离散数学 图论优秀课件

合集下载

离散数学教学课件-第8章 图论

离散数学教学课件-第8章 图论

解:以a,b,c,d,e,f,g作为顶点,能讲同一语言作一边
b
d
f
连通
a
g
c
e
§8.5 图的矩阵表示
复习:
R
传递闭包 R R R2 Rn
8.5.1 图的矩阵表示
G V , E V {v1, v2 , v3 ,, vn }
E {e1, e2 , e3 ,, em }
邻接矩阵
A (aij ) nn
起点
P v0 , v1,, vq

终点

P e1, e2 ,, eq
长度
8.2.1通路与回路
1
4
2 (1,2),(2,3) 1,2,3 (1,4),(4,3) 1,4,3
3
(1,2),(2,4),(4,1)
回路
8.2.1通路与回路
1
2 P:1,2,4,1,4,3
4
3 Q:1,2,4,3 复杂通路
8.5.1 图的矩阵表示
1
3
0 1 0 0 0
2
4
1 0 1 0 0
A 0 1 0 0 0
图1
5
0 0 0 0 1
0 0 0 1 0
1 0 1 0 0
0 2 0
0
0
A2 1 0 1 0 0
0 0 0
1
0
0 0 0 0 1
8.5.1 图的矩阵表示
1
3
1 0 1 0 0
2
4
0 2 0
cij 表示从 vi 到 v j 长度为 l 的通路数目
8.5.1 图的矩阵表示
定理 设邻接矩阵为A的无向简单图,则 Ak (k 1,2,....) 的元素

离散数学树ppt课件.ppt

离散数学树ppt课件.ppt
知,G-e已不是连通图, 所以,e为桥。
(5)(6)
如果G是连通的且G中任何边均为桥,则G中没有回路,但在任 何两个不同的顶点之间加一条新边,在所得图中得到唯一的 一个含新边的圈。
因为G中每条边均为桥,删掉任何边,将使G变成不连通图, 所以,G中没有回路,也即G中无圈。
又由于G连通,所以G为树,由(1) (2)可知,
根树的分类
(1)设T为根树,若将T中层数相同的顶点都标定次序, 则称T为有序树。
(2)分类:根据根树T中每个分支点儿子数以及是否有序 r叉树——每个分支点至多有r个儿子
r叉有序树——r叉树是有序的 r叉正则树——每个分支点恰有r个儿子
r叉正则有序树——r叉正则树是有序的 r叉完全正则树——树叶层数均为树高的r叉正则树
1,1,1,2,2,2,3
由度数列可知,Ti中有一个3度顶点vi,vi的邻域N(vi)中有3个顶 点,这3个顶点的度数列只能为以下三种情况之一:
1,1,2
1,2,2
2,2,2
设它们对应的树分别为T1,T2,T3。此度数列只能产生这三棵 非同构的7阶无向树。
例16.2
例题
例题 已知无向树T中,有1个3度顶点,2个2度顶点,其余 顶点全是树叶,试求树叶数,并画出满足要求的非同构 的无向树。
无向树的性质
定理16.2 设T是n阶非平凡的无向树,则T中至少有两片树叶。
证明
设T有x片树叶,由握手定理及定理16.1可知,
2(n 1) d(vi ) x 2(n x)
由上式解出x≥2。
例16.1
例16.1 画出6阶所有非同构的无向树。
解答 设Ti是6阶无向树。 由定理16.1可知,Ti的边数mi=5, 由握手定理可知,∑dTi(vj)=10,且δ(Ti)≥1,△(Ti)≤5。 于是Ti的度数列必为以下情况之一。

离散数学图论2PPT教学课件

离散数学图论2PPT教学课件
(1)欧拉回路要求边不能重复,结点可以重复. 笔不离开纸,不重复地走完所有的边,
且走过所有结点,就是所谓的一笔画.
2020/12/11
6
(2)欧拉图或通路的判定 1) 无向连通图G是欧拉图G不含奇数度结点(G的
所有结点度数为偶数):(定理1) 2) 非平凡连通图G含有欧拉通路G最多有两个奇
数度的结点;(定理1的推论) 3) 连通有向图D含有有向欧拉回路(即欧拉图)D
m
② mij degvi() j1
nm
nm
③ (m ij 1 ) (m ij 1 )m
2020/12i /11 1 j 1
i 1j 1
3
4.(有向图)邻接矩阵
设D=<V,E>, Vn,Em
A(D)= aij n
其中aij=邻接vi与vj的边的条数 (与A(G)类似) ( 以行和列均为结点)
aij
0
,表明vi是孤立点;
j1
i1
j1
2020/12/11
2
3.(有向图)关联矩阵
设D=<V,E>, Vn,Em
M(D)= mij nm
1
其中 mij 0
vi为始,点 vj为终点
vi与vj不关联 (结点为行,边为列).
具有性质: 1 vi为终, 点vj为始点
n
① mij 0 (列元素之和为 0); i1
二、图的矩阵表示、欧拉图
1.(无向图)
设G=<V,E>, Vn,Em M(G)= mij nm
其中mij=vi与ej的关联次数(行为结点,列为边). 具有性质:
m
① mij 2(列元素之和为2);
i1
m
② mij degv,(i若)

