【精品】2015-2016年安徽省马鞍山市当涂县初三上学期数学期末试卷与答案
九年级(上)期末数学试卷(解析版)

九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(4,﹣2)B.(﹣4,2)C.(﹣2,﹣4)D.(2,4)2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x﹣4)2=17 C.(x+4)2=15 D.(x﹣4)2=153.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.4.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定5.在二次函数y=x2﹣2x+3的图象中,若y随x的增大而增大,则x的取值范围是()A.x<﹣1 B.x>﹣1 C.x<1 D.x>16.有x支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x+1)=21 C.x(x﹣1)=42 D.x(x+1)=427.三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.8.如果将抛物线y=x2+2先向左平移1个单位,再向下平移2个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2 B.y=(x+1)2C.y=x2+1 D.y=x2+39.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=()A.30°B.35°C.40°D.50°10.如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D 在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为()A.π﹣2 B.2π﹣2 C.4π﹣4 D.4π﹣8二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于原点的对称点P′的坐标为.12.一元二次方程x2﹣16=0的解是.13.抛物线y=x2+2x+1的顶点坐标是.14.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.15.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是cm2.16.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.18.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.19.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.21.已知关于的方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.22.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AF=6,EF=2,求⊙O 的半径长.25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)设P(x,y),PD的长度为l,求l与x的函数关系式,并求l的最大值;(3)当△ADP是直角三角形时,求点P的坐标.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(4,﹣2)B.(﹣4,2)C.(﹣2,﹣4)D.(2,4)【考点】二次函数图象上点的坐标特征.【分析】先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.【解答】解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).故选:D.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.2.一元二次方程x2﹣8x﹣1=0配方后可变形为()A.(x+4)2=17 B.(x﹣4)2=17 C.(x+4)2=15 D.(x﹣4)2=15【考点】解一元二次方程﹣配方法.【分析】先移项,再两边配上一次项系数一半的平方可得.【解答】解:∵x2﹣8x﹣1=0,∴x2﹣8x=1,∴x2﹣8x+16=1+16,即(x﹣4)2=17,故选:B.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.3.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选A.【点评】本题考查了中心对称图形的知识,判断中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合.4.如图,经过原点O的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB=()A.80°B.90°C.100° D.无法确定【考点】圆周角定理;坐标与图形性质.【分析】根据圆周角定理即可得.【解答】解:∵∠ACB与∠AOB所对的弧是同一段弧,且∠AOB=90°,∴∠ACB=∠AOB=90°,故选:B.【点评】本题主要考查圆周角定理,熟练掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.5.在二次函数y=x2﹣2x+3的图象中,若y随x的增大而增大,则x的取值范围是()A.x<﹣1 B.x>﹣1 C.x<1 D.x>1【考点】二次函数的性质.【分析】抛物线y=x2﹣2x+3中的对称轴是直线x=1,开口向上,x>1时,y随x的增大而增大.【解答】解:∵a=1>0,∴二次函数图象开口向上,又∵对称轴是直线x=﹣=1,∴当x>1时,函数图象在对称轴的右边,y随x的增大而增大.故选D.【点评】本题考查了二次函数y=ax2+bx+c(a≠0)的性质:当a<0,抛物线开口向下,对称轴为直线x=﹣,在对称轴左边,y随x的增大而增大.6.有x支球队参加篮球比赛,共比赛了21场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=21 B.x(x+1)=21 C.x(x﹣1)=42 D.x(x+1)=42【考点】由实际问题抽象出一元二次方程.【分析】设这次有x队参加比赛,由于赛制为单循环形式(2016•海南)三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率==.故选A.【点评】此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.如果将抛物线y=x2+2先向左平移1个单位,再向下平移2个单位,那么所得新抛物线的表达式是()A.y=(x﹣1)2 B.y=(x+1)2C.y=x2+1 D.y=x2+3【考点】二次函数图象与几何变换.【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【解答】解:抛物线y=x2+1的顶点坐标为(0,2),向左平移1个单位,向下平移2个单位后的抛物线的顶点坐标为(﹣1,0),所以,平移后的抛物线的解析式为y=(x+1)2.故选B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式9.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A按逆时针方向旋转到△AB'C'的位置,使得CC'∥AB,则∠BAB'=()A.30°B.35°C.40°D.50°【考点】旋转的性质.【分析】由平行线的性质可求得∠C′CA的度数,然后由旋转的性质得到AC=AC′,然后依据等腰三角形的性质可知∠AC′C的度数,依据三角形的内角和定理可求得∠CAC′的度数,从而得到∠BAB′的度数.【解答】解:∵CC′∥AB,∴∠C′CA=∠CAB=65°.∵由旋转的性质可知;AC=AC′,∴∠ACC′=∠AC′C=65°.∴∠CAC′=180°﹣65°﹣65°=50°.∴∠BAB′=50°.故选D.【点评】本题主要考查的是旋转的性质,得到∠C′CA=65°以及AC=AC′是解题的关键.10.如图,在扇形OAB中,∠AOB=90°,正方形CDEF的顶点C是弧AB的中点,点D 在OB上,点E在OB的延长线上,若正方形CDEF的边长为2,则图中阴影部分的面积为()A.π﹣2 B.2π﹣2 C.4π﹣4 D.4π﹣8【考点】扇形面积的计算;正方形的性质.【分析】连结OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积,依此列式计算即可求解.【解答】解:连接OC∵在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是的中点,∴∠COD=45°,∴OC=CD=2,∴阴影部分的面积=扇形BOC的面积﹣三角形ODC的面积=×π×(2)2﹣×22=π﹣2.故选:A.【点评】考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.二、填空题(本大题共6小题,每小题4分,共24分)11.点P(2,﹣3)关于原点的对称点P′的坐标为(﹣2,3).【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】由关于原点对称的点,横坐标与纵坐标都互为相反数,即可求出答案.【解答】解:因为关于原点对称的点,横坐标与纵坐标都互为相反数,所以:点(2,﹣3)关于原点的对称点的坐标为(﹣2,3).故答案为:(﹣2,3).【点评】考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.12.一元二次方程x2﹣16=0的解是x1=﹣4,x2=4.【考点】解一元二次方程﹣直接开平方法.【专题】计算题.【分析】方程变形后,开方即可求出解.【解答】解:方程变形得:x2=16,开方得:x=±4,解得:x1=﹣4,x2=4.故答案为:x1=﹣4,x2=4【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根的定义是解本题的关键.13.抛物线y=x2+2x+1的顶点坐标是(﹣1,0).【考点】二次函数的性质.【专题】计算题.【分析】把a、b、c的值直接代入顶点的公式中计算即可.【解答】解:∵a=1,b=2,c=1,∴﹣=﹣=﹣1,==0,故答案是(﹣1,0).【点评】本题考查了二次函数的性质,解题的关键是掌握顶点的计算公式.14.若⊙O是等边△ABC的外接圆,⊙O的半径为2,则等边△ABC的边长为.【考点】三角形的外接圆与外心;等边三角形的性质.【分析】首先连接OB,OC,过点O作OD⊥BC于D,由⊙O是等边△ABC的外接圆,即可求得∠OBC的度数,然后由三角函数的性质即可求得OD的长,又由垂径定理即可求得等边△ABC的边长.【解答】解:连接OB,OC,过点O作OD⊥BC于D,∴BC=2BD,∵⊙O是等边△ABC的外接圆,∴∠BOC=×360°=120°,∵OB=OC,∴∠OBC=∠OCB===30°,∵⊙O的半径为2,∴OB=2,∴BD=OB•cos∠OBD=2×cos30°=2×=,∴BC=2BD=2.∴等边△ABC的边长为2.故答案为:2.【点评】本题考查了垂径定理,圆的内接等边三角形,以及三角函数的性质等知识.此题难度不大,解题的关键是掌握数形结合思想的应用与辅助线的作法.15.用一根长为16cm的铁丝围成一个矩形,则围成矩形面积的最大值是16cm2.【考点】二次函数的应用.【分析】先根据题意列出函数关系式,再求其最值即可.【解答】解:设矩形的一边长为xcm,所以另一边长为(8﹣x)cm,其面积为s=x(8﹣x)=﹣x2+8x=﹣(x﹣4)2+16,∴周长为16cm的矩形的最大面积为16cm2.故答案为:16.【点评】此题考查的是二次函数在实际生活中的应用及求二次函数的最大(小)值有三种方法:第一种可由图象直接得出;第二种是配方法;第三种是公式法.常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.16.已知正方形ABCD中,点E在边DC上,DE=2,EC=1(如图所示)把线段AE绕点A 旋转,使点E落在直线BC上的点F处,则F、C两点的距离为1或5.【考点】旋转的性质;正方形的性质.【专题】压轴题.【分析】题目里只说“旋转”,并没有说顺时针还是逆时针,而且说的是“直线BC上的点”,所以有两种情况,即一个是逆时针旋转,一个顺时针旋转,根据旋转的性质可知.【解答】解:旋转得到F1点,∵AE=AF1,AD=AB,∠D=∠ABC=90°,∴△ADE≌△ABF1,∴F1C=1;旋转得到F2点,同理可得△ABF2≌△ADE,∴F2B=DE=2,F2C=F2B+BC=5.【点评】本题主要考查了旋转的性质.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】由于已知抛物线的顶点坐标,则可设顶点式y=a(x+2)2+2,然后把点(1,1)代入求出a的值即可.【解答】解:设这个函数的关系式为y=a(x+2)2+2,把点(1,1)代入y=a(x+2)2+2得9a+2=1,解得a=﹣,所以这个函数的关系式为y=﹣(x+2)2+2.【点评】本题考查了用待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.18.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值.【考点】一元二次方程的解.【专题】计算题.【分析】根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可.【解答】解:把x=﹣1代入x2+2ax+a2=0得1﹣2a+a2=0,解得a1=a2=1,所以a的值为1.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.19.在数学活动课中,同学们准备了一些等腰直角三角形纸片,从每张纸片中剪出一个扇形制作圆锥玩具模型.如图,已知△ABC是腰长为4的等腰直角三角形.(1)在等腰直角三角形ABC纸片中,以C为圆心,剪出一个面积最大的扇形(要求:尺规作图,保留作图痕迹,不写作法);(2)请求出所制作圆锥底面的半径长.【考点】作图—应用与设计作图;等腰直角三角形;扇形面积的计算;圆锥的计算.【分析】(1)根据题意作出图形即可;(2根据勾股定理得到AB=,由(1)可知CD平分∠ACB,根据等腰三角形的性质得到CD⊥AB,根据弧长的公式即可得到结论.【解答】解:(1)如图所示:扇形CEF为所求作的图形;(2)∵△ABC是等腰直角三角形,且AC=BC=4,∴AB=,由(1)可知CD平分∠ACB,∴CD⊥AB,∴CD=,设圆锥底面的半径长为r,依题意得:2πr=,∴r=,答:所制作圆锥底面的半径长为.【点评】本题考查了作图﹣应用与设计作图,等腰直角三角形的性质,弧长的计算,正确的作出图形是解题的关键.四、解答题(二)(本大题共3小题,每小题7分,共21分)20.小明、小林是三河中学九年级的同班同学,在四月份举行的自主招生考试中,他俩都被同一所高中提前录取,并将被编入A、B、C三个班,他俩希望能再次成为同班同学.(1)请你用画树状图法或列举法,列出所有可能的结果;(2)求两人再次成为同班同学的概率.【考点】列表法与树状图法.【分析】(1)画树状图法或列举法,即可得到所有可能的结果;(2)由(1)可知两人再次成为同班同学的概率.【解答】解:(1)画树状图如下:由树形图可知所以可能的结果为AA,AB,AC,BA,BB,BC,CA,CB,CC;(2)由(1)可知两人再次成为同班同学的概率==.【点评】本题涉及列表法和树状图法以及相关概率知识,用到的知识点为:概率=所求情况数与总情况数之比.21.已知关于的方程x2+2x+m﹣2=0.(1)若该方程有两个不相等的实数根,求实数m的取值范围;(2)当该方程的一个根为1时,求m的值及方程的另一根.【考点】根与系数的关系;根的判别式.【分析】(1)由方程有两个不相等的实数根结合根的判别式即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围;(2)设方程的另一根为x1,由根与系数的关系即可得出关于m、x1的二元一次方程组,解之即可得出结论.【解答】解:(1)依题意得:△=b2﹣4ac=22﹣4×1×(m﹣2)=12﹣4m>0,解得:m<3.∴若该方程有两个不相等的实数根,实数m的取值范围为m<3.(2)设方程的另一根为x1,由根与系数的关系得:,解得:,∴m的值为﹣1,该方程的另一根为﹣3.【点评】本题考查了根与系数的关系、根的判别式以及解二元一次方程组,解题的关键是:(1)熟练掌握“当△>0时,方程有两个不相等的实数根”;(2)利用根与系数的关系找出关于m、x1的二元一次方程组.22.在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价;(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.【考点】一元二次方程的应用;分式方程的应用.【分析】(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.【解答】解:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x﹣80)元,根据题意得=,解得x=400.经检验,x=400是原方程的根.答:每张门票的原定票价为400元;(2)设平均每次降价的百分率为y,根据题意得400(1﹣y)2=324,解得:y1=0.1,y2=1.9(不合题意,舍去).答:平均每次降价10%.【点评】本题考查了一元二次方程与分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)当四边形ACDE为菱形时,求BD的长.【考点】旋转的性质;勾股定理;菱形的性质.