串的顺序存储结构

合集下载

数据结构第5章 串和广义表

数据结构第5章 串和广义表

5.1 串的定义和基本运算
• (4)串的连接StrCat(S,T)。 • 初始条件:串S和T存在。 • 操作结果:将串T的值连接在串S的后面。 • (5)求子串SubString(Sub,S,pos,len)。 • 初始条件:串S存在,1≤pos≤StrLength(S)且
1≤len≤StrLength(S)-pos+1。 • 操作结果:用Sub返回串S的第pos个字符起长度为len的
1≤len≤StrLength(S)-pos+1。 • 操作结果:从串S中删除第pos个字符起长度为len的子串。 • (9)串的替换StrReplace(S,T,V)。 • 初始条件:串S,T和V存在,且T是非空串。 • 操作结果:用V替换串S中出现的所有与T相等的不重叠子
串。 • (10)判断串空StrEmpty(S)。 • 初始条件:串S存在。 • 操作结果:若串S为空串,则返回1;否则返回0。
• (1)非紧凑存储。设串S="Hello boy",计算机字长为32 位(4个Byte),用非紧凑格式一个地址只能存一个字符, 如图5-2所示。其优点是运算处理简单,但缺点是存储空 间十分浪费。
• (2)紧凑存储。同样存储S="Hello boy",用紧凑格式一 个地址能存四个字符,如图5-3所示。紧凑存储的优点是 空间利用率高,缺点是对串中字符处理的效率低。
•}
5.3 串的基本运算的实现
• (3)求子串操作。求串S从第pos位置开始,长度为len的 子串,并将其存入到串Sub中。操作成功返回1,不成功 返回0。其算法描述如下:
• int SubString(String *S,String *Sub,int pos,int len)

数据库技术知识数据结构的算法

数据库技术知识数据结构的算法

数据库技术知识数据结构的算法对于将要参加计算机等级考试的考生来说,计算机等级考试的知识点辅导是非常重要的复习资料。

以下是收集的数据库技术知识数据结构的算法,希望大家认真阅读!1、数据:数据的基本单位是数据元素。

数据元素可由一个或多个数据项组成。

数据项是数据的不可分割的最小单位2、数据结构:数据的逻辑结构、数据的存储结构、数据的运算3、主要的数据存储方式:顺序存储结构(逻辑和物理相邻,存储密度大)和链式存储结构顺序存储结构:顺序存储计算公式Li=L0+(i-1)×K顺序结构可以进行随机存取;插人、删除运算会引起相应节点的大量移动链式存储结构:a、指针域可以有多个,可以指向空,比比顺序存储结构的存储密度小b、逻辑上相邻的节点物理上不一定相邻。

c、插人、删除等不需要大量移动节点4、顺序表:一般情况下,若长度为n的顺序表,在任何位置插入或删除的概率相等,元素移动的平均次数为n/2(插入)和(n-1)/2(删除)。

5、链表:线性链表(单链表和双向链表等等)和非线性链表线性链表也称为单链表,其每个一节点中只包含一个指针域,双链表中,每个节点中设置有两个指针域。

(注意结点的插入和删除操作)6、栈:“后进先出”(LIFO)表。

栈的应用:表达式求解、二叉树对称序周游、快速排序算法、递归过程的实现等7、队列:“先进先出”线性表。

应用:树的层次遍历8、串:由零个或多个字符组成的有限序列。

9、多维数组的顺序存储:10、稀疏矩阵的存储:下三角矩阵顺序存储其他常见的存储方法还有三元组法和十字链表法11、广义表:由零个或多个单元素或子表所组成的有限序列。

广义表的元素可以是子表,而子表的元素还可以是子表12、树型结构:非线性结构。

常用的树型结构有树和二叉树。

二叉树与树的区别:二叉树不是树的特殊情况,树和二叉树之间最主要的区别是:二叉树的节点的子树要区分左子树和右子树,即使在节点只有一棵子树的情况下也要明确指出该子树是左子树还是右子树。