【精品】离散数学PPT课件(完整版)

【精品】离散数学PPT课件(完整版)
一个简单命题.
13
联结词与复合命题(续)
3.析取式与析取联结词“∨” 定义 设 p,q为二命题,复合命题“p或q”称作p与q 的析取式,记作p∨q. ∨称作析取联结词,并规 定p∨q为假当且仅当p与q同时为假.
例 将下列命题符号化 (1) 2或4是素数. (2) 2或3是素数. (3) 4或6是素数. (4) 小元元只能拿一个苹果或一个梨. (5) 王晓红生于1975年或1976年.
15
联结词与复合命题(续)
4.蕴涵式与蕴涵联结词“” 定义 设 p,q为二命题,复合命题 “如果p,则q” 称 作p与q的蕴涵式,记作pq,并称p是蕴涵式的 前件,q为蕴涵式的后件. 称作蕴涵联结词,并 规定,pq为假当且仅当 p 为真 q 为假.
16
联结词与复合命题(续)
pq 的逻辑关系:q 为 p 的必要条件 “如果 p,则 q ” 的不同表述法很多:
19
例 求下列复合命题的真值 (1) 2 + 2 = 4 当且仅当 3 + 3 = 6. (2) 2 + 2 = 4 当且仅当 3 是偶数. (3) 2 + 2 = 4 当且仅当 太阳从东方升起. (4) 2 + 2 = 4 当且仅当 美国位于非洲. (5) 函数 f (x) 在x0 可导的充要条件是它在 x0
解 令 p:王晓用功,q:王晓聪明,则 (1) p∧q (2) p∧q (3) p∧q.
12
例 (续)
令 r : 张辉是三好学生,s :王丽是三好学生 (4) r∧s. (5) 令 t : 张辉与王丽是同学,t 是简单命题 .
说明: (1)~(4)说明描述合取式的灵活性与多样性. (5) 中“与”联结的是两个名词,整个句子是
若 p,就 q 只要 p,就 q p 仅当 q 只有 q 才 p 除非 q, 才 p 或 除非 q, 否则非 p. 当 p 为假时,pq 为真 常出现的错误:不分充分与必要条件

离散数学的ppt课件

离散数学的ppt课件

科学中的许多问题。
03
例如,利用图论中的最短路径算法和最小生成树算法
等,可以优化网络通信和数据存储等问题。
运筹学中的应用
01
运筹学是一门应用数学学科, 主要研究如何在有限资源下做 出最优决策,离散数学在运筹 学中有着广泛的应用。
02
利用离散数学中的线性规划、 整数规划和非线性规划等理论 ,可以解决运筹学中的许多问 题。
并集是将两个集合中的所有元素合 并在一起,形成一个新的集合。
详细描述
例如,{1, 2, 3}和{2, 3, 4}的并集是 {1, 2, 3, 4}。
总结词
补集是取一个集合中除了某个子集 以外的所有元素组成的集合。
详细描述
例如,对于集合{1, 2, 3},{1, 2}的 补集是{3}。
集合的基数
总结词
)的数学分支。
离散数学的学科特点
03
离散数学主要研究对象的结构、性质和关系,强调推
理和证明的方法。
离散数学的应用领域
计算机科学
01
离散数学是计重要的工具和方法。
通信工程
02
离散数学在通信工程中广泛应用于编码理论、密码学、信道容
量估计等领域。
集合的基数是指集合中元素的数量。
详细描述
例如,集合{1, 2, 3}的基数是3,即它包含三个元素。
03 图论
图的基本概念
顶点
图中的点称为顶点或节点。

连接两个顶点的线段称为边。
无向图
边没有方向,即连接两个顶点的线段可以是双向 的。
有向图
边有方向,即连接两个顶点的线段只能是从一个顶 点指向另一个顶点。
研究模态算子(如necessity、possibility)的语义和语法。