【专题】计算题;证明题.【分析】(1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,于是根据旋转的定义,△AEB可由△AFC绕点A按顺时针方向旋转得到,然后根据旋转的性质得到BE=CD;(2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE 为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.【解答】(1)证明:∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,∴AE=AB,AF=AC,∠EAF=∠BAC,∴∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,∵AB=AC,∴AE=AF,∴△AEB可由△AFC绕点A按顺时针方向旋转得到,∴BE=CF;(2)解:∵四边形ACDE为菱形,AB=AC=1,∴DE=AE=AC=AB=1,AC∥DE,∴∠AEB=∠ABE,∠ABE=∠BAC=45°,∴∠AEB=∠ABE=45°,∴△ABE为等腰直角三角形,∴BE=AC=,∴BD=BE﹣DE=﹣1.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了菱形的性质.24.如图,已知AB是⊙O的直径,点C是⊙O上一点,AD与过点C的切线垂直,垂足为点D,直线DC与AB的延长线相交于点P,弦CE平分∠ACB,交AB于点F,连接BE.(1)求证:AC平分∠DAB;(2)求证:△PCF是等腰三角形;(3)若AF=6,EF=2,求⊙O 的半径长.【考点】切线的性质;等腰三角形的判定与性质.【分析】(1)根据切线的性质得OC⊥AD,而AD⊥DP,则肯定判断OC∥AD,根据平行线的性质得∠DAC=∠OCA,加上∠OAC=∠OCA,所以∠OAC=∠DAC;(2)根据圆周角定理由AB为⊙O的直径得∠ACB=90°,则∠BCE=45°,再利用圆周角定理得∠BOE=2∠BCE=90°,则∠OFE+∠OEF=90°,易得∠CFP+∠OEF=90°,再根据切线的性质得到∠OCF+∠PCF=90°,而∠OCF=∠OEF,根据等角的余角相等得到∠PCF=∠CFP,于是可判断△PCF是等腰三角形;(3)连结OE.由AB为⊙O的直径,得到∠ACB=90°,根据角平分线的定义得到∠BCE=45°,设⊙O 的半径为r,则OF=6﹣r,根据勾股定理列方程即可得到结论.【解答】(1)证明:∵PD为⊙O的切线,∴OC⊥DP,∵AD⊥DP,∴OC∥AD,∴∠DAC=∠OCA,∵OA=OC,∴∠OAC=∠OCA,∴∠OAC=∠DAC,∴AC平分∠DAB;(2)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=2∠BCE=90°,∴∠OFE+∠OEF=90°,而∠OFE=∠CFP,∴∠CFP+∠OEF=90°,∵OC⊥PD,∴∠OCP=90°,即∠OCF+∠PCF=90°,而∠OCF=∠OEF,∴∠PCF=∠CFP,∴△PCF是等腰三角形;(3)解:连结OE.∵AB为⊙O的直径,∴∠ACB=90°,∵CE平分∠ACB,∴∠BCE=45°,∴∠BOE=90°,即OE⊥AB,设⊙O 的半径为r,则OF=6﹣r,在Rt△EOF中,∵OE2+OF2=EF2,∴r2+(6﹣r)2=(2)2,解得,r1=4,r2=2,当r1=4时,OF=6﹣r=2(符合题意),当r2=2时,OF=6﹣r=4(不合题意,舍去),∴⊙O的半径r=4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和等腰三角形的判定.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.25.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,﹣1),且与y轴交于点C(0,3),与x轴交于A、B两点(点A在点B的右侧),点P是该抛物线上一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)设P(x,y),PD的长度为l,求l与x的函数关系式,并求l的最大值;(3)当△ADP是直角三角形时,求点P的坐标.【考点】二次函数综合题.【分析】(1)设y=a(x﹣2)2﹣1,将C(0,3)代入求得a的值,从而得到抛物线的解析式;(2)令y=0,得x2﹣4x+3=0,求得方程方程的解,从而可得到点A、B的坐标,设直线AC的函数关系式为y=mx+n,将A(3,0),C(0,3)代入可求得m、n的值,故此可得到AC的解析式为y=﹣x+3上,设D(x,﹣x+3),P(x,x2﹣4x+3),然后依据l=D y ﹣P y列出l与x的函数关系式,依据二次根式的性质可求得PD的最大值;(3)①当点P为直角顶点时,点P与点B重合,②当点A为直角顶点时,可证明∠DAO=∠PAO,然后可证明点D与P关于x轴对称,设D(x,﹣x+3),P(x,x2﹣4x+3),依据关于x轴对称点的纵坐标互为相反数可列出关于x的方程,从而可求得x的值,故此可求得点P的坐标.【解答】解:(1)∵抛物线的顶点为Q(2,﹣1),∴设y=a(x﹣2)2﹣1,将C(0,3)代入上式得3=a(0﹣2)2﹣1,解得:a=1,∴y=(x﹣2)2﹣1,即y=x2﹣4x+3.(2)令y=0,得x2﹣4x+3=0,解得x1=1,x2=3,∵点A在点B的右边,∴A (3,0),B(1,0)设直线AC的函数关系式为y=mx+n,将A(3,0),C(0,3)代入上式得,,解得:,∴y=﹣x+3.∵D在y=﹣x+3上,P在y=x2﹣4x+3上,且PD∥y轴,∴D(x,﹣x+3),P(x,x2﹣4x+3),∴l=PD=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x=∴当时,l取得最大值为.(3)分两种情况:①当点P为直角顶点时,如图1,点P与点B重合,由(2)可知B(1,0),∴P(1,0).②当点A为直角顶点时,如图2,∵OA=OC,∠AOC=90°,∴∠OAD=45°,当∠DAP=90°时,∠OAP=45°,∴AO平分∠DAP,又∵PD∥y轴,∴PD⊥AO,∴P与D关于x轴对称,∵D(x,﹣x+3),P(x,x2﹣4x+3),∴(﹣x+3)+(x2﹣4x+3)=0,整理得x2﹣5x+6=0,∴x1=2,x2=3(舍去),当x=2时,y=x2﹣4x+3=22﹣4×2+3=﹣1,∴P的坐标为P(2,﹣1).∴满足条件的P点坐标为P(1,0),P(2,﹣1).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式,二次函数的性质、依据l=D y﹣P y列出l与x的函数关系式是解答问题(2)的关键,证得点D与P关于x轴对称,利用关于x轴对称点的特点列出关于x的方程是解答问题(3)的关键.。
【真题】2016-2017学年安徽省马鞍山市八年级(上)期末数学试卷及参考答案PDF

2016-2017学年安徽省马鞍山市八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.(3分)在平面直角坐标系中,点P(﹣1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=40°,∠2=40°D.∠1=∠2=45°3.(3分)已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为()A.2 B.6 C.8 D.2或84.(3分)小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.5.(3分)下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个 B.2个 C.3个 D.4个6.(3分)如图,直线y=﹣x+m与y=x+4的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+4的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣4 D.x<﹣47.(3分)如图,用尺规作∠MON的平分线OP.由作图知△OAC≌△OBC,从而得OP平分∠MON,则此两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS8.(3分)已知函数y=,则当函数值y=8时,自变量x的值是()A.﹣2或4 B.4 C.﹣2 D.±2或±49.(3分)一艘轮船在同一航线上往返于甲、乙两地.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为(h),航行的路程为s(km),则s与的函数图象大致是()A.B.C.D.10.(3分)已知△ABC,(1)如图(1),若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图(2),若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图(3),若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()A.3个 B.2个 C.1个 D.0个二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.(3分)已知三角形的两边分别为a=2,b=5,则第三边c的取值范围为.12.(3分)函数y=的自变量取值范围是.13.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为.14.(3分)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.15.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需要加一个条件,你添加的条件是.(只需写一个,不添加辅助线)16.(3分)图中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图所示.根据图中的信息,摩天轮的直径为.17.(3分)如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD 的面积是.18.(3分)已知在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=度.三、解答题(本大题共6小题,共46分.)19.(8分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.20.(6分)已知:如图,AB⊥AC,且AB=AC,AD=AE,BD=CE.求证:AD⊥AE.21.(8分)平面直角坐标系中,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:「P」,即「P」=|x|+|y|.(1)求点A(﹣1,3)的勾股值「A」;(2)若点B在第一象限且满足「B」=3,求满足条件的所有B点与坐标轴围成的图形的面积.22.(8分)已知:如图,AB=CD,线段AC的垂直平分线与线段BD的垂直平分线相交于点E.求证:∠ABE=∠CDE.23.(8分)小明家今年种植的樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,销售价格z (单位:元/千克)与上市时间x (单位:天)的函数关系式如图(2)所示.(1)求第10天的销售量和销售价格;(2)试比较第10天与第12天的销售金额哪天多?24.(8分)已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.2016-2017学年安徽省马鞍山市八年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.(3分)在平面直角坐标系中,点P(﹣1,1)位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:点P(﹣1,1)位于第二象限.故选:B.2.(3分)对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是()A.∠1=50°,∠2=40°B.∠1=50°,∠2=50°C.∠1=40°,∠2=40°D.∠1=∠2=45°【解答】解:对于命题“如果∠1+∠2=90°,那么∠1≠∠2”,说明它是假命题的反例可以是∠1=∠2=45°,故选:D.3.(3分)已知一个等腰三角形两边长之比为1:4,周长为18,则这个等腰三角形底边长为()A.2 B.6 C.8 D.2或8【解答】解:因为两边长之比为4:1,所以设较短一边为x,则另一边为4x;(1)假设x为底边,4x为腰;则8x+x=18,x=2,即底边为2;(2)假设x为腰,4x为底边,则2x+4x=18,x=3,4x=12;∵3+3<12,∴该假设不成立.所以等腰三角形的底边为2.故选A.4.(3分)小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是()A.B.C.D.【解答】解:实际时间为8点的时针关于过12时、6时的直线的对称点是4点,那么8点的时钟在镜子中看来应该是4点的样子.故选C.5.(3分)下列说法中,正确的个数是()①斜边和一直角边对应相等的两个直角三角形全等;②有两边和它们的对应夹角相等的两个直角三角形全等;③一锐角和斜边对应相等的两个直角三角形全等;④两个锐角对应相等的两个直角三角形全等.A.1个 B.2个 C.3个 D.4个【解答】解:①斜边和一直角边对应相等的两个直角三角形全等,正确;②有两边和它们的夹角对应相等的两个直角三角形全等,正确;③一锐角和斜边对应相等的两个直角三角形全等,正确;④两个锐角对应相等的两个直角三角形全等,错误;故选C.6.(3分)如图,直线y=﹣x+m与y=x+4的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+4的解集为()A.x>﹣2 B.x<﹣2 C.x>﹣4 D.x<﹣4【解答】解:当x<﹣2时,﹣x+m>x+4,即不等式﹣x+m>x+4的解集为x<﹣2.故选:B.7.(3分)如图,用尺规作∠MON的平分线OP.由作图知△OAC≌△OBC,从而得OP平分∠MON,则此两个三角形全等的依据是()A.SAS B.ASA C.AAS D.SSS【解答】解:由基本作图得OA=OB,AC=BC,而OC为公共边,所以利用“SSS”可判断△AOC≌△BOC,所以∠AOC=∠BOC.故选D.8.(3分)已知函数y=,则当函数值y=8时,自变量x的值是()A.﹣2或4 B.4 C.﹣2 D.±2或±4【解答】解:把y=8代入函数y=,先代入上边的方程得x=﹣2,∵x≤2,故x=﹣2;再代入下边的方程x=4,∵x>2,故x=4,综上,x的值为4或﹣2.故选A.9.(3分)一艘轮船在同一航线上往返于甲、乙两地.轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地.设轮船从甲地出发后所用时间为(h),航行的路程为s(km),则s与的函数图象大致是()A.B.C.D.【解答】解:第一个阶段,顺水航行,那么用时较少;第二个阶段,休息,那么随着时间的增长,路程不再变化,函数图象将与x轴平行;第三个阶段,逆水航行,所走的路程继续增加,相对于第一个阶段,用时较多.故选C10.(3分)已知△ABC,(1)如图(1),若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图(2),若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图(3),若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是()A.3个 B.2个 C.1个 D.0个【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠A∴∠PBC+∠BCP=90°+∠A,在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°+∠A)=90°﹣∠A,故成立.∴说法正确的个数是2个.故选B.二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.(3分)已知三角形的两边分别为a=2,b=5,则第三边c的取值范围为3<c<7.【解答】解:依题意得:5﹣2<c<5+2,即3<c<7.故答案为:3<c<7.12.(3分)函数y=的自变量取值范围是x≥1.【解答】解:根据题意得:解得:x≥1.13.(3分)将点P向下平移3个单位,向左平移2个单位后得到点Q(3,﹣1),则点P坐标为(5,2).【解答】解:设点P的坐标为(x,y),根据题意,x﹣2=3,y﹣3=﹣1,解得x=5,y=2,则点P的坐标为(5,2).故答案为:(5,2).14.(3分)已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.15.(3分)如图,已知AB=BC,要使△ABD≌△CBD,还需要加一个条件,你添加的条件是AD=CD(答案不唯一).(只需写一个,不添加辅助线)【解答】解:添加AD=CD.理由如下:在△ABD和△CBD中,,∴△ABD≌△CBD(SSS).故答案为:AD=CD(答案不唯一).16.(3分)图中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图所示.根据图中的信息,摩天轮的直径为65m.【解答】解:∵最高点为70m,最低点为5m,∴摩天轮的直径为65米.故答案为:65m.17.(3分)如图示,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD 的面积是5.【解答】解:作DE⊥AB于E,∵AD平分∠BAC,∠C=90°,DE⊥AB,∴DE=DC=2,∴△ABD的面积=×AB×DE=5,故答案为:5.18.