数据结构考试要点

数据结构考试要点

第一章:数据结构包含:逻辑结构,数据的存储结构,对数据进行的操作。

数据元素:相对独立的基本单位,即可简单也可复杂,简单的数据元素只有一个数据项,数据项是数据的不可分割的最小单位。

数据对象:性质相同的数据元素的集合。

数据结构:相互存在一种或者多种特定关系的数据元素的集合(集合,线性结构,树结构,图结构)。

顺序存储结构:数据元素按照逻辑顺序依次存放在存储器的一段连续存储单元中。

链式存储结构:存储在存储空间的任意位置上,包含一个数据域和至少一个指针域,要访问,必须从第一个元素开始查找。

数据类型:一组值加一组操作。

第二章:线性表:有限多个性质相同的数据元素构成的一个序列,数据元素的个数就是长度。

线性表的顺序存储结构:用一组地址连续的存储单元能随机存取的结构。

链式存储结构:具有链式存储结构的线性表称为链表,是用一组地址任意的存储单元来存线性表中的数据元素。

每个数据元素存储结构包括数据元素信息域和地址域,存放一个数据元素的存储结构称为结点,每个结点只定义一个指针域,存放的是当前结点的直接后记结点的地址(直接后继结点),线性表的最后一个结点指针域存放空(0,NULL)标志结束。

不支持随机存取,访问必须从第一个结点开始,一次访问。

双向链表:每个结点设置两个方向的指针(直接前驱和直接后继)。

第三章:栈:堆栈的简称,限定在表尾进行插入和删除的线性表。

特点是后进先出。

当栈定指针指向栈底时,为空栈。

队列:限定只能在一端进行插入和在另一端进行删除的线性表,进行插入的是队尾,删除的是队头。

特点是先进先出。

队列的链式结构:用一个链表依次存放从队头到队尾的所有的数据元素。

存放队头地址(队头指针)队尾地址(队尾指针),空链队列:有头结点,空队列条件是头结点存放0,无头结点为队头指针指向空。

队列的顺序存储结构:用一组地址连续的存储空间依次存放从队头到队尾的所有数据元素,再用队头指针和队尾指针记录队头和队尾的位置。

队头指针指向队头元素前一个数组元素的位置,队尾始终指向队尾,当队尾和队头指向同一位置,空队列。

《刘大有数据结构》 chapter 5 数组字符串和集合类

《刘大有数据结构》 chapter 5 数组字符串和集合类
Loc(A[i][j])= Loc(A[0][0])+ i *n*C + j*C = Loc(A[0][0])+(i * n + j) *C
再例如三维数组 再例如三维数组D[3][3][4],可以把它看作一维 , 数组 B1[3] = { D[0][3][4],D[1][3][4],D[2][3][4] } , ,
下面我们给出一个 下面我们给出一个Array类的应用例子 类的应用例子. 类的应用例子 例5.1 编写一个函数,要求输入一个整数 , 编写一个函数,要求输入一个整数N, 用动态数组A来存放 来存放2~ 之间所有 之间所有5或 的倍数 的倍数, 用动态数组 来存放 ~N之间所有 或7的倍数, 输出该数组. 输出该数组 说明 : 因为 由用户给出 , 编写程序时无法知 说明:因为N由用户给出 由用户给出, 道需要多大的数组来存放数据, 道需要多大的数组来存放数据,因此采用动态 数组(初始时大小为10) 数组(初始时大小为 ),每当数组满时就调 整数组大小,给它增加10个元素 个元素. 整数组大小,给它增加 个元素
数组在内存中一般是以顺序方式存储的 数组在内存中一般是以顺序方式存储的. 设一维数组 设一维数组A[n]存放在 个连续的存储单元中 , 存放在n个连续的存储单元中 存放在 个连续的存储单元中, 每个数组元素占一个存储单元(不妨设为C个 每个数组元素占一个存储单元 ( 不妨设为 个 连续字节) 如果数组元素A[0]的首地址是 , 的首地址是L, 连续字节). 如果数组元素 的首地址是 则 A[1] 的 首 地 址 是 L+C , A[2] 的 首 地 址 是 L+2C,… …,依次类推,对于 0 ≤ i ≤ n 1 有: , ,依次类推,
B[i]={ A[i][0],A[i][1],…,A[i][n-2],A[i][n-1] } -