最新离散数学-图论说课讲解精品课件

最新离散数学-图论说课讲解精品课件
图10.1.7 图G以及(yǐjí)其真子图G 1和生成子图G2
第三十二页,共237页。
第10章 图论(Graph Theory )
的入度, 记d为 ( v ) ;以v为始点的边数称为结点v 的出 度, 记为 d ( v ) 。结点v的入度与出度之和称为结点v
的度数,记为 d(v)或deg(v)。
第二十四页,共237页。
第10章 图论(Graph Theory )
定义: 在无向图中,图中结点(jié diǎn)v所关联 的边数(有环时计算两次)称为结点(jié diǎn)v 的度 数,记为d(v)或deg(v) 。
图 10 .1. 4
第十五页,共237页。
第10章 图论(Graph Theory )
10.1 图的基本概念
完全图:任意两个不同的结点(jié diǎn)都邻接的简单图称为 完全图。n 个结点(jiédiǎn)的无向完全图记为Kn。
图10.1.5给出了K3和K4。从图中可以看出K3有3条边,
K4有6条边。 容易证明Kn有
1.图的定义(dìngyì) 现实世界中许多现象能用某种图形表示,这种图形是由一些 点和一些连接两点间的连线所组成。 【例10.1.1】a, b, c, d 4个篮球队进行友谊比赛(bǐsài)。 为了表示4个队之间比赛(bǐsài)的情况, 我们作出图10.1.1 的图形。 在图中4个小圆圈分别表示这4个篮球队, 称之 为结点。如果两队进行过比赛(bǐsài),则在表示该队的两个 结点之间用一条线连接起来,称之为边。这样利用一个图 形使各队之间的比赛(bǐsài)情况一目了然。
第三页,共237页。
第10章 图论(Graph Theory )
10.1 图的基本概念
如果图 10.1.1中的4个结 点a, b, c, d分别 (fēnbié)表示4个人,当 某两个人互相认识时, 则将其对应点之间用边连 接起来。 这时的图又反 映了这4个人之间的认识 关系。

离散数学图论路与连通PPT课件

离散数学图论路与连通PPT课件
第18页/共26页
7.2.3 图的连通度
定义7-2.4 设无向图G =<V,E>是连通图,若有结点集V1V,使图 G中删除了 V1的所有结点后,所得到的子图是不连通图,而删除了V1的任何真子集后,所
得到的子图仍是连通图,则称V1是G的一个点割集(cut-set of nodes) 。
k(G)=min{|V1|| 是G的点割集} 称为图G的点连通度(nodeconnectivity) 。
现对G的每一条边e=(u1,u2),若u1,u2都在 V1上 ,则存 在两条 路P1与P2分别 连接u与 u1和u与u2, 且P1、 P2的长 度均为 偶数, 闭路P1∪P2∪ {e}的 长度为 奇数, 则不难 看出G中 有一条 长为奇 数的圈 ,矛盾 。同样 u1和u2不能同 时含在 V2中。 故e的 两个端 点分别 在V1和 V2中。 因此G是二分 图。
G 定理7.2.1 非平凡图 是二分图当且仅当 中不含长为奇数的回路。
G
证明 必要性是明显的。
充分性:不妨设G中每一对顶点之间有路连接(否则
只需考虑G的每个每一对顶点之间有路连接的极大子
图)。任取G的一个顶点u,由G的假设,对G的每个顶
点v,在G中存在u-v路。现利用u对G的顶点进行分类。

第24页/共26页
3 v1e1v2e5v5e6v4e4v2e5v5e7v6
…………
初级通路 简单通路 复杂通路
7.2.1 路
例1、(2)
图(2)中过 v2 的回路 (从 v2 到 v2 )有:
第7页/共26页
1 v2e4v4e3v3e2v2
长度3
2 v2e5v5e6v4e3v3e2v2
长度4
3 v2e4v4e3v3e2v2e5v5e6v4e3v3e2v2 长度7

离散数学ch公开课一等奖优质课大赛微课获奖课件

离散数学ch公开课一等奖优质课大赛微课获奖课件
第21页
通路与回路长度
定理14.5 在n 阶图G中,若从顶点vi 到vj(vivj)存在通路, 则从vi 到 vj 存在长度小于或等于n1 通路. 推论 在 n 阶图G中,若从顶点vi 到 vj(vivj)存在通路,则 从vi 到vj 存在长度小于或等于n1初级通路(路径). 定理14.6 在一个n 阶图G中,若存在 vi 到本身回路,则一 定存在vi 到本身长度小于或等于 n 回路. 推论 在一个n 阶图G中,若存在 vi 到本身简朴回路,则一 定存在长度小于或等于n 初级回路.
n
n
n
d(vi ) 2m, 且
d (vi ) d (vi ) m
i 1
i 1
i 1
本定理证实类似于定理14.1
9
第9页
握手定理推论
推论 任何图 (无向或有向) 中,奇度顶点个数是偶数.
证 设G=<V,E>为任意图,令
V1={v | vV d(v)为奇数} V2={v | vV d(v)为偶数} 则V1V2=V, V1V2=,由握手定理可知
第五部分 图论
本部分主要内容 图基本概念 欧拉图、哈密顿图 树 平面图 支配集、覆盖集、独立集、匹配与着色
1
第1页
第十四章 图基本概念
主要内容 图 通路与回路 图连通性 图矩阵表示 图运算 预备知识 多重集合——元素能够重复出现集合 无序集——AB={(x,y) | xAyB}
v的闭邻域 N (v) N (v) {v}
v 关联集 I (v) {e | e E(G) e与v关联} ② vV(D) (D为有向图)
v的后继元集 D (v) {u | u V ( D) v, u E( D) u v}
v的先驱元集 D (v) {u | u V ( D) u, v E( D) u v}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档