(3分)已知在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,则∠A=36度.【解答】解:设∠A=x∵AD=BD,∴∠ABD=∠A=x,∠BDC=2x∵BD=BC∴∠C=∠BDC=2x,∠DBC=x∵在BDC中x+2x+2x=180°∴x=36°∴∠A=36°.故填36.三、解答题(本大题共6小题,共46分.)19.(8分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C.△ABC中,∠A=50°,求∠DBA+∠DCA的度数.【解答】解:∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,而∠D=90°,∴∠DBC+∠DCB=90°,∴∠DBA+∠DCA=(∠ABC+∠ACB)﹣(∠DBC+∠DCB)=130°﹣90°=40°.20.(6分)已知:如图,AB⊥AC,且AB=AC,AD=AE,BD=CE.求证:AD⊥AE.【解答】证明:在△ABD和△ACE中,,∴△ABD≌△ACE(SSS),∴∠EAC=∠DAB,∴∠DAE=∠BAC,∵AB⊥AC,∴∠BAC=90°,∴∠DAE=90°,即AD⊥AE.21.(8分)平面直角坐标系中,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为:「P」,即「P」=|x|+|y|.(1)求点A(﹣1,3)的勾股值「A」;(2)若点B在第一象限且满足「B」=3,求满足条件的所有B点与坐标轴围成的图形的面积.【解答】解:(1)「A」=|﹣1|+|3|=4,(2)设B(x,y),由「B」=3且在第一象限知,x+y=3(x>0,y>0),即:y=﹣x+3(x>0,y>0).故所有点B与坐标轴围成的图形如图所示的三角形,故其面积为×3×3=.22.(8分)已知:如图,AB=CD,线段AC的垂直平分线与线段BD的垂直平分线相交于点E.求证:∠ABE=∠CDE.【解答】证明:连接AE、CE,∵AC、BD的垂直平分线相交于E,∴AE=CE,BE=DE,在△ABE和△CDE中,,∴△ABE≌△CDE(SSS),∴∠ABE=∠CDE.23.(8分)小明家今年种植的樱桃喜获丰收,采摘上市20天全部销售完.小明对销售情况进行跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图(1)所示,销售价格z (单位:元/千克)与上市时间x (单位:天)的函数关系式如图(2)所示.(1)求第10天的销售量和销售价格;(2)试比较第10天与第12天的销售金额哪天多?【解答】解:(1)当0<x≤12时,设y=kx(k≠0),将(12,120)代入y=kx,120=12k,解得:k=10,∴y=10x(0<x≤12),∴当x=10时,y=100.当5≤x≤15时,设z=ax+b(a≠0),将(5,32)、(15,12)代入z=ax+b,,解得:,∴z=﹣2x+42(5≤x≤15),∴当x=10时,z=22.∴第10天的销售量为100千克,销售价格为22元/千克.(2)由(1)知:第10天的销售金额为:100×22=2200(元);当x=12时,y=120,z=18,∴第12天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.24.(8分)已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.【解答】解:(1)∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一、当M与E重合时,N就一定与F重合.此时:DM=DE、DN=DF,结合证得的DM=DN,得:DE=DF.二、当M落在C、E之间时,N就一定落在B、F之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.三、当M落在A、E之间时,N就一定落在C、F之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN,∴△DEM≌△DFN(ASA),∴DE=DF.综上一、二、三所述,得:DE=DF.。
2015-2016学年上学期九年级数学期末试题卷

石羊镇中学2015-2016学年上学期期末质量检测 九年级数学试卷(时间:120分钟 满分:120分)一、选择题(本大题共7个小题,每题只有一个正确的选项,每小题3分, 满分21分) 1、某物体的三视图是如图所示的三个图形,那么该物体形状是( ) A . 长方体 B 、圆锥体 C 、 立方体 D 、圆柱体 2、反比例函数)0(≠=k xky 的图象经过(2,5),若点(1,n )在反比例函数的图象上,则n 等于 ( ) A、10 B、5 C、2 D、101 3、如图,在△ABC 中,∠A =50°,AB =AC ,AB 的垂直 平分线DE 交AC 于D ,则∠DBC 的度数是 ( ) A 、15° B 、20° C 、30° D 、25°4、把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( )A .B .2)5(2+=x yC .D .2)5(2-=x y 5、如图, 平行四边形ABCD 中,E 是BC 上一点,BE ∶EC=2∶3,AE 交 BD 于F ,则BF ∶FD 等于 ( )A.2∶5B.3∶5C.2∶3D.5∶7 6、下列物品:①探照灯;②车灯;③太阳;④月亮;⑤台灯,所成的投影是中心投影的是( ) A、①② B、①③ C、①②③ D、①②⑤ 7、在Rt △ABC 中,∠C=90°,a =4,b =3,则sinA 的值是( )A .45 B .35 C .43 D .54二、填空题(本大题共8个小题,每小题3分,满分24分)5 2 2 + = x y 5 22 - = x y主视图左视图俯视图班级:_________ 姓名:_______ 考号:_____________ ********************************************************************************************************************************************************************************************************************************8、一根竹竿的高为1.5m ,影长为1m ,同一时刻,某塔楼影长是20m ,则塔楼的高度为____________m. 9、若关于x 的方程0632=-++m mx x 有一根是0,则=m ;10、方程x 2-3x=0的根是 。
2015-2016年安徽省马鞍山市含山一中高一上学期期末数学试卷与答案Word版

2015-2016学年安徽省马鞍山市含山一中高一(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分,每小题所给的四个选项中只有一个是正确的,请在答题卡上将你认为正确结论的代号用2B铅笔涂黑.)1.(3.00分)已知α=,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(3.00分)cos300°的值是()A.B.C.D.3.(3.00分)已知α是第三象限角,且tanα=,则cosα的值是()A.﹣B.C.D.﹣4.(3.00分)已知向量()A.(8,﹣1)B.(﹣8,1)C.(﹣2,﹣3)D.(﹣15,2)5.(3.00分)若向量与共线且方向相同,则x的值为()A.B.C.2 D.﹣26.(3.00分)函数y=sin(2x+)图象的对称轴方程可能是()A.x=﹣B.x=﹣C.x=D.x=7.(3.00分)已知M是△ABC的BC边上的中点,若向量,,则向量等于()A.B. C. D.8.(3.00分)为了得到函数y=cos(2x+),x∈R的图象,只需把函数y=cos2x 的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度9.(3.00分)下列函数中,图象的一部分如图所示的是()A.y=sin(2x+) B.y=sin(2x﹣)C.y=cos(2x+) D.y=cos(2x ﹣)10.(3.00分)在△ABC中,若sinAsinB<cosAcosB,则△ABC一定为()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形11.(3.00分)点P为△ABC所在平面内一点,若•(﹣)=0,则直线CP 一定经过△ABC的()A.内心B.垂心C.外心D.重心12.(3.00分)+2=()A.2sin4 B.﹣2sin4 C.2cos4 D.﹣2cos4二、填空题:本大题共5个小题,每小题4分,共20分.请在答题卷上答题.13.(4.00分)化简=.14.(4.00分)在△ABC中,已知tanA=1,tanB=2,则tanC=.15.(4.00分)已知、均为单位向量,它们的夹角为60°,那么|+3|等于.16.(4.00分)函数y=的定义域为.17.(4.00分)下面有五个命题:①终边在y轴上的角的集合是;②若扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2;③函数y=cos2(﹣x)是奇函数;④函数y=4sin(2x﹣)的一个对称中心是(,0);⑤函数y=tan(﹣x﹣π)在上是增函数.其中正确命题的序号是(把你认为正确命题的序号都填上).三、解答题:本大题共5个小题,满分44分.解答应写出必要的文字说明、证明过程或演算步骤.请在答题卷上答题.18.(8.00分)已知角α的终边与单位圆交于点P(,).(1)求sinα、cosα、tanα的值;(2)求的值.19.(8.00分)在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,设=,=.(1)试用,表示;(2)求的值.20.(8.00分)证明:(Ⅰ)(Ⅱ).21.(10.00分)已知函数.(Ⅰ)求函数f(x)的周期、单调递增区间;(Ⅱ)当x∈时,求函数f(x)的最大值和最小值.22.(10.00分)已知向量与互相垂直,其中θ∈(0,π).(Ⅰ)求tanθ的值;(Ⅱ)若,,求cosφ的值.2015-2016学年安徽省马鞍山市含山一中高一(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分,每小题所给的四个选项中只有一个是正确的,请在答题卡上将你认为正确结论的代号用2B铅笔涂黑.)1.(3.00分)已知α=,则角α的终边位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:α=,则则角α的终边位于第三象限,故选:C.2.(3.00分)cos300°的值是()A.B.C.D.【解答】解:cos300°=cos(360°﹣60°)=cos(﹣60°)=cos60°=.故选:A.3.(3.00分)已知α是第三象限角,且tanα=,则cosα的值是()A.﹣B.C.D.﹣【解答】解:∵α是第三象限角,且tanα==,则cosα<0,再根据sin2α+cos2α=1,求得cosα=﹣,故选:D.4.(3.00分)已知向量()A.(8,﹣1)B.(﹣8,1)C.(﹣2,﹣3)D.(﹣15,2)【解答】解:根据题意,=﹣,又由向量=(3,﹣2),=(﹣5,﹣1);则=﹣=(﹣8,1);故选:B.5.(3.00分)若向量与共线且方向相同,则x的值为()A.B.C.2 D.﹣2【解答】解:因为向量与共线,所以(﹣1)×2﹣x(﹣x)=0,解得x=,因为向量与方向相同,所以x=,故选:A.6.(3.00分)函数y=sin(2x+)图象的对称轴方程可能是()A.x=﹣B.x=﹣C.x=D.x=【解答】解:令2x+=,∴x=(k∈Z)当k=0时为D选项,故选:D.7.(3.00分)已知M是△ABC的BC边上的中点,若向量,,则向量等于()A.B. C. D.【解答】解:根据平行四边形法则以及平行四边形的性质,有.故选:C.8.(3.00分)为了得到函数y=cos(2x+),x∈R的图象,只需把函数y=cos2x 的图象()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度【解答】解:设将函数y=cos2x的图象向左平移a个单位后,得到函数的图象则cos2(x+a)=,解得a=∴函数y=cos2x的图象向左平行移动个单位长度,可得到函数的图象,故选:C.9.(3.00分)下列函数中,图象的一部分如图所示的是()A.y=sin(2x+) B.y=sin(2x﹣)C.y=cos(2x+) D.y=cos(2x ﹣)【解答】解:∵点(,1)在函数图象上,∴当x=时,函数的最大值为1.对于A,当x=时,y=sin(2•+)=sin=,不符合题意;对于B,当x=时,y=sin(2•﹣)=0,不符合题意;对于C,当x=时,y=cos(2•+)=0,不符合题意;对于D,当x=时,y=cos(2•﹣)=1,而且当x=时,y=cos[2•(﹣)﹣]=0,函数图象恰好经过点(﹣,0),符合题意.故选:D.10.(3.00分)在△ABC中,若sinAsinB<cosAcosB,则△ABC一定为()A.等边三角形B.直角三角形C.锐角三角形D.钝角三角形【解答】解:由sinA•sinB<cosAcosB得cos(A+B)>0,即cosC=cos[π﹣(A+B)]=﹣cos(A+B)<0,则角C为钝角.所以△ABC一定为钝角三角形.故选:D.11.(3.00分)点P为△ABC所在平面内一点,若•(﹣)=0,则直线CP 一定经过△ABC的()A.内心B.垂心C.外心D.重心【解答】解:若•(﹣)=0,则有•=0,即⊥,则P一定经过△ABC的垂心.故选:B.12.(3.00分)+2=()A.2sin4 B.﹣2sin4 C.2cos4 D.﹣2cos4【解答】解:∵π<<4,∴sin4<cos4<0,∴sin4﹣cos4<0,∴+2=+2=2|cos4|+2|sin4﹣cos4|=﹣2cos4+2cos4﹣2sin4=﹣2sin4.故选:B.二、填空题:本大题共5个小题,每小题4分,共20分.请在答题卷上答题.13.(4.00分)化简=.【解答】解:=++=+=,故答案为:.14.(4.00分)在△ABC中,已知tanA=1,tanB=2,则tanC=3.【解答】解:在△ABC中,∵已知tanA=1,tanB=2,∴tanC=tan[π﹣(A+B)]=﹣tan(A+B)=﹣=﹣=3,故答案为:3.15.(4.00分)已知、均为单位向量,它们的夹角为60°,那么|+3|等于.【解答】解;∵,均为单位向量,∴||=1,||=1又∵两向量的夹角为60°,∴=||||cos60°=∴|+3|===故答案为16.(4.00分)函数y=的定义域为,(k∈Z).【解答】解:由题意可得2sinx﹣1≥0⇒sinx≥故答案为:17.(4.00分)下面有五个命题:①终边在y轴上的角的集合是;②若扇形的弧长为4cm,面积为4cm2,则这个扇形的圆心角的弧度数是2;③函数y=cos2(﹣x)是奇函数;④函数y=4sin(2x﹣)的一个对称中心是(,0);⑤函数y=tan(﹣x﹣π)在上是增函数.其中正确命题的序号是②③④(把你认为正确命题的序号都填上).【解答】解:对于①,终边在y轴上的角的集合是{β|β=kπ+,k∈Z),故错;对于②,若扇形的弧长为4cm,面积为4cm2,扇形的半径r为:×r=4,r=2,则扇形的圆心角α的弧度数为=2,故正确;对于③,函数y=cos2(﹣x)=sin2x是奇函数,正确;对于④,当x=时,函数y=4sin(2x﹣)=0,(,0)是一个对称中心,故正确;对于⑤,函数y=tan(﹣x﹣π)=tanx在上是增函数,正确.故答案为:②③④三、解答题:本大题共5个小题,满分44分.解答应写出必要的文字说明、证明过程或演算步骤.请在答题卷上答题.18.(8.00分)已知角α的终边与单位圆交于点P(,).(1)求sinα、cosα、tanα的值;(2)求的值.【解答】解:(1)已知角α的终边与单位圆交与点P(,).∴x==,r=1,∴sinα=;cosα=;tanα=;(6分)(2)==.(14分)19.(8.00分)在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,设=,=.(1)试用,表示;(2)求的值.【解答】解:(1)∵D是边BC上一点,DC=2BD,∴=,又∵=,=,=﹣,∴.(2)∵||=||=2,||=||=1,∠BAC=120°,∴•=||•||cos∠BAC=2×1×120°=﹣1,因此,===.20.(8.00分)证明:(Ⅰ)(Ⅱ).【解答】(本题满分为8分)证明:(Ⅰ)∵右边=[sinαcosβ+cosαsinβ+(sinαcosβ﹣cosαsinβ)]=×2sinαcosβ=sinαcosβ=左边,∴成立.(Ⅱ)右边=2(sin cos+cos sin)(cos cos+sin sin)=2sin cos2cos+2sin2sin cos+2cos2sin cos+2cos sin2sin=sinαcos2+sin2sinβ+cos2sinβ+sin2sinα=sinα(cos2+sin2)+(sin2+cos2)sinβ=sinα+sinβ得证.(每小题4分)21.(10.00分)已知函数.(Ⅰ)求函数f(x)的周期、单调递增区间;(Ⅱ)当x∈时,求函数f(x)的最大值和最小值.【解答】解:(Ⅰ)函数=cos2xcos+sin2xsin+2×=sin2x﹣cos2x+1=sin(2x﹣)+1,…3分由,k∈Z;解得:;∴函数f(x)的单调递增区间是;…4分最小正周期为;…5分(Ⅱ)由(Ⅰ)知,当x∈时,﹣≤2x﹣≤;时,﹣≤2x﹣≤,为增函数,…7分,时,≤2x﹣≤,为减函数,…9分又,,,∴函数f(x)的最大值为2,最小值为.…10分.22.(10.00分)已知向量与互相垂直,其中θ∈(0,π).(Ⅰ)求tanθ的值;(Ⅱ)若,,求cosφ的值.【解答】解:(Ⅰ)由题意,向量与互相垂直,即与互相垂直,∴,∴tanθ=﹣2.(Ⅱ)由(Ⅰ)可知2cosθ+sinθ=0,sin2θ+cos2θ=1,解得:∵θ∈(0,π),又由(Ⅰ)知tanθ=﹣2<0,∴.∴.∵,∴∴cosφ=cos [θ﹣(θ﹣φ)]=cosθcos (θ﹣φ)+sinθsin (θ﹣φ)赠送—高中数学知识点【1.3.1】单调性与最大(小)值 (1)函数的单调性函数的 性 质定义图象判定方法函数的单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< .x .2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数....y=f(X)yx ox x 2f(x )f(x )211(1)利用定义 (2)利用已知函数的单调性(3)利用函数图象(在某个区间图 象下降为减)(4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减. (2)打“√”函数()(0)af x x a x=+>的图象与性质 ()f x 分别在(,]a -∞-、[,)a +∞上为增函数,分别在[,0)a -、]a 上为减函数.(3)最大(小)值定义yxo①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法函数的 性 质定义图象判定方法 函数的奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x ...).,那么函数f(x)叫做奇函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称) (2)利用图象(图象关于y 轴对称)②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.=.。