第4章 字符串v

第4章 字符串v

空串: 空串: 长度为0的字符串 的字符串; 长度为 的字符串; 空格串: 空格串: 由空格字符组成的字符串,长度>1 由空格字符组成的字符串,长度 主串: 主串: 包含该子串的字符串; 包含该子串的字符串; 字符的位置: 字符的位置: 从1开始 开始 子串的位置: 子串的位置: 该子串第一个字符的位置
定长顺序存储标识串的实际长度时可有三种方式: 定长顺序存储标识串的实际长度时可有三种方式:
(1)用一个指针指向最后一个字符,串描述类似顺序表 用一个指针指向最后一个字符, 用一个指针指向最后一个字符 #define MAXSIZE 256 typedef struct { char data[MAXSIZE]; int curlen; }SeqString; 定义一个串变量:SeqString s; 定义一个串变量
1.串的 定长 顺序存储 串的(定长 串的 定长)顺序存储
(定长 顺序存储结构类似于C语言的字符数组,以一 定长)顺序存储结构类似于 语言的字符数组, 定长 顺序存储结构类似于 语言的字符数组 组地址连续的存储单元存放串值中的字符序列, 组地址连续的存储单元存放串值中的字符序列,定长即是预 先为每一个串变量分配一个固定长度的存储区,例如: 先为每一个串变量分配一个固定长度的存储区,例如: #define MAXSIZE 256 char s[MAXSIZE] 那么,串的最大长度就不能超过 那么,串的最大长度就不能超过256。 。
第4章 串 章
4.1 字符串的基本概念
4. 2 串的存储结构
4.3 模式匹配
(1) 串的基本概念
串(string)是由零个或多个任意字符组成的字符序列, )是由零个或多个任意字符组成的字符序列, 又称为字符串( 又称为字符串(character string),一般记为: ) 一般记为: s=〝a1 a2 a3 … an〞

数据结构复习笔记

数据结构复习笔记

第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。

数据结构-第4章 串

数据结构-第4章 串
真子串是指不包含自身的所有子串。
4.1 串的类型定义
子串的序号:将子串在主串中首次出现时的该 子串的首字符对应在主串中的序号,称为子串 在主串中的序号(或位置)。 【例】 A=“abcdefbbcd”,B=“bcd”,B在A中的 序号为2。 特别地,空串是任意串的子串,任意串是其自 身的子串。
4.1.2 串的抽象数据类型定义
//查找ab子串
if (p->data==‘ a’ && p->next->data==‘b’)
{ p->data=‘x’; p->next->data=‘z’;
q=(LinkStrNode *)malloc(sizeof(LinkStrNode));
q->data=‘y’;
q->next=p->next; p->next=q;
s: a a a a b c d
t: a ab bac acb bc c ✓ 匹配成功 算法的思路是从s的每一个字符开始依次与t的 字符进行匹配。
4.2.1 Brute-Force算法
int BFIndex(SqString s,SqString t)
{ int i=0, j=0,k;
while (i<s.length && j<t.length)
4.1 串的类型定义 4.2 串的表示和实现 4.3 串的模式匹配算法
本章要求
理解: 1、串的基本概念、类型定义 2、串的存储表示和实现 3、串的KMP算法
掌握: 4、串的简单模式匹配算法(BF)
第4章 串的基本概念
串(或字符串):是由零个或多个字符组成 的有限序列。
串的逻辑表示: S=“a1a2…ai…an”,其中S为 串名,ai (1≤i≤n)代表单个字符,可以是字母、 数字或其它字符(包括空白符)。 串值:双引号括起来的字符序列。双引号不是 串的内容,只起标识作用。

