二次函数(最全的中考二次函数知识点总结)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点总结及相关典型题目

第一部分 二次函数基础知识

✧ 相关概念及定义

➢ 二次函数的概念:一般地,形如2y ax bx c =++(a b c ,

,是常数,0a ≠)的函数,叫做二次函数。这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,

可以为零.二次函数的定义域是全体实数.

➢ 二次函数2y ax bx c =++的结构特征:

⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.

⑵ a b c ,

,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. ✧ 二次函数各种形式之间的变换

➢ 二次函数c bx ax y ++=2

用配方法可化成:()k h x a y +-=2

的形式,其中

a

b a

c k a b h 4422

-=-=,.

➢ 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2

;③()2

h x a y -=;④()k h x a y +-=2

;⑤c bx ax y ++=2

.

✧ 二次函数解析式的表示方法

➢ 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);

➢ 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);

➢ 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).

➢ 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成

交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. ➢ 二次函数2

ax y =的性质

✧ 二次函数2y ax c =+的性质

✧ 二次函数()2

y a x h =-的性质:

✧ 二次函数()2

y a x h k =-+的性质

✧ 抛物线2

y ax bx c =++的三要素:开口方向、对称轴、顶点.

a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0

a 相等,抛物线的开口大小、形状相同.

➢ 对称轴:平行于y 轴(或重合)的直线记作2b

x a

=-

.特别地,y 轴记作直线0=x . ➢ 顶点坐标坐标:),(a

b a

c a b 4422

--

➢ 顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口

方向、开口大小完全相同,只是顶点的位置不同.

✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 ➢ 二次项系数a 二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠. ⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大

小. ➢ 一次项系数b

在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,

当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a

-=,即抛物线的对称轴就是y 轴;

当0b <时,02b

a

-

>,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即

当0b >时,02b

a ->,即抛物线的对称轴在y 轴右侧;

当0b =时,02b

a -=,即抛物线的对称轴就是y 轴;

当0b <时,02b

a

-<,即抛物线对称轴在y 轴的左侧.

总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:

➢ 常数项c

⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法

➢ 公式法:a

b

ac a b x a c bx ax y 44222

2-+⎪

⎭⎫ ⎝

⎛+

=++=,∴顶点是),(a b ac a b 4422

--,对称轴是直线a

b

x 2-

=. ➢ 配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2

的形式,得到顶点为

(h ,k ),对称轴是直线h x =.

➢ 运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直

平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.

用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失. ✧ 用待定系数法求二次函数的解析式

➢ 一般式:c bx ax y ++=2

.已知图像上三点或三对x 、y 的值,通常选择一般式. ➢ 顶点式:()k h x a y +-=2

.已知图像的顶点或对称轴,通常选择顶点式.

➢ 交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. ✧ 直线与抛物线的交点

y 轴与抛物线c bx ax y ++=2

得交点为(0, c ).

➢ 与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2

).

➢ 抛物线与x 轴的交点:二次函数c bx ax y ++=2

的图像与x 轴的两个交点的横坐标1x 、2x ,

是对应一元二次方程02

=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的

一元二次方程的根的判别式判定:

①有两个交点⇔0>∆⇔抛物线与x 轴相交;

②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离.

➢ 平行于x 轴的直线与抛物线的交点

可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,

则横坐标是k c bx ax =++2

的两个实数根.

➢ 一次函数()0≠+=k n kx y 的图像l 与二次函数()02

≠++=a c bx ax y 的图像G 的交点,

由方程组 2

y kx n

y ax bx c

=+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交

点.

➢ 抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2

与x 轴两交点为

()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故

a

c

x x a b x x =

⋅-=+2121,()

()

a a ac

b a

c a b x x x x x x x x AB ∆=-=-⎪⎭

⎝⎛-=--=

-=

-=44422

212

212

2121

✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达

➢ 关于x 轴对称

2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;

()2

y a x h k =-+关于x 轴对称后,得到的解析式是()2

y a x h k =---;

➢ 关于y 轴对称

2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;

()2

y a x h k =-+关于y 轴对称后,得到的解析式是()2

y a x h k =++;

➢ 关于原点对称

2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2

y a x h k =-+关于原点对称后,得到的解析式是()2

y a x h k =-+-;

➢ 关于顶点对称

2

y ax bx c =++关于顶点对称后,得到的解析式是2

2

2b y ax bx c a

=--+-;

()2y a x h k =-+关于顶点对称后,得到的解析式是()2

y a x h k =--+.

➢ 关于点()m n ,

对称 ()2

y a x h k =-+关于点()m n ,对称后,得到的解析式是()2

22y a x h m n k =-+-+-

➢ 总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a

永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适

的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.

✧ 二次函数图象的平移

➢ 平移步骤:

⑴ 将抛物线解析式转化成顶点式()2

y a x h k =-+,确定其顶点坐标()h k ,

; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,

处,具体平移方法如下:

相关文档
最新文档