九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
2015-2016学年苏科版初三上期末数学试卷及答案

2015-2016学年第一学期初三数学期末试卷(分值:130分;时间:120分钟)2016年1月一、选择题(每小题3分,共24分)1.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定7名同学参加决赛,他们的决赛成绩各不相同,其中李华已经知道自己的成绩,但能否进前四名,他还必须清楚这七名同学成绩的()A.众数B.平均数C.中位数D.方差2A.80,2 B.80,C.78,2 D.78,3.关于x的一元二次方程3x2﹣6x+m=0有两个不相等的实数根,则m的取值范围是()A.m<3 B.m≤3 C.m>3 D.m≥34.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2(4题)(5题)(6题)5.二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+m=0有实数根,则m的最大值为()A.﹣3 B.3 C.﹣6 D.96.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为()A.4 B.8C.2 D.47.如图,已知线段OA交⊙O于点B,且OB=AB,点P是⊙O上的一个动点,那么∠OAP 的最大值是()A.30°B.45°C.60°D.90°8.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,以斜边AB上的一点O为圆心所作的半圆分别与AC、BC相切于点D、E,则AD为()A.2.5 B.1.6 C.1.5 D.1(7题)(8题)二、填空题(每小题3分,共30分)9则该校篮球班21名同学身高的中位数是cm.10.某校从参加计算机测试的学生中抽取了60名学生的成绩(40~100分)进行分析,并将其分成了六段后绘制成如图所示的频数分布直方图(其中70~80段因故看不清),若60分以上(含60分)为及格,试根据图中信息来估计这次测试的及格率约为.(10题)(11题)11.已知如图所示的图形的面积为24,根据图中的条件,可列出方程:.12.已知关于x的一元二次方程x2+(2k+1)x+k2﹣2=0的两根为x1和x2,且(x1﹣2)(x1﹣x2)=0,则k的值是.13.我市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环形式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有人进入半决赛.14.在﹣1、3、﹣2这三个数中,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是.15.P为⊙O外一点,PA,PB分别切⊙O于点A,B,∠APB=50°,点C为⊙O上一点(不与A,B重合),则∠ACB的度数为.16.如图,某小岛受到了污染,污染范围可以大致看成是以点O为圆心,AD长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O的切线BD(点D为切点)上选择相距300米的B、C两点,分别测得∠ABD=30°,∠ACD=60°,则直径AD=米.(结果精确到1米)(参考数据:,)(16题)(18题)172则当y≤的取值范围为.18.如图,正六边形硬纸片ABCDEF在桌面上由图1的起始位置沿直线l不滑行地翻滚一周后到图2位置.若正六边形的边长为2cm,则正六边形的中心O运动的路程为cm.三、解答题(共76分)(19、20题5分)19.计算:﹣22﹣3×3﹣1+(﹣1)0+2sin30°.20.已知x是一元二次方程x2+3x﹣1=0的实数根,求代数式:的值.21.(6分)如图,小丽假期在娱乐场游玩时,想要利用所学的数学知识测量某个娱乐场地所在山坡AE的长度.她先在山脚下点E处测得山顶A的仰角是30°,然后,她沿着坡度是i=1:1(即tan∠CED=1)的斜坡步行15分钟抵达C处,此时,测得A点的俯角是15°.已知小丽的步行速度是18米/分,图中点A、B、E、D、C在同一平面内,且点D、E、B在同一水平直线上.求出娱乐场地所在山坡AE的长度.(参考数据:≈1.41,结果精确到0.1米)22.(6分)小英与她的父亲、母亲计划外出旅游,初步选择了延安、西安、汉中、安康四个城市,由于时间仓促,他们只能去其中一个城市,到底去哪一个城市三个人意见不统一,在这种情况下,小英父亲建议,用小英学过的摸球游戏来决定,规则如下:①在一个不透明的袋子中装一个红球(延安)、一个白球(西安)、一个黄球(汉中)和一个黑球(安康),这四个球除颜色不同外,其余完全相同;②小英父亲先将袋中球摇匀,让小英从袋中随机摸出一球,父亲记录下其颜色,并将这个球放回袋中摇匀,然后让小英母亲从袋中随机摸出一球,父亲记录下它的颜色;③若两人所摸出球的颜色相同,则去该球所表示的城市旅游,否则,前面的记录作废,按规则②重新摸球,直到两人所摸出求的颜色相同为止.按照上面的规则,请你解答下列问题:(1)已知小英的理想旅游城市是西安,小英和母亲随机各摸球一次,均摸出白球的概率是多少?(2)已知小英母亲的理想旅游城市是汉中,小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是多少?23.(9分)2014年5月31日是世界卫生组织发起的第27个“世界无烟日”.为了更好地宣传吸烟的危害,某中学九年级(1)班数学兴趣小组设计了如下调查问卷,在东方广场随机调查了部分吸烟人群,并将调查结果绘制成如图所示的统计图.根据以上信息,解答下列问题:(1)本次接受调查的总人数是,并把条形统计图补充完整;(2)在扇形统计图中,C选项的人数所占百分比是,E选项所在扇形的圆心角的度数是.(3)若某区约有烟民38万人,试估计对吸烟有害持“无所谓”态度的人数,你对这部分人群有何建议?24.(8分)如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC 交⊙O于点D,BD的延长线交AC于E,连接AD.(1)求证:△CDE∽△CAD;(2)若AB=2,AC=2,求AE的长.25.(6分)一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价120元;如果购买树苗超过60棵,每增加1棵,所出售的这批树苗每棵售价均降低0.5元,但每棵树苗最低售价不得少于100元,该校最终向园林公司支付树苗款8800元,请问该校共购买了多少棵树苗?26.(9分)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,∠BCD=60°,点E是AB上一点,AE=3EB,⊙P 过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点.(1)求抛物线的解析式;(2)求证:ED是⊙P的切线;27.(10分)如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC于H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,求(2)中x和y的值;如果不存在,请说明理由.28.(12分)如图,二次函数y=a(x2﹣2mx﹣3m2)(其中a,m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣3),点D 在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.(1)用含m的代数式表示a;(2)求证:为定值;(3)设该二次函数图象的顶点为F,探索:在x轴的负半轴上是否存在点G,连接GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由.参考答案与试题解析一、选择题(每小题3分,共24分)1.解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:C.2.解:根据题意得:80×5﹣(81+79+80+82)=78,方差=[(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故选C.3.解:根据题意得△=(﹣6)2﹣4×3×m>0,解得m<3.故选A.4.解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,∴S△ABC=×a×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.5.解:(法1)∵抛物线的开口向上,顶点纵坐标为﹣3,∴a>0,=﹣3,即b2=12a,∵一元二次方程ax2+bx+m=0有实数根,∴△=b2﹣4am≥0,即12a﹣4am≥0,即12﹣4m≥0,解得m≤3,∴m的最大值为3.(法2)一元二次方程ax2+bx+m=0有实数根,可以理解为y=ax2+bx和y=﹣m有交点,可见﹣m≥﹣3,∴m≤3,∴m的最大值为3.故选B.(5题)(6题)6.解:∵⊙O的直径AB=12,∴OB=AB=6,∵BP:AP=1:5,∴BP=AB=×12=2,∴OP=OB﹣BP=6﹣2=4,∵CD⊥AB,∴CD=2PC.如图,连接OC,在Rt△OPC中,∵OC=6,OP=4,∴PC===2,∴CD=2PC=2×2=4.故选D.7.解:根据题意知,当∠OAP取最大值时,OP⊥AP;在Rt△AOP中,∵OP=OB,OB=AB,∴OA=2OP,∴∠OAP=30°.故选A.(7题)(8题)8.解:连接OD、OE,设AD=x,∵半圆分别与AC、BC相切,∴∠CDO=∠CEO=90°,∵∠C=90°,∴四边形ODCE是矩形,∴OD=CE,OE=CD,又∵OD=OE,∴CD=CE=4﹣x,BE=6﹣(4﹣x)=x+2,∵∠AOD+∠A=90°,∠AOD+∠BOE=90°,∴∠A=∠BOE,∴△AOD∽OBE,∴=,∴=,解得x=1.6,故选:B.二、填空题(每小题3分,共30分)9.187.10.解:∵频数=×组距,∴当40≤x<50时,频数=0.6×10=6,同理可得:50≤x<60,频数=9,60≤x<70,频数=9,80≤x<90,频数=15,90≤x<100,频数=3,∴70≤x<80,频数=60﹣6﹣9﹣9﹣15﹣3=18,∴这次测试的及格率=×100%=75%.11.解:根据题意得:(x+1)2﹣1=24,即:(x+1)2=25.故答案为:(x+1)2=25.12.解:∵(x1﹣2)(x1﹣x2)=0,∴x1﹣2=0或x1﹣x2=0.①如果x1﹣2=0,那么x1=2,将x=2代入x2+(2k+1)x+k2﹣2=0,得4+2(2k+1)+k2﹣2=0,整理,得k2+4k+4=0,解得k=﹣2;②如果x1﹣x2=0,那么(x1﹣x2)2=(x1+x2)2﹣4x1x2=[﹣(2k+1)]2﹣4(k2﹣2)=4k+9=0,解得k=﹣.又∵△=(2k+1)2﹣4(k2﹣2)≥0.解得:k≥﹣.所以k的值为﹣2或﹣.13.解:假设共有x人进入半决赛.∴x(x﹣1)=6,解得:x 1=4,x 2=﹣3(舍去),答:共有4人进入半决赛.故答案为:4.14.解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数的图象在第一、三象限的概率是:=.故答案为:.15.解:连接OA、OB.∵PA,PB分别切⊙O于点A,B,∴OA⊥PA,OB⊥PB;∴∠PAO=∠PBO=90°;又∵∠APB=50°,∴在四边形AOBP中,∠AOB=360°﹣90°﹣90°﹣50°=130°,∴∠ADB=×∠AOB=×130°=65°,即当C在D处时,∠ACB=65°.在四边形ADBC中,∠ACB=180°﹣∠ADB=180°﹣65°=115°.于是∠ACB的度数为65°或115°.(15题)16.解:∵∠ABD=30°,∠ACD=60°,∴假设CD=x,AC=2x,∴AD=x,tanB==,∴=,解得:x=150,∴AD=x=×150≈260米.故答案为:260米.17.解:由表中数据可知抛物线y=ax2+bx+c与x轴的交点为(﹣2,0)、(3,0),根据表格确定y≤0的是x的取值范围﹣2≤x≤3,故答案为:﹣2≤x≤3.18.解:根据题意得:每次滚动正六边形的中心就以正六边形的半径为半径旋转60°,正六边形的中心O运动的路程∵正六边形的边长为2cm,∴运动的路径为:=;∵从图1运动到图2共重复进行了六次上述的移动,∴正六边形的中心O运动的路程6×=4πcm三、解答题(共76分)19.(5分)解:原式=﹣4﹣1+1+1=﹣3.20.(5分)解:∵x2+3x﹣1=0.∴x2+3x=1.x(x+3)=1∴原式=÷==.21.(6分)解:作EF⊥AC,根据题意,CE=18×15=270米,∵tan∠CED=1,∴∠CED=∠DCE=45°,∵∠ECF=90°﹣45°﹣15°=30°,∴EF=CE=135米,∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°﹣45°﹣60°﹣30°=45°,∴AE=135≈190.4米22.(6分)解:(1)画树状图得:∵共有16种等可能的结果,小英和母亲随机各摸球一次,均摸出白球的只有1种情况,∴小英和母亲随机各摸球一次,均摸出白球的概率是:;(2)由(1)得:共有16种等可能的结果,小英和母亲随机各摸球一次,至少有一人摸出黄球的有7种情况,∴小英和母亲随机各摸球一次,至少有一人摸出黄球的概率是:.23.(9分)(1)调查的总人数=126÷42%=300,决定戒烟,远离烟草危害的人数为300﹣12﹣126﹣78﹣30=54人,如图,故答案为:300人;(23答图)(26答图)(2)在扇形统计图中,C选项的人数所占百分比是78÷300=26%,×360°=36°,故答案为:26%,36°.(3)估计对吸烟有害持“无所谓”态度的人数为38×=1.52(万人)建议:吸烟有害身体健康.24.(8分)(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∵AC为⊙O的切线,∴BA⊥AC,∴∠BAC=90°,即∠BAD+∠CAD=90°,∴∠B=∠CAD,∵OB=OD,∴∠B=∠ODB,而∠ODB=∠CDE,∴∠B=∠CDE,∴∠CAD=∠CDE,而∠ECD=∠DCA,∴△CDE∽△CAD;(2)解:∵AB=2,∴OA=1,在Rt△AOC中,AC=2,∴OC==3,∴CD=OC ﹣OD=3﹣1=2,∵△CDE∽△CAD,∴=,即=,∴CE=.∴AE=AC﹣CE=2﹣=.25.(6分)解:因为60棵树苗售价为120元×60=7200元<8800元,所以该校购买树苗超过60棵,设该校共购买了x棵树苗,由题意得:x[120﹣0.5(x﹣60)]=8800,解得:x1=220,x2=80.当x=220时,120﹣0.5×(220﹣60)=40<100,∴x=220(不合题意,舍去);当x=80时,120﹣0.5×(80﹣60)=110>100,∴x=80.答:该校共购买了80棵树苗.26.(9分)解:(1)∵C(2,0),BC=6,∴B(﹣4,0),在Rt△OCD中,∵tan∠OCD=,∴OD=2tan60°=2,∴D(0,2),设抛物线的解析式为y=a(x+4)(x﹣2),把D(0,2)代入得a•4•(﹣2)=2,解得a=﹣,∴抛物线的解析式为y=﹣(x+4)(x﹣2)=﹣x2﹣x+2;(2)在Rt△OCD中,CD=2OC=4,∵四边形ABCD为平行四边形,∴AB=CD=4,AB∥CD,∠A=∠BCD=60°,AD=BC=6,∵AE=3BE,∴AE=3,∴=,==,∴=,而∠DAE=∠DCB,∴△AED∽△COD,∴∠ADE=∠CDO,而∠ADE+∠ODE=90°∴∠CDO+∠ODE=90°,∴CD⊥DE,∵∠DOC=90°,∴CD为⊙P的直径,∴ED是⊙P的切线;27.(10分)(1)证明:连接OE。
马鞍山市当涂县2015~2016年八年级上期末数学试卷含答案解析
