当总体个数不多的时候搅拌均匀很容易,个体有均等的机会被抽中,从而能保证样本的代表性.缺点:当总体个数较多时很难搅拌均匀,产生的样本代表性差的可能性很大.十一、利用随机数表法从含有N个个体的总体中抽取一个容量为n 的样本,其抽样步骤如何?第一步,将总体中的所有个体编号.第二步,在随机数表中任选一个数作为起始数. 第三步,从选定的数开始依次向右(向左、向上、向下)读,将编号范围内的数取出,编号范围外的数去掉,直到取满n个号码为止,就得到一个容量为n的样本.简单随机抽样一般采用两种方法:抽签法和随机数表法。
思考:如果从100 个个体中抽取一个容量为10 的样本,你认为对这100 个个体进行怎样编号为宜?解法1:(抽签法)将100件轴编号为1,2,⋯,100,并做好大小、形状相同的号签,分别写上这100个数,将这些号签放在一起,进行均匀搅拌,接着连续抽取10 个号签,然后测量这个10 个号签对应的轴的直径。
解法2:(随机数表法)将100 件轴编号为00,01,⋯99,在随机数表中选定一个起始位置,如取第21 行第1 个数开始,选取10 个为68,34,30,13,70,55,74,77,40,44,这10 件即为所要抽取的样本。
小结、简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点上当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较少的抽样类型.简单随机抽样每个个体入样的可能性都相等,均为n/N,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.解题应用如果从600 件产品中抽取60 件进行质量检查,按照上述思路抽样应如何操作?第一步,将这600 件产品编号为1,2,3,⋯,600. 第二步,将总体平均分成60 部分,每一部分含10 个个体. 第三步,在第1 部分中用简单随机抽样抽取一个号码(如8 号). 第四步,从该号码起,每隔10 个号码取一个号码,就得到一个容量为60 的样本. (如8,18,28,⋯,598)十二、系统抽样的定义:一般地,要从容量为N的总体中抽取容量为n 的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.由系统抽样的定义可知系统抽样有以下特征:(1)当总体容量N 较大时,采用系统抽样。
(2)将总体分成均衡的若干部分指的是将总体分段,分段的间隔要求相等,因此系N 统抽样又称等距抽样,这时间隔一般为k=[ n ].(3)预先制定的规则指的是:在第1 段内采用简单随机抽样确定一个起始编号,在此编号的基础上加上分段间隔的整倍数即为抽样编号.思考. 下列抽样中不是系统抽样的是(C )A、从标有1~15 号的15 号的15 个小球中任选3 个作为样本,按从小号到大号排序,随机确定起点i, 以后为i+5, i+10(超过15 则从1 再数起)号入样B 工厂生产的产品,用传关带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品检验C 、搞某一市场调查,规定在商场门口随机抽一个人进行询问,直到调查到事先规定的调查人数为止D 、电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14 的观众留下来座谈十三、系统抽样的一般步骤用系统抽样从总体中抽取样本时,首先要做的工作是什么?将总体中的所有个体编号. 如果用系统抽样从605 件产品中抽取60 件进行质量检查,由于605 件产品不能均衡分成60 部分,应先从总体中随机剔除5 个个体,再均衡分成60 部分. 一般地,用系统抽样从含有N个个体的总体中抽取一个容量为n 的样本,其操作步骤如何?第一步,将总体的N 个个体编号. 第二步,确定分段间隔k,对编号进行分段. 第三步,在第1 段用简单随机抽样确定起始个体编号l. 第四步,按照一定的规则抽取样本.十四:分层抽样的定义: 若总体由差异明显的几部分组成,抽样时,先将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,再将各层取出的个体合在一起作为样本. 分层抽样又称类型抽样十五. 应用分层抽样应遵循以下要求及具体步骤:(1)分层:将相似的个体归入一类,即为一层,分层要求每层的各个个体互不交叉,即遵循不重复、不遗漏的原则。
( 2)分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样,每层样本数量与每层个体数量的比与这层个体数量与总体容量的比相等。
一般地,分层抽样的操作步骤如何?第一步,计算样本容量与总体的个体数之比. 第二步,将总体分成互不交叉的层,按比例确定各层要抽取的个体数. 第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体. 第四步,将各层抽取的个体合在一起,就得到所取样本. 十六、简单随机抽样、系统抽样和分层抽样三种抽样的类比学习简单随机抽样、系统抽样和分层抽样既有其共性,又有其个性,根据下表,你能对三种抽样方法作一个比较吗?对样本数据进行分组,组距的确定没有固定的标准,组数太多或太少,都会影响我们了解 数据的分布情况 . 数据分组的组数与样本容量有关,一般样本容量越大,所分组数越多 十七 列频率直分布表的步骤列出一组样本数据的频率分布表可以分哪几个步骤进行?第一步,求极差 . 第二步,决定组距与组数 . 第三步,确定分点,将数据分组 第四步,列频率分布表 . 样本数据的频率分布直方图是根据频率分布表画出来的,一般地,频率分布 直方图的作图步骤如何?第一步,画平面直角坐标系 . 第二步,在横轴上均匀标出各组分点,在纵轴上标出单位长度 . 第三步,以组距为宽,各组的频率与组距的商为高,分别画出各组对应的小长方形小结1. 频率分布是指一个样本数据在各个小范围内所占比例的大小,总体分布是指总体取值的频率分布规律 . 我们通常用样本的频率分布表或频率分布直方图去估计总体的分布2. 频率分布表和频率分布直方图,是对相同数据的两种不同表达方式 . 用紧凑的表格改变 数据的排列方式和构成形式,可展示数据的分布情况 . 通过作图既可以从数据中提取信 息,又可以利用图形传递信息 .3. 样本数据的频率分布表和频率分布直方图,是通过各小组数据在样本容量中所占比例大 小来表示数据的分布规律,它可以让我们更清楚的看到整个样本数据的频率分布情况, 并由此估计总体的分布情况 . 十九、如何根据样本频率分布直方图,分别估计总体的众数、中位数和平均数?(1) 众数:最高矩形下端中点的横坐标 .(2) 中位数:直方图面积平分线与横轴交点的横坐标 .(3) 平均数:每个小矩形的面积与小矩形底边中点的横坐标的乘积之和 .二十:什么是茎叶图 茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本 不变或变化不大的位作为一个主干(茎) ,将变化大的位的数作为分枝(叶) ,列在主干的 后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。