数据结构 复习重点

数据结构 复习重点

数据结构复习重点谁让我找到你们了.第一章1.数据是信息的载体,它能够被计算机识别、存储和加工处理。

2.数据元素是数据的基本单位。

有些情况下,数据元素也称为元素、结点、顶点、记录。

3.数据结构指的是数据之间的相互关系,即数据的组织形式。

一般包括三个方面的内容:①数据元素之间的逻辑关系,也称为数据的逻辑结构;②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构;③数据的运算,即对数据施加的操作。

4.数据类型是一个值的集合以及在这些值上定义的一组操作的总称。

按"值"是否可分解,可将数据类型划分为两类:①原子类型,其值不可分解;②结构类型,其值可分解为若干个成分。

5.抽象数据类型是指抽象数据的组织和与之相关的操作。

可以看作是数据的逻辑结构及其在逻辑结构上定义的操作。

6.数据的逻辑结构简称为数据结构。

数据的逻辑结构可分为两大类:①线性结构(~的逻辑特征是若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继);②非线性结构(~的逻辑特征是一个结点可能有多个直接前趋和直接后继)。

7.数据存储结构可用四种基本的存储方法表示:①顺序存储方法(该方法是把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。

由此得到的存储表示称为顺序存储结构);②链接存储方法(该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。

由此得到的存储表示称为链式存储结构);③索引存储方法(该方法通常是在存储结点信息的同时,还建立附加的索引表);④散列存储方法(该方法的基本思想是根据结点的关键字直接计算出该结点的存储地址)。

8.非形式地说,算法是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值为输出。

因此,一个算法是一系列将输入转换为输出的计算步骤。

9.求解同一计算问题可能有许多不同的算法,究竟如何来评价这些算法的好坏以便从中选出较好的算法呢?选用的算法首先应该是"正确"的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

串的顺序存储结构
一、原理
串的顺序存储结构的原理是将每个字符存储在一维数组中,通过数组的下标和数组元素来表示和操作串的字符。

通常情况下,我们将数组的第一个元素作为串的起始字符,数组的最后一个元素作为串的结束标志,即用一个特殊字符表示字符串的结束。

二、特点
1.顺序存储结构可以直观地表示字符串的内容,便于理解和操作。

2.字符串的存储空间是连续的,可以很方便地进行查找、插入和删除等操作。

3.串的起始地址是已知的,可以通过下标直接访问和修改字符串中的每一个字符。

三、优点
1.顺序存储结构对存储空间的利用率较高,只需要额外增加一个字符用于结束标志即可。

2.串的顺序存储结构可以通过下标直接访问和修改字符,查找效率较高。

四、缺点
1.顺序存储结构需要预先分配一定大小的存储空间,无法根据实际需求进行动态扩容。

2.在顺序存储结构中插入和删除操作较为复杂,需要移动后续元素的位置,导致时间复杂度较高。

五、例子
下面的例子是一个使用顺序存储结构实现的简单串的代码:
```
#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 100
typedef struct
char data[MAX_SIZE];
int length;
} SString;
void initSString(SString* s)
s->length = 0;
void getSString(SString* s)
printf("Please enter a string: ");
gets(s->data);
s->length = strlen(s->data);
void dispSString(SString s)
printf("The string is: \n");
for (int i = 0; i < s.length; i++)
printf("%c ", s.data[i]);
}
printf("\n");
int mai
SString s;
initSString(&s);
getSString(&s);
dispSString(s);
return 0;
```
上述代码定义了一个结构体SString,其中包含一个字符数组data 和一个整型变量length。

通过getSString函数从控制台获得用户输入的字符串并存储在字符数组中,然后通过dispSString函数打印输出该字符串。

这就是一个简单的使用顺序存储结构实现串的例子。

通过顺序存储结构,我们可以方便地操作和处理字符串。

当然,在实际应用中,还需要考虑字符串的动态扩容、插入和删除等操作,以及处理字符集的多样性等问题。

相关文档
最新文档