安徽省马鞍山市当涂县2015~2016学年度八年级上学期期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.点A(﹣3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.把直线y=2x向()平移()单位得到直线y=2x+6,括号内应填()A.上2 B.下6 C.上6 D.右33.一次函数y=kx+k的图象可能是()A.B.C.D.4.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min5.直线y=2x﹣4与两坐标轴所围成的三角形面积等于()A.2 B.4 C.6 D.86.下列命题中,假命题的是()A.三角形的外角大于任一内角B.能被2整除的数,末位数字必是偶数C.两直线平行,同旁内角互补D.相反数等于它本身的数是07.三个内角之比是1:5:6的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形8.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°9.等腰三角形中有一内角等于80°,那么这个三角形的最小内角的度数为()A.50 B.20 C.40或50 D.20或5010.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B. C.5 D.2.5二、填空题(本题共8小题,每小题3分,计24分)11.函数y=中,自变量x的取值范围是.12.命题“直角三角形两锐角互余”的逆命题是:.13.等腰三角形的两边长分别是3和7,则其周长为.14.已知y是x的一次函数,右表列出了部分对应值,则m=.x 1 0 2y 3 m 515.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.16.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是.17.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=.18.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E 为垂足,则结论①AC+CD=AB;②AD=BF;③BF=2BE;④BE=CF.其中正确的结论是.三、解答题19.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边和相同的刻度分别为M,N、N重合,过角尺顶点C的射线OC就是∠AOB的平分线.请将上述应用问题改成几何问题.根据题意写出已知,求证,并完成证明过程.已知:求证:证明:20.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.21.在同一平面直角坐标系内画出一次函数y1=x+4和y2=2x﹣5的图象,根据图象求:(1)方程﹣x+4=2x﹣5的解;(2)当x取何值时,y1<y2?当x取何值时,y1>0且y2<0?22.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE 交底BC于G.求证GD=GE.23.某用煤单位有煤m吨,每天烧煤n吨,烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求该单位余煤量y吨与烧煤天数x之间的函数解析式;(2)当烧煤12天后,还余煤多少吨?(3)预计多少天后会把煤烧完?24.探索与证明:(1)如图1,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.安徽省马鞍山市当涂县2015~2016学年度八年级上学期期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.点A(﹣3,4)所在象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】点的坐标.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.把直线y=2x向()平移()单位得到直线y=2x+6,括号内应填()A.上2 B.下6 C.上6 D.右3【考点】一次函数图象与几何变换.【分析】直接利用一次函数的平移规律“上加下减”进而求出答案.【解答】解:把直线y=2x向上学期平移(6)单位得到直线y=2x+6,故选:C.【点评】此题主要考查了一次函数的平移,正确掌握平移规律是解题关键.3.一次函数y=kx+k的图象可能是()A.B.C.D.【考点】一次函数的图象.【分析】根据一次函数的图象与系数的关系进行解答即可.【解答】解:当k>0时,函数图象经过一、二、三象限;当k<0时,函数图象经过二、三、四象限,故B正确.故选B.【点评】本题考查的是一次函数的图象,熟知一次函数y=kx+b(k≠0)中,当k<0,b<0时,函数图象经过二、三、四象限是解答此题的关键.4.小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A.他离家8km共用了30min B.他等公交车时间为6minC.他步行的速度是100m/min D.公交车的速度是350m/min【考点】函数的图象.【专题】压轴题;数形结合.【分析】根据图象可以确定他离家8km用了多长时间,等公交车时间是多少,他步行的时间和对应的路程,公交车运行的时间和对应的路程,然后确定各自的速度.【解答】解:A、依题意得他离家8km共用了30min,故A选项正确;B、依题意在第10min开始等公交车,第16min结束,故他等公交车时间为6min,故B选项正确;C、他步行10min走了1000m,故他步行的速度为他步行的速度是100m/min,故C选项正确;D、公交车(30﹣16)min走了(8﹣1)km,故公交车的速度为7000÷14=500m/min,故D选项错误.故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.5.直线y=2x﹣4与两坐标轴所围成的三角形面积等于()A.2 B.4 C.6 D.8【考点】一次函数图象上点的坐标特征;三角形的面积.【分析】根据题意易得此直线与坐标轴的两个交点坐标,该直线与坐标轴围成的三角形的面积等于×直线与x轴交点的横坐标的绝对值×直线与y轴交点的纵坐标.【解答】解:当x=0时,y=﹣4,当y=0时,x=2,∴所求三角形的面积=×2×|﹣4|=4.故选B.【点评】本题考查了一次函数图象上的点坐标特征、三角形的面积.某条直线与x轴,y轴围成三角形的面积为:×直线与x轴的交点坐标的横坐标的绝对值×直线与y轴的交点坐标的纵坐标的绝对值.6.下列命题中,假命题的是()A.三角形的外角大于任一内角B.能被2整除的数,末位数字必是偶数C.两直线平行,同旁内角互补D.相反数等于它本身的数是0【考点】命题与定理.【分析】利用三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义分别判断后即可确定正确的选项.【解答】解:A、三角形的外角大于任何一个不相邻的内角,故错误,是假命题;B、能被2整除的数,末位数字必是偶数,故正确,是真命题;C、两直线平行,同旁内角互补,正确,是真命题;D、相反数等于它本身的数是0,正确,是真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义,属于基础题,难度不大.7.三个内角之比是1:5:6的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰直角三角形【考点】三角形内角和定理.【分析】根据三角形的内角和定理求得各个角的度数,再进一步判断三角形的形状.【解答】解:三角形的三个内角分别是180°×=15°,180°×=75°,180°×=90°.所以该三角形是直角三角形.故选B.【点评】此题考查了三角形的内角和定理以及三角形的分类.三角形按角分类有锐角三角形、直角三角形、钝角三角形.三个角都是锐角的三角形叫锐角三角形;有一个角是钝角的三角形叫钝角三角形;有一个角是直角的三角形叫直角三角形.8.在△ABC中,已知AB=AC,DE垂直平分AC,∠A=50°,则∠DCB的度数是()A.15°B.30°C.50°D.65°【考点】线段垂直平分线的性质;等腰三角形的性质.【专题】计算题.【分析】首先由AB=AC可得∠ABC=∠ACB,再由DE垂直平分AC可得DC=AD,推出∠DAC=∠DCA.易求∠DCB.【解答】解:AB=AC,∠A=50°⇒∠ABC=∠ACB=65°.∵DE垂直平分AC,∴∠DAC=∠DCA.∴∠DCB=∠ACB﹣∠DCA=65°﹣50°=15°.故选A.【点评】本题考查的是线段垂直平分线的性质以及等腰三角形的性质,考生主要了解线段垂直平分线的性质即可求解.9.等腰三角形中有一内角等于80°,那么这个三角形的最小内角的度数为()A.50 B.20 C.40或50 D.20或50【考点】等腰三角形的性质.【专题】分类讨论.【分析】先分情况讨论:80°是等腰三角形的底角或80°是等腰三角形的顶角,再根据三角形的内角和定理进行计算.【解答】解:当80°是等腰三角形的顶角时,则底角就是(180°﹣80°)=50°;当80°是等腰三角形的底角时,则顶角是180°﹣80°×2=20°.∴这个三角形的最小内角的度数为20或50,故选D.【点评】本题考查了等腰三角形的性质及三角形的内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.10.如图∠AOP=∠BOP=15°,PC∥OA,PD⊥OA,若PC=10,则PD等于()A.10 B. C.5 D.2.5【考点】含30度角的直角三角形;平行线的性质;三角形的外角性质.【专题】计算题.【分析】根据平行线的性质可得∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,可得PE=PC=10,在Rt△PED中,求出∠PEA的度数,根据勾股定理解答.【解答】解:∵PC∥OA,∴∠CPO=∠POA,∵∠AOP=∠BOP=15°,∴∠AOP=∠BOP=∠CPO=15°,过点P作∠OPE=∠CPO交于AO于点E,则△OCP≌△OEP,∴PE=PC=10,∵∠PEA=∠OPE+∠POE=30°,∴PD=10×=5.故选:C.【点评】本题利用了:1、两直线平行,内错角相等;2、三角形的外角与内角的关系;3、全等三角形的判定和性质.二、填空题(本题共8小题,每小题3分,计24分)11.函数y=中,自变量x的取值范围是x≤4且x≠2.【考点】函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【解答】解:根据题意得:解得x≤4且x≠2.【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.12.命题“直角三角形两锐角互余”的逆命题是:如果三角形有两个角互余,那么这个三角形是直角三角形.【考点】命题与定理.【分析】先找到原命题的题设和结论,再将题设和结论互换,即可而得到原命题的逆命题.【解答】解:因为“直角三角形两锐角互余”的题设是“三角形是直角三角形”,结论是“两个锐角互余”,所以逆命题是:“如果三角形有两个角互余,那么这个三角形是直角三角形”.故答案为:如果三角形有两个角互余,那么这个三角形是直角三角形.【点评】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.13.等腰三角形的两边长分别是3和7,则其周长为17.【考点】等腰三角形的性质.【专题】分类讨论.【分析】因为边为3和7,没明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:分两种情况:当3为底时,其它两边都为7,3、7、7可以构成三角形,周长为17;当3为腰时,其它两边为3和7,3+3=6<7,所以不能构成三角形,故舍去,所以等腰三角形的周长为17.故答案为:17.【点评】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.已知y是x的一次函数,右表列出了部分对应值,则m=1.x 1 0 2y 3 m 5【考点】待定系数法求一次函数解析式.【专题】图表型.【分析】如图所示当x=1时,y=3;x=2时,y=5.用待定系数法可求出函数关系式,然后把x=0代入,得到m的值.【解答】解:如图所示当x=1时,y=3;x=2时,y=5.据此列出方程组,求得,一次函数的解析式y=2x+1,然后把x=0代入,得到y=m=1.故填1.【点评】利用一次函数的特点,求出一次函数解析式是解决本题的关键.15.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第2块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.16.如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,则∠ADE的大小是40°.【考点】三角形内角和定理;平行线的性质.【分析】根据DE∥AB可求得∠ADE=∠BAD,根据三角形内角和为180°和角平分线平分角的性质可求得∠BAD的值,即可解题.【解答】解:∵DE∥AB,∴∠ADE=∠BAD,∵∠B=46°,∠C=54°,∴∠BAD=180°﹣46°﹣54°=80°,∵AD平分∠BAC,∴∠BAD=40°,∴∠ADE=40°,故答案为40°.【点评】本题考查了三角形内角和为180°性质,考查了角平分线平分角的性质,本题中求∠ADE=∠BAD是解题的关键.17.如图,将三角形的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2=50°.【考点】平行线的性质;三角形的外角性质.【专题】综合题.【分析】先根据三角形的外角性质求得∠4的度数,再根据平行线的性质即可求解.【解答】解:由三角形的外角性质可得∠4=∠1+∠3=50°,∵∠2和∠4是两平行线间的内错角,∴∠2=∠4=50°.故答案为:50°.【点评】本题综合考查了三角形的外角性质和平行线的性质,得到∠4的度数是解题的关键.18.如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E 为垂足,则结论①AC+CD=AB;②AD=BF;③BF=2BE;④BE=CF.其中正确的结论是①②③.【考点】全等三角形的判定与性质;角平分线的性质.【分析】根据BC=AC,∠ACB=90°可知∠CAB=∠ABC=45°,再由AD平分∠BAC可知∠BAE=∠EAF=22.5°,在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,可求出∠EAF=∠FBC,由BC=AC可求出Rt△ADC≌Rt△BFC,故可求出AD=BF;故②正确;由△ADC≌△BFC可知,CF=CD,故AC+CD=AC+CF=AF,∠CBF=∠EAF=22.5°,在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,根据∠CAB=45°可知,∠ABF=180°﹣∠EAF﹣∠CAB=67.5°,即可求出AF=AB,即AC+CD=AB故①正确;由ABF是等腰三角形,由于BE⊥AD,故BE=BF,在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF;故④错误;由ABF是等腰三角形,由于BE⊥AD,根据等腰三角形三线合一的性质即可得到BF=2BE,故③正确.【解答】解:∵BC=AC,∠ACB=90°,∴∠CAB=∠ABC=45°,∵AD平分∠BAC,∴∠BAE=∠EAF=22.5°,∵在Rt△ACD与Rt△BFC中,∠EAF+∠F=90°,∠FBC+∠F=90°,∴∠EAF=∠FBC,在△ADC与△BFC中,,∴△ADC≌△BFC,∴AD=BF,故②正确;∵△ADC≌△BFC,∴CF=CD,AC+CD=AC+CF=AF,∵∠CBF=∠EAF=22.5°,∴在Rt△AEF中,∠F=90°﹣∠EAF=67.5°,∵∠CAB=45°,∴∠ABF=180°﹣∠F﹣∠CAB=180°﹣67.5°﹣45°=67.5°,∴AF=AB,即AC+CD=AB,故①正确;∵△ABF是等腰三角形,∵BE⊥AD,∴BE=BF,∵在Rt△BCF中,若BE=CF,则∠CBF=30°,与②中∠CBF=22.5°相矛盾,故BE≠CF,故④错误;∵△ABF是等腰三角形,BE⊥AD,∴BF=2BE,故③正确.故选A.【点评】本题考查的是全等三角形的判定和性质,线段垂直平分线的性质及等腰三角形的判定与性质,熟知线段垂直平分线的性质及等腰三角形的判定与性质是解答此题的关键.三、解答题19.如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边和相同的刻度分别为M,N、N重合,过角尺顶点C的射线OC就是∠AOB的平分线.请将上述应用问题改成几何问题.根据题意写出已知,求证,并完成证明过程.已知:求证:证明:【考点】全等三角形的判定与性质.【分析】已知两三角形三边分别相等,可考虑SSS证明三角形全等,从而证明角相等.【解答】已知:如图,在∠AOB的边OA,OB上分别取OM=ON,在射线OC上取MC=NC;求证:OC平分∠AOB;证明:在△COM和△CON中,,∴△AMC≌△CON,∴∠MOC=∠NOC,即OC平分∠AOB.【点评】本题考查全等三角形在实际生活中的应用.对于难以确定角平分线的情况,利用全等三角形中对应角相等,从而轻松确定角平分线.20.△ABC在平面直角坐标系中的位置如图所示.(1)作出△ABC关于y轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.【考点】作图-平移变换;作图-轴对称变换.【专题】作图题.【分析】(1)要关于y轴对称,即从各顶点向y轴引垂线,并延长,且线段相等,然后找出各顶点的坐标.(2)各顶点向右平移6个单位找对应点即可.(3)从图中可以看出关于直线x=3轴对称.【解答】解:(1)A1(0,4),B1(2,2),C1(1,1);(2)A2(6,4),B2(4,2),C2(5,1);(3)△A1B1C1与△A2B2C2关于直线x=3轴对称.【点评】本题侧重于数学知识的综合应用,做这类题的关键是掌握平移,轴对称,及坐标系的有关知识,触类旁通.21.在同一平面直角坐标系内画出一次函数y1=x+4和y2=2x﹣5的图象,根据图象求:(1)方程﹣x+4=2x﹣5的解;(2)当x取何值时,y1<y2?当x取何值时,y1>0且y2<0?【考点】一次函数与一元一次不等式;一次函数与一元一次方程.【分析】(1)根据题意画出一次函数y1=﹣x+4和y2=2x﹣5的图象,根据两图象的交点即可得出x 的值;(2)根据函数图象可直接得出结论.【解答】解:(1)∵一次函数y1=﹣x+4和y2=2x﹣5的图象相交于点(1,3),∴方程﹣x+4=2x﹣5的解为x=3;(2)由图可知,当x<3时,y1>y2,当x<2.5时,y1>0且y2<0【点评】本题考查的是一次函数与一元一次不等式,能根据题意画出函数图象,利用数形结合求解是解答此题的关键.22.如图,△ABC是等腰三角形,D,E分别是腰AB及AC延长线上的一点,且BD=CE,连接DE 交底BC于G.求证GD=GE.【考点】等腰三角形的性质;全等三角形的判定与性质.【专题】证明题.【分析】过E作EF∥AB交BC延长线于F,根据等腰三角形的性质及平行线的性质可推出∠F=∠FCE,从而可得到BD=CE=EF,再根据AAS判定△DGB≌△EGF,根据全等三角形的性质即可证得结论.【解答】证明:过E作EF∥AB交BC延长线于F.∵AB=AC,∴∠B=∠ACB,∵EF∥AB,∴∠F=∠B,∵∠ACB=∠FCE,∴∠F=∠FCE,∴CE=EF,∵BD=CE,∴BD=EF,在△DBG与△GEF中,,∴△DGB≌△EGF(AAS),∴GD=GE.【点评】此题主要考查等腰三角形的性质及全等三角形的判定与性质的综合运用.23.某用煤单位有煤m吨,每天烧煤n吨,烧煤3天后余煤102吨,烧煤8天后余煤72吨.(1)求该单位余煤量y吨与烧煤天数x之间的函数解析式;(2)当烧煤12天后,还余煤多少吨?(3)预计多少天后会把煤烧完?【考点】一次函数的应用.【分析】(1)根据余煤=原有存煤总数﹣每天烧煤数×天数,设出函数关系式,将x=3,y=102;x=8,y=7代入求解即可;(2)当x=12时,求出y的值;(3)煤全部烧完即y=0,得出方程求解可得.【解答】解:(1)由题意得;y=m﹣nx.将x=3,y=102;x=8,y=7代入得:,解得:,∴函数解析式为:y=120﹣6x(2)当x=12时,代入得y=48.答:当烧煤12天后,还余煤48吨.(3)设y=0,则120﹣6x=0.解得:x=20.答:预计20天将煤用完.【点评】本题主要考查一次函数的实际应用能力,根据题意设出函数关系式是前提,代入计算是解题根本和基础.24.探索与证明:(1)如图1,直线m经过正三角形ABC的顶点A,在直线m上取两点D,E,使得∠ADB=60°,∠AEC=60°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明;(2)将(1)中的直线m绕着点A逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.通过观察或测量,猜想线段BD,CE与DE之间满足的数量关系,并予以证明.【考点】全等三角形的判定与性质;等边三角形的性质.【专题】应用题.【分析】(1)通过证明△DAB≌△ECA(AAS),∴AD=CE,BD=AE,从而证得BD+CE=AE+AD=DE:(2)通过△DAB≌△ECA(AAS),∴AD=CE,BD=AE,从而证得CE﹣BD=AD﹣AE=DE.【解答】解:(1)猜想:BD+CE=DE.证明:由已知条件可知:∠DAB+∠CAE=120°,∠ECA+∠CAE=120°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠AEC=60°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴BD+CE=AE+AD=DE.(2)猜想:CE﹣BD=DE.证明:由已知条件可知:∠DAB+∠CAE=60°,∠ECA+∠CAE=60°,∴∠DAB=∠ECA.在△DAB和△ECA中,∠ADB=∠AEC=120°,∠DAB=∠ECA,AB=CA,∴△DAB≌△ECA(AAS).∴AD=CE,BD=AE.∴CE﹣BD=AD﹣AE=DE.【点评】本题考查了全等三角形的判定与性质,及等边三角形的性质,难度适中,注意熟练掌握这些知识以便灵活应用.。
2015-2016学年安徽省马鞍山市八年级(下)期末数学试卷(解析版)
2015-2016学年安徽省马鞍山市八年级(下)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.(3分)下列根式中,不是最简二次根式的是()A.B.C.D.2.(3分)方程x2=x的解是()A.x=1B.x=0C.x1=1,x2=0D.x1=﹣1,x2=0 3.(3分)下列四组线段中,可以构成直角三角形的是()A.1,2,3B.2,3,4C.3,4,5D.4,5,64.(3分)只用下列图形不能进行平面镶嵌的是()A.全等的三角形B.全等的四边形C.全等的正五边形D.全等的正六边形5.(3分)已知关于x的方程x2﹣kx﹣6=0的一个根为﹣2,则实数k的值为()A.1B.﹣1C.2D.﹣26.(3分)小强同学投掷30次实心球的成绩如表所示:由上表可知小强同学投掷30次实心球成绩的众数与中位数分别是()A.12m,11.9m B.12m,12.1mC.12.1m,11.9m D.12.1m,12m7.(3分)已知a是一元二次方程x2﹣x﹣1=0较大的根,则下面对a的估计正确的是()A.0<a<1B.1<a<1.5C.1.5<a<2D.2<a<38.(3分)已知四边形ABCD,有以下四个条件:①AB∥CD;②BC∥AD;③AB=CD;④∠ABC=∠ADC.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法有()A.3种B.4种C.5种D.6种9.(3分)在△ABC中,AC=9,BC=12,AB=15,则AB边上的高是()A.B.C.D.10.(3分)如图,在▱ABCD中,对角线AC、BD交于点O,并且∠DAC=60°,∠ADB=15°.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→菱形→平行四边形→矩形→平行四边形C.平行四边形→矩形→平行四边形→正方形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.(3分)函数y=自变量x的取值范围是.12.(3分)若正n边形的一个外角为45°,则n=.13.(3分)样本容量为80,共分为六组,前四个组的频数分别为12,13,15,16,第五组的频率是0.1,那么第六组的频率是.14.(3分)某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是%.15.(3分)八年级(1)班四个绿化小组植树的棵数如下:8,8,10,x,已知这组数据的众数和平均数相等,那么这组数据的方差是.16.(3分)一个平行四边形的一条边长为3,两条对角线的长分别为4和2,则它的面积为.17.(3分)一个直角三角形的两条边的长度分别为3和4,则它的斜边长为.18.(3分)如图,在平行四边形ABCD中,AD=2AB;CF平分∠BCD交AD于F,作CE ⊥AB,垂足E在边AB上,连接EF.则下列结论:①F是AD的中点;②S△EBC=2S△CEF;③EF=CF;④∠DFE=3∠AEF.其中一定成立的是.(把所有正确结论的序号都填在横线上)三、解答题(本大题共6小题,共46分.)19.(8分)(1)计算:3﹣2+(2)解方程:(2x﹣1)(x+3)=4.20.(6分)已知关于x的一元二次方程mx2﹣2x+1=0.(1)若方程有两个实数根,求m的范围;(2)若方程的两个实数根为x1和x2,x1•x2﹣x1﹣x2=,求m的值.21.(8分)某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查发现:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件,设每件涨价x元(x为非负整数),每星期的销量为y件.(1)写出y与x的关系式;(2)要使每星期的利润为1560元,从有利于消费者的角度出发,售价应定为多少?22.(8分)2015年3月30日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表(1)这次抽取了名学生的竞赛成绩进行统计,其中:m=,n=;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?23.(8分)如图,将边长为4的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD 方向平移,得到△A′B′C′.(1)当两个三角形重叠部分的面积为3时,求移动的距离AA′;(2)当移动的距离AA′是何值时,重叠部分是菱形.24.(8分)如图1,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形ABCD,且∠ABC=60°,其他条件不变,如图2.连接DE,试探究线段BP与线段DE的数量关系,并说明理由.2015-2016学年安徽省马鞍山市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.每小题所给的四个选项中只有一个是正确的,请将正确答案的代号填在题后的括号内.)1.【解答】解:C、∵==;∴它不是最简二次根式.故选:C.2.【解答】解:方程移项得:x2﹣x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=1,x2=0.故选:C.3.【解答】解:A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、32+42=52,能构成直角三角形,故符合题意;D、42+52≠62,不能构成直角三角形,故不符合题意.故选:C.4.【解答】解:A、三角形的内角和为180°,是360°的约数,能镶嵌平面,不符合题意;B、四边形的内角和为360°,是360°的约数,能镶嵌平面,不符合题意;C、正五边形的一个内角度数为180﹣360÷5=108°,不是360°的约数,不能镶嵌平面,符合题意.D、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;故选:C.5.【解答】解:∵x=﹣2是方程的根,由一元二次方程的根的定义,可得(﹣2)2+2k﹣6=0,解此方程得到k=1.故选:A.6.【解答】解:∵12.1出现了10次,出现的次数最多,∴小强同学投掷30次实心球成绩的众数是12.1m;把这些数从小到大排列,最中间的数是第15、16个数的平均数,则中位数是=12(m);故选:D.7.【解答】解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,故选:C.8.【解答】解:当满足①②时,由两组对边分别平行的四边形是平行四边形可知四边形ABCD为平行四边形;当满足①③时,由一组对边平行且相等的四边形是平行四边形可知四边形ABCD为平行四边形;当满足①④或②④时,由平行线的性质可求得该四边形的两组对角分别相等,则可知四边形ABCD为平行四边形;∴能使四边形ABCD成为平行四边形的选法有4种,故选:B.9.【解答】解:∵AC2+BC2=92+122=81+144=225,AB2=225,∴AC2+BC2=AB2,∴∠ACB=90°,∵S△ABC=AC•BC=AB•CD,∴CD==.故选:A.10.【解答】解:∵点O是平行四边形ABCD的对角线得交点,∴OA=OC,AD∥BC,∴∠ACF=∠CAD,∵∠COF=∠AOE∴△AOE≌△COF,∴AE=CF,∵AE∥CF,∴四边形AECF是平行四边形,∵∠DAC=60°,∠ADB=15°,根据三角形得内角和定理得,∠AOD=105°,∴点E从D点向A点移动过程中,当∠AOE=90°时,EF⊥AC,∵OA=OC,∴AE=CE,∴平行四边形AECF是菱形;当∠BCE=90°时,平行四边形AECF是矩形,∴OE=OC,∠ACE=30°,∴∠OEC=30°,∴∠AOE=2∠ACE=60°,即:∠AOE=60°时,平行四边形AECF是矩形;综上述,当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是:平行四边形→菱形→平行四边形→矩形→平行四边形.故选:B.二、填空题(本大题共8小题,每小题3分,共24分.请将答案直接填在题后的横线上.)11.【解答】解:根据题意得:x+3>0,解得:x>﹣3.故答案为:x>﹣3.12.【解答】解:n=360°÷45°=8.所以n的值为8.故答案为:8.13.【解答】解:第五组的频数:80×0.1=8,第六组的频数:80﹣12﹣13﹣15﹣16﹣8=16,第六组的频率是:=0.2,故答案为:0.2.14.【解答】解:设平均每年的增长率是x,则:5(1+x)2=7.2,1+x=±1.2,∴x=0.2或x=﹣2.2(不合题意,应舍去).∴平均每年的增长率是20%.故填20.15.【解答】解:当x=10时,有两个众数,而平均数只有一个,不合题意舍去.当众数为8,根据题意得=8,解得x=6,则这组数据的方差是:[(10﹣8)2+(6﹣8)2]=2;故答案为:2.16.【解答】解:∵平行四边形两条对角线互相平分,∴它们的一半分别为2和,∵22+()2=32,∴两条对角线互相垂直,∴这个四边形是菱形,∴S=4×2=4.故答案为:4.17.【解答】解:①当3和4均为直角边时,斜边==5;②当3为直角边,4为斜边时,斜边=4.故答案是:4或5.18.【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DFC=∠BCF,∵CF平分∠BCD,∴∠BCF=∠DCF,∴∠DFC=∠DCF,∴CD=DF,∵AD=2AB,∴AD=2CD,∴AF=FD=CD,即F为AD的中点,故①正确;延长EF,交CD延长线于M,如图,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故③正确;∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC,故②不正确;设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④正确;综上可知正确的结论为①③④.答案为:①③④.三、解答题(本大题共6小题,共46分.)19.【解答】解:(1)原式=6﹣+4=.(2)原式整理得:2x+5x﹣7=0,(2x+7)(x﹣1)=0,∴2x+7=0或x﹣1=0,∴x1=﹣,x2=1.20.【解答】解:(1)根据题意得m≠0且△=(﹣2)2﹣4m≥0,解得m≤1且m≠0;(2)根据题意得x1+x2=,x1•x2=,∵x1•x2﹣x1﹣x2=,即x1•x2﹣(x1+x2)=,∴﹣=,解得m=﹣2.21.【解答】解:(1)y=150﹣10x(0≤x≤5且x为整数).(2)根据题意得:(40+x﹣30)(150﹣10x)=1560,整理得:x2﹣5x+6=0,解得:x1=2,x2=3,∴40+x=42或43.答:从有利于消费者的角度出发,售价应定为42元.22.【解答】解:(1)16÷0.08=200,m=200×0.35=70,n=24÷200=0.12;故答案为200,70;0.12;(2)如图,(3)1500×(0.08+0.2)=420,所以该校安全意识不强的学生约有420人.23.【解答】解:(1)设AC、A′B′交于点E,DC、A′C′交于点F,且设AA′=x,则A′E=AA′=x,A′D=4﹣x,重叠部分的面积为x(4﹣x)由x(4﹣x)=3,解得x=1或3,即AA′=1或3.(2)当四边形A′ECF是菱形时,A′E=A′F,设AA′=x,则A′E=CF=x,∴A′F2=2A′D2,∴x2=2(4﹣x)2,∴x=8﹣4或8+4(舍弃),即当移动的距离是8﹣4时,重叠部分是菱形.24.【解答】(1)证明:在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°,∵在△BCP和△DCP中,,∴△BCP≌△DCP(SAS);(2)证明:由(1)知,△BCP≌△DCP,∴∠CBP=∠CDP,∵PE=PB,∴∠CBP=∠E,∵∠1=∠2(对顶角相等),∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE∵AB∥CD,∴∠DCE=∠ABC,∴∠DPE=∠ABC;(3)解:结论:DE=PB.理由:由(1)知PD=PB=PE,由(2)知,∠DPE=∠ABC=60°,∴△PDE是等边三角形,∴DE=PE=PB∴DE=PB.。
九年级(上)期末数学试卷(含答案)
九年级(上)期末数学试卷一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>04.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤58.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=5709.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm210.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=.12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款元.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是元.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一、选一选,本大题共10小题,每小题3分,共30分,每小题只有一个正确选项.1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.【解答】解:|﹣2|=2.故选:B.2.(3分)将6.18×10﹣3化为小数是()A.0.000618 B.0.00618 C.0.0618 D.0.618【解答】解:∵0.00618=6.18×10﹣3,∴6.18×10﹣3=0.00618,故选:B.3.(3分)有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是()A.a>﹣4 B.bd>0 C.|a|>|b|D.b+c>0【解答】解:由数轴上点的位置,得a<﹣4<b<0<c<1<d.A、a<﹣4,故A不符合题意;B、bd<0,故B不符合题意;C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;D、b+c<0,故D不符合题意;故选:C.4.(3分)下列运算正确的是()A.a0=0 B.a3+a2=a5 C.a2•a﹣1=a D. +=【解答】解:(A)a0=1(a≠0),故A错误;(B)a2与a3不是同类项,故B错误;(D)原式=,故D错误;故选:C.5.(3分)若多边形的边数由3增加到n(n为大于3的整数)则其外角和的度数()A.增加B.减少C.不变D.不能确定【解答】解:因为多边形外角和固定为360°,所以外角和的读数是不变的.故选:C.6.(3分)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.【解答】解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选:C.7.(3分)函数y=中,自变量x的取值范围是()A.x≥﹣5 B.x≤﹣5 C.x≥5 D.x≤5【解答】解:由题意得,x﹣5≥0,解得x≥5.故选:C.8.(3分)如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32﹣2x)(20﹣x)=570 B.32x+2×20x=32×20﹣570C.(32﹣x)(20﹣x)=32×20﹣570 D.32x+2×20x﹣2x2=570【解答】解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,故选:A.9.(3分)已知圆锥的底面面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2B.27πcm2C.18cm2D.27cm2【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选:A.10.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,故中间一段图象对应的路径为,又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.二、认真填一填,本大题共8小题,每小题4分,共32分.11.(4分)因式分解:x2y﹣4y=y(x﹣2)(x+2).【解答】解:x2y﹣4y=y(x2﹣4)=y(x﹣2)(x+2).故答案为:y(x﹣2)(x+2).12.(4分)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款3a+5b 元.【解答】解:应付款3a+5b元.故答案为:3a+5b.13.(4分)一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是1000元.【解答】解:设这台空调的进价为x元,根据题意得:2000×0.6﹣x=x×20%,解得:x=1000.故这台空调的进价是1000元.故答案为:1000.14.(4分)某工厂现在平均每天比原计划多生产40台机器,现在生产600台机器所需的时间与原计划生产480台机器所用的时间相同,设原计划每天生产x 台机器,根据题意,可列方程=.【解答】解:由题意可得,=,故答案为:=.15.(4分)一直角三角形的两边长分别为5和12,则第三边的长是13或.【解答】解:设第三边为x,(1)若12是直角边,则第三边x是斜边,由勾股定理得:52+122=x2,∴x=13;(2)若12是斜边,则第三边x为直角边,由勾股定理得:52+x2=122,∴x=;∴第三边的长为13或.故答案为:13或.16.(4分)如图,在△ABC中,两条中线BE、CD相交于点O,若△ABC的周长为8cm,则△ADE的周长为4cm.【解答】解:∵在△ABC中,两条中线BE、CD相交于点O,∴DE是△ABC的中位线,∴DE∥BC,∴△ADE∽△ABC,∴△ABC的周长:△ADE的周长=,∵△ABC的周长为8cm,∴△ADE的周长为4cm,故答案为:4cm.17.(4分)如图,是一个圆心人工湖的平面图,弦AB是湖上的一座桥,已知桥长100m,测得圆周角∠ACB=30°,则这个人工湖的直径为200m.【解答】解:连结OA、OB,如图,∵∠AOB=2∠ACB=2×30°=60°,而OA=OB,∴△OAB为等边三角形,∴OA=AB=100m,∴个人工湖的直径为200m.故答案为200m.18.(4分)按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时,=,即这列数中的第100个数是,故答案为:.三、解答题(一):本大题共5小题,共38分.解答应写出必要的文字说明、证明过程或演算步骤.19.(7分)计算:﹣()﹣1+(﹣1)﹣20080﹣|﹣2|.【解答】解:原式=2﹣+3﹣﹣1﹣(2﹣)=2﹣2+=.20.(7分)化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.(8分)(1)作Rt△ABC的外接圆⊙P(不写作法,保留作图痕迹)(2)Rt△ABC中,若∠C=90°,BC=8,AC=6.求:⊙P的面积.【解答】解:(1)Rt△ABC的外接圆⊙P如图所示:(2)在Rt△ACB中,∵∠C=90°,AC=6,BC=8,∴AB==10,∴⊙P的面积=25π.22.(8分)如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,求建筑物AB的高度.(注:结果保留到0.1,≈1.414,≈1.732)【解答】解:设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+C D=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB==,即=,解得:x=50+50≈136.6,即建筑物AB的高度约为136.6米.23.(8分)甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;(2)求李华和王涛同时选择的美食都是甜品类的概率.【解答】解:(1)列表得:E F G H李华王涛A AE AF AG AHB BE BF BG BHC CE CF CG CHD DE DF DG DH由列表可知共有16种情况;(2)由(1)可知有16种情况,其中李华和王涛同时选择的美食都是甜品类的情况有AE,AF,AG三种情况,所以李华和王涛同时选择的美食都是甜品类的概率=.四、解答题(二):本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤24.(8分)某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=150;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36°;(4)已知该校共有1200名学生,请你估计该校约有240名学生最喜爱足球活动.【解答】解:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°×=36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.25.(10分)如图,在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.直线y=﹣2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为﹣1.(1)求点B的坐标及k的值;(2)求直线y=﹣2x+1、直线y=kx+4与y轴所围成的△ABC的面积.【解答】解:(1)∵直线y=﹣2x+1过点B,点B的横坐标为﹣1,∴y=2+1=3,∴B(﹣1,3),∵直线y=kx+4过B点,∴3=﹣k+4,解得:k=1;(2)∵k=1,∴一次函数解析式为:y=x+4,∴A(0,4),∵y=﹣2x+1,∴C(0,1),∴AC=4﹣1=3,∴△ABC的面积为:×1×3=.26.(10分)如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:当四边形BEDF是菱形时,BD⊥EF,设BE=x,则DE=x,AE=6﹣x,在Rt△ADE中,DE2=AD2+AE2,∴x2=42+(6﹣x)2,解得:x=,∵BD==2,∴OB=BD=,∵BD⊥EF,∴EO==,∴EF=2EO=.27.(10分)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:BE是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.【解答】解:(1)如图所示,连接BO,∵∠ACB=30°,∴∠OBC=∠OCB=30°,∵DE⊥AC,CB=BD,∴Rt△DCE中,BE=CD=BC,∴∠BEC=∠BCE=30°,∴△BCE中,∠EBC=180°﹣∠BEC﹣∠BCE=120°,∴∠EBO=∠EBC﹣∠OBC=120°﹣30°=90°,∴BE是⊙O的切线;(2)当BE=3时,BC=3,∵AC为⊙O的直径,∴∠ABC=90°,又∵∠ACB=30°,∴AB=tan30°×BC=,∴AC=2AB=2,AO=,∴阴影部分的面积=半圆的面积﹣Rt△ABC的面积=π×AO2﹣AB×BC=π×3﹣××3=﹣.28.(12分)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.【解答】方法一:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,把x=时,y=﹣(﹣2)2+9=.此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF 的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.方法二:(1)略.(2)连接MF,过点P作x轴垂线,交MF于点H,有最大值时,四边形MEFP面积最大.显然当S△PMF当a=1时,E(1,0),F(2,0),∵M(0,1),∴l MF:y=﹣x+1,设P(t,﹣t2+4t+5),H(t,﹣t+1),=(P Y﹣H Y)(F X﹣M X),∴S△PMF=(﹣t2+4t+5+t﹣1)(2﹣0)=﹣t2+t+4,∴S△PMF最大值为,∴当t=时,S△PMF=EF×MY=×1×1=,∵S△MEF的最大值为+=.∴S四边形MEFP(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3,∴﹣x2+4x+5=0,解得:x=2±,∵点P在第一象限,∴P(2+,3),PM、EF长度固定,当ME+PF最小时,PMEF的周长取得最小值,将点M向右平移1个单位长度(EF的长度),得M1(1,1),∵四边形MEFM1为平行四边形,∴ME=M1F,作点M1关于x轴的对称点M2,则M2(1,﹣1),∴M2F=M1F=ME,当且仅当P,F,M2三点共线时,此时ME+PF=PM2最小,∵P(2+,3),M2(1,﹣1),F(a+1,0),∴K PF=K M1F,∴,∴a=.。
安徽省马鞍山市和县2016届九年级(上)第三次月考数学试卷(解析版)
2015-2016学年安徽省马鞍山市和县九年级(上)第三次月考数学试卷一、选择题(本大共10个小题,每小题4分,满分40分)1.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣32.在平面直角坐标系中,点A的坐标为(3,4),若点A关于原点对称的点A′的坐标为(m,n),则m﹣n的值为()A.7 B.﹣7 C.1 D.﹣13.已知⊙O的直径为10cm,OP=3cm,则点P()A.在⊙O内 B.在⊙O上 C.在⊙O外 D.无法确定4.二次函数y=﹣(x+2)2+1的顶点坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,﹣1)D.(2,1)5.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm6.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根7.抛物线y=(x+1)(x﹣3)的对称轴是直线()A.x=﹣1 B.x=1 C.x=﹣3 D.x=38.“a,b是实数,|a|+≥0“这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件9.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x 之间的函数关系的是()A.B.C.D.10.如图,在Rt△ABC中,AC=BC,点D,E在斜边AC上,且满足AE=4,BD=3,∠DCE=45°,则DE的长度为()A.7 B.6 C.5 D.4二、填空题(本大题共4小题,每小题5分,满分20分)发芽的频数则绿豆发芽的概率估计值是.12.两个连续偶数的积为168,设较大的偶数为x,则得到关于x的方程是.13.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,∠P=60°,⊙O的半径为1,则劣弧的长为.14.如图,四边形ABCO中,点A,B,C在劣弧上,则下列结论正确的有(在横线上填写所有正确结论的序号).①若四边形ACBO是平行四边形,则四边形ACBO是菱形;②若四边形ACBO是菱形,则∠AOB=120°;③若∠AOB=120°,则四边形ACBO是菱形;④若四边形ACBO是平行四边形,则∠AOB=120°.三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2﹣x﹣3=0.16.如图所示的正方形网格中,每个小正方形的边长为1,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按顺时针方向旋转90°,在网格中画出旋转后的△A2B2C2.四、(本大题共2小题,每小题8分,满分16分)17.已知抛物线y=﹣2x2+4x+6.(1)用配方法求该抛物线的顶点坐标;(2)直接写出﹣2x2+4x+6>0时,x的取值范围是.18.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E+∠F=α,求∠A的度数(用含α的式子表示);(2)若∠E+∠F=60°,求∠A的度数.五、(本大题共2小题,每小题10分,满分20分)19.某同学两次分别从1﹣6六个整数中任取一个数,作为一元二次方程x2+mx+m=0的系数m,n的值.(1)当m=4时,取一个数作为n的值,方程x2+4x+n=0有两个不相等的实数根的概率是;(2)试用列表或画树状图的方法求方程x2+mx+n=0有两个不相等的实数根的概率.20.网购的普及标志着我国零售业进入了电商时代.某淘宝网店购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天该网店店主销售该产品获得的利润为1200元,求销售单价x的值.六、(本题满分12分)21.已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.七、(本题满分12分)22.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?八、(本题满分14分)23.在正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,点H是直线BC上一点,将线段FH绕点F逆时针旋转90°,得到线段FK,连接EK.(1)如图1,求证:EF=FG,且EF⊥FG;(2)如图2,若点H在线段BC的延长线上,求证:BH=EF+EK;(3)如图3,若点H在线段BC的反向延长线上,直接写出线段BH、EF、EK之间满足的数量关系为.2015-2016学年安徽省马鞍山市和县九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(本大共10个小题,每小题4分,满分40分)1.方程(x﹣2)(x+3)=0的解是()A.x=2 B.x=﹣3 C.x1=﹣2,x2=3 D.x1=2,x2=﹣3【考点】解一元二次方程-因式分解法.【分析】根据已知得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣2)(x+3)=0,x﹣2=0,x+3=0,x1=2,x2=﹣3,故选D.2.在平面直角坐标系中,点A的坐标为(3,4),若点A关于原点对称的点A′的坐标为(m,n),则m﹣n的值为()A.7 B.﹣7 C.1 D.﹣1【考点】关于原点对称的点的坐标.【分析】利用关于原点对称点的性质得出关于a,b的等式,进而求出即可.【解答】解:∵A的坐标为(3,4),若点A关于原点对称的点A′的坐标为(m,n),∴,∴m﹣n=1,故选C.3.已知⊙O的直径为10cm,OP=3cm,则点P()A.在⊙O内 B.在⊙O上 C.在⊙O外 D.无法确定【考点】点与圆的位置关系.【分析】根据d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.【解答】解:A、r=5cm,OP=3cm<r,故选:A.4.二次函数y=﹣(x+2)2+1的顶点坐标是()A.(﹣2,﹣1)B.(﹣2,1)C.(2,﹣1)D.(2,1)【考点】二次函数的性质.【分析】根据二次函数的性质直接求解.【解答】解:二次函数y=﹣(x+2)2+1的顶点坐标是(﹣2,1).故选B.5.将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm【考点】圆锥的计算.【分析】设扇形的半径为R,根据扇形面积公式得=4π,解得R=4;设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•r•4=4π,然后解方程即可.【解答】解:设扇形的半径为R,根据题意得=4π,解得R=4,设圆锥的底面圆的半径为r,则•2π•r•4=4π,解得r=1,即所围成的圆锥的底面半径为1cm.故选A.6.一元二次方程x2﹣2x﹣1=0的根的情况为()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】先计算判别式得到△=(﹣2)2﹣4×(﹣1)=8>0,然后根据判别式的意义判断方程根的情况.【解答】解:根据题意△=(﹣2)2﹣4×(﹣1)=8>0,所以方程有两个不相等的实数根.故选:B.7.抛物线y=(x+1)(x﹣3)的对称轴是直线()A.x=﹣1 B.x=1 C.x=﹣3 D.x=3【考点】二次函数的性质.【分析】利用交点式,得出与x轴交点坐标,利用对称性求得对称轴即可.【解答】解:∵抛物线y=(x+1)(x﹣3)与x轴的交点坐标(﹣1,0),(3,0),∴对称轴x==1.故选:B.8.“a,b是实数,|a|+≥0“这一事件是()A.必然事件 B.不确定事件C.不可能事件D.随机事件【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:“a,b是实数,|a|+≥0“这一事件是必然事件,故选:A.9.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x 之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.10.如图,在Rt△ABC中,AC=BC,点D,E在斜边AC上,且满足AE=4,BD=3,∠DCE=45°,则DE的长度为()A.7 B.6 C.5 D.4【考点】旋转的性质;全等三角形的判定与性质;勾股定理.【分析】如图,将△ACE绕点C逆时针旋转90°到△CBF的位置;证明∠A=∠ABC=∠CBF=45°,得到DF2=AE2+BD2,进一步证明△ECD≌△FCD,得到DE=DF,得出DE2=AE2+BD2解决问题.【解答】解:如图,将△AEC绕点C逆时针旋转90°到△CBF的位置;则CD=CF,AE=BF;∠BCF=∠ACE,∠CBF=∠A;∵BC=AC,∠ACB=90°,∴∠A=∠ABC=∠CBF=45°,∴∠DBF=90°DEF2=BD2+BF2=AE2+BD2;∵∠DCE=45°,∠ACB=90°,∴∠ACE+∠BCD=90°﹣45°=45°,而∠ACE=∠BCF,∴∠DCF=∠DCE=45°;在△DCE与△FCD中,,∴△ECD≌△FCD(SAS),∴DE=DF,∴DE2=AE2+BD2=42+32=25,∴DE=5.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分)发芽的频数则绿豆发芽的概率估计值是0.95.【考点】利用频率估计概率.【分析】本题考查了绿豆种子发芽的概率的求法.对于不同批次的绿豆种子的发芽率往往误差会比较大,为了减少误差,我们经常采用多批次计算求平均数的方法.【解答】解:=(0.960+0.940+0.955+0.950+0.948+0.956+0.950)÷7≈0.95,当n足够大时,发芽的频率逐渐稳定于0.95,故用频率估计概率,绿豆发芽的概率估计值是0.95.故答案为:0.95.12.两个连续偶数的积为168,设较大的偶数为x,则得到关于x的方程是x(x﹣2)=168.【考点】由实际问题抽象出一元二次方程.【分析】两个连续的偶数相差2,设较大的偶数为x,则较小的数为x﹣2,再根据两数的积为168即可得出答案.【解答】解:设较大的偶数为x,则较小的数为x﹣2,依题意得:x(x﹣2)=168.故答案为x(x﹣2)=168.13.如图,P为⊙O外一点,PA,PB是⊙O的切线,A,B为切点,∠P=60°,⊙O的半径为1,则劣弧的长为.【考点】弧长的计算;切线的性质.【分析】欲求的弧长,只需求得该弧所对的圆心角∠AOB的度数.【解答】解:∵PA、PB是⊙O的切线,切点分别是A、B,∴∠OAP=∠OBP=90°,∵∠P=60°,∴∠AOB=120°∵OA=6,∴==,故答案为.14.如图,四边形ABCO中,点A,B,C在劣弧上,则下列结论正确的有①②④(在横线上填写所有正确结论的序号).①若四边形ACBO是平行四边形,则四边形ACBO是菱形;②若四边形ACBO是菱形,则∠AOB=120°;③若∠AOB=120°,则四边形ACBO是菱形;④若四边形ACBO是平行四边形,则∠AOB=120°.【考点】圆周角定理;平行四边形的判定与性质;菱形的判定与性质.【分析】根据菱形的判定定理判断即可①;连接AD、BD,根据圆内接四边形的性质和圆周角定理计算出∠AOB的度数,判断②;举出反例判断③;由①②的结论判断④.【解答】解:∵四边形ACBO是平行四边形,又OA=OB,∴四边形ACBO是菱形,①正确;如图,连接AD、BD,由圆周角定理得,∠D=∠AOB,由圆内接四边形的性质得,∠ACB+∠D=180°,∵四边形ACBO是菱形,∴∠AOB=∠ACB,∴∠AOB=120°,②正确;若∠AOB=120°,则四边形ACBO不一定是菱形,③错误;四边形ACBO是平行四边形,则四边形ACBO是菱形,则∠AOB=120°,④正确,故答案为:①②④.三、(本大题共2小题,每小题8分,满分16分)15.解方程:x2﹣x﹣3=0.【考点】根的判别式.【分析】找出方程中二次项系数a,一次项系数b及常数项c,计算出根的判别式,由根的判别式大于0,得到方程有解,将a,b及c的值代入求根公式即可求出原方程的解.【解答】解:x2﹣x﹣3=0,∵a=1,b=﹣1,c=﹣3,△=b2﹣4ac=(﹣1)2﹣4×1×(﹣3)=13>0,∴方程有两个不等的实数根,∴x=,则x1=,x2=.16.如图所示的正方形网格中,每个小正方形的边长为1,△ABC为格点三角形(即三角形的顶点都在格点上).(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;(2)把△A1B1C1绕点A1按顺时针方向旋转90°,在网格中画出旋转后的△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)根据线段AB方向做出B与C的对应点,连接即可得到所求图形,如图所示;(2)以A1为中心,旋转△A1B1C1,得到B2,C2位置,连接得到所求图形,如图所示.【解答】解:(1)如图所示,△A1B1C1为所求的三角形;(2)如图所示,△A2B2C2为所求三角形.四、(本大题共2小题,每小题8分,满分16分)17.已知抛物线y=﹣2x2+4x+6.(1)用配方法求该抛物线的顶点坐标;(2)直接写出﹣2x2+4x+6>0时,x的取值范围是﹣1<x<3.【考点】二次函数的三种形式;二次函数与不等式(组).【分析】(1)直接利用配方法求出二次函数顶点坐标即可;(2)首先求出抛物线与x轴交点坐标,再利用函数图象得出x的取值范围.【解答】解:(1)y=﹣2x2+4x+6=﹣2(x2﹣2x)+6=﹣2(x﹣1)2+8,故抛物线的顶点坐标为;(1,8);(2)当y=0时,0=﹣2(x﹣1)2+8,解得:x1=﹣1,x2=3,则如图所示:,则﹣2x2+4x+6>0时,x的取值范围是:﹣1<x<3.故答案为:﹣1<x<3.18.如图,⊙O的内接四边形ABCD两组对边的延长线分别交于点E,F.(1)若∠E+∠F=α,求∠A的度数(用含α的式子表示);(2)若∠E+∠F=60°,求∠A的度数.【考点】圆内接四边形的性质;圆周角定理.【分析】(1)根据圆内接四边形的性质得到∠A=∠BCF,再利用三角形外角性质得∠EBF=∠A+∠E,由三角形内角和定理得∠EBF=180°﹣∠BCF﹣∠F,所以∠A+∠E=180﹣∠A﹣∠F,然后利用∠E+∠F=α可得∠A=90°﹣α;(2)利用(1)中的结论进行计算.【解答】解:(1)∵四边形ABCD为⊙O的内接四边形,∴∠A=∠BCF,∵∠EBF=∠A+∠E,而∠EBF=180°﹣∠BCF﹣∠F,∴∠A+∠E=180°﹣∠BCF﹣∠F,∴∠A+∠E=180﹣∠A﹣∠F,即2∠A=180°﹣(∠E+∠F),∵∠E+∠F=α,∴∠A=90°﹣α;(2)当α=60°时,∠A=90°﹣×60°=60°.五、(本大题共2小题,每小题10分,满分20分)19.某同学两次分别从1﹣6六个整数中任取一个数,作为一元二次方程x2+mx+m=0的系数m,n的值.(1)当m=4时,取一个数作为n的值,方程x2+4x+n=0有两个不相等的实数根的概率是;(2)试用列表或画树状图的方法求方程x2+mx+n=0有两个不相等的实数根的概率.【考点】列表法与树状图法;根的判别式.【分析】(1)先根据判别式的意义确定n的值,然后根据概率公式求解;(2)先画树状图展示所有36种等可能的结果数,再找出满足m2﹣4n>0的结果数,然后根据概率公式求解.【解答】解:(1)当m=4,则△=42﹣4n>0,解得n<4,所以n可取1、2、3,所以方程x2+4x+n=0有两个不相等的实数根的概率==;故答案为;(2)画树状图为:共有36种等可能的结果数,其中满足m2﹣4n>0的结果数为17,所以方程x2+mx+n=0有两个不相等的实数根的概率=.20.网购的普及标志着我国零售业进入了电商时代.某淘宝网店购进一种成本为100元/件的新商品,在试销中发现:销售单价x(元)与每天销售量y(件)之间满足如图所示的关系.(1)求y与x之间的函数关系式;(2)若某天该网店店主销售该产品获得的利润为1200元,求销售单价x的值.【考点】一元二次方程的应用;一次函数的应用.【分析】(1)设y与x之间的函数关系式为y=kx+b(k≠0),根据所给函数图象列出关于k、b的关系式,求出k、b的值即可;(2)根据题意列出方程,解方程即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),由所给函数图象可知:,解得:.故y与x的函数关系式为y=﹣x+180;(2)由题意得:(﹣x+180)(x﹣100)=1200,解得:x=120,或x=160.答:若某天该网店店主销售该产品获得的利润为1200元,则销售单价为120元或160元.六、(本题满分12分)21.已知,如图,在△ABC中,BC=AC,以BC为直径的⊙O与边AB相交于点D,DE⊥AC,垂足为点E.(1)求证:点D是AB的中点;(2)判断DE与⊙O的位置关系,并证明你的结论.【考点】切线的判定.【分析】(1)连结CD,如图,根据圆周角定理,由BC为直径得到∠BDC=90°,然后根据等腰三角形的性质得AD=BD;(2)连结OD,先得到OD为△ABC的中位线,再根据三角形中位线性质得OD∥AC,而DE⊥AC,则DE⊥OD,然后根据切线的判定定理可得DE为⊙O的切线.【解答】(1)证明:连结CD,如图,∵BC为直径,∴∠BDC=90°,∴CD⊥AB,∵AC=BC,∴AD=BD,即点D是AB的中点;(2)解:DE与⊙O相切.理由如下:连结OD,∵AD=BD,OC=OB,∴OD为△ABC的中位线,∴OD∥AC,而DE⊥AC,∴DE⊥OD,∴DE为⊙O的切线.七、(本题满分12分)22.某校初三年级的一场篮球比赛中,如图队员甲正在投篮,已知球出手时离地面高m,与篮圈中心的水平距离为7m,当球出手后水平距离为4m时到达最大高度4m,设篮球运行的轨迹为抛物线,篮圈距地面3m.(1)建立如图的平面直角坐标系,问此球能否准确投中;(2)此时,若对方队员乙在甲前面1m处跳起盖帽拦截,已知乙的最大摸高为3.1m,那么他能否获得成功?【考点】二次函数的应用.【分析】已知最高点坐标(4,4),用顶点式设二次函数解析式更方便求解析式,运用求出的解析式就可以解决题目的问题了.【解答】解:(1)根据题意,球出手点、最高点和篮圈的坐标分别为:A(0,)B(4,4)C(7,3)设二次函数解析式为y=a(x﹣h)2+k代入A、B点坐标,得y=﹣(x﹣4)2+4 ①将C点坐标代入①式得左边=右边即C点在抛物线上∴一定能投中;(2)将x=1代入①得y=3∵3.1>3∴盖帽能获得成功.八、(本题满分14分)23.在正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,点H是直线BC上一点,将线段FH绕点F逆时针旋转90°,得到线段FK,连接EK.(1)如图1,求证:EF=FG,且EF⊥FG;(2)如图2,若点H在线段BC的延长线上,求证:BH=EF+EK;(3)如图3,若点H在线段BC的反向延长线上,直接写出线段BH、EF、EK之间满足的数量关系为BH=EK﹣EF.【考点】四边形综合题.【分析】(1)由正方形的性质得到△AEF≌BGF,再判定出∠EFG=90°即可;(2)由正方形的性质得到△EFK≌△GFH,再计算出BG=FG,结合图形即可;(3)由正方形的性质得到△EFK≌△GFH,再计算出BG=FG,结合图形即可;【解答】证明:(1)∵E,F,是正方形ABCD的边AD,AB,BC的中点,∴AE=AF=FB=BG,∠A=∠B=90°,∴△AEF≌BGF,∴EF=FG,∠AFE=∠BFG=45°,∴∠EFG=180°﹣∠AFE﹣∠BFG=90°,∴EF⊥FG;(2)由题意有,FH=FK,∠HFK=90°,∴∠KFE+∠EFH=90°,∵∠EFG=90°,∴∠HFG+∠EFH=90°,∴∠KFE=∠HFG,∴△EFK≌△GFH,∴EK=GH,∵△BFG是等腰直角三角形,∴BG=FG,∴BH=BG+GH=FG+EK=EF+EK.即:BH=EF+EK.(3)由题意有,FH=FK,∠HFK=90°,∴∠KFE+∠EFH=90°,∵∠EFG=90°,∴∠HFG+∠EFH=90°,∴∠KFE=∠HFG,∴△EFK≌△GFH,∴EK=GH,∵△BFG是等腰直角三角形,∴BG=FG,∴BH=GH﹣BG=EK﹣FG=EK﹣EF.即:∴BH=EK﹣EF.故答案为BH=EK﹣EF.2016年5月10日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1页(共21页) 2015-2016学年安徽省马鞍山市当涂县初三上学期期末数学试卷 一、选择题(每小题3分,共30分) 1.(3分)下列各组中的四条线段成比例的是( ) A.1cm,2cm,20cm,40cm B.1cm,2cm,3cm,4cm C.4cm,2cm,1cm,3cm D.5cm,10cm,15cm,20cm 2.(3分)若抛物线y=(x﹣m)2+(1﹣m)的顶点在第一象限,则m的取值范围为( ) A.m>0 B.m>1 C.﹣1<m<0 D.0<m<1 3.(3分)将抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为( ) A.y=(x+1)2+5 B.y=(x﹣4)2+4 C.y=(x+2)2+4 D.y=(x﹣3)2+5 4.(3分)当锐角A>30°时,∠A的余弦值( ) A.小于 B.大于 C.大于 D.小于 5.(3分)抛物线y=x2+x﹣1与x轴的交点的个数是( ) A.3 B.2 C.1 D.0 6.(3分)如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )
A.∠ACP=∠B B.∠APC=∠ACB C. D. 7.(3分)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是( )
A. B. C. D. 8.(3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( ) 第2页(共21页)
A. B. C. D. 9.(3分)如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D. 10.(3分)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( )
A.2海里 B.2sin55°海里 C.2cos55°海里 D.2tan55°海里
二、填空题(每小题3分,共24分) 11.(3分)如果反比例函数y=的图象位于第二,四象限内,那么满足条件的正整数k是 . 12.(3分)已知:若,则= . 第3页(共21页)
13.(3分)一个舞台长10米,演员报幕时应站在舞台的黄金分割处,则演员应站在距舞台一端 米远的地方. 14.(3分)在△ABC中,∠B=30°,AB=12,AC=6,则BC= . 15.(3分)如图,菱形ABCD的边长为10,sin∠BAC=,则对角线AC的长为 .
16.(3分)若二次函数y=x2+3x+e(e为整数)的图象与x轴没有交点,则e的最小值是 . 17.(3分)已知△ABC∽△DEF,△ABC的面积为9,△DEF的面积为1,则△ABC与△DEF的周长之比为 . 18.(3分)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法: ①abc<0;②当﹣1<x<3时,y>0;③a﹣b+c<0;④3a+c<0. 其中判断正确的是 (说法正确的序号都填上).
三、解答下列各题(满分46分) 19.(6分)计算:﹣12016﹣2tan60°+(﹣)0﹣. 20.(6分)已知抛物线y=ax2+bx+c的对称轴是x=2,且经过点(1,4)和点(5,0),求这个函数的解析式. 21.(8分)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1). 第4页(共21页)
(1)以O点为位似中心在y轴左侧将△OBC放大到两倍(即新图与原图的相似比为2),画出图形; (2)如果△OBC内部一点M的坐标为(x,y),写出B、C、M对应点B′,C′,M′坐标.
22.(8分)如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m,高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°,求隧道AB的长.
23.(8分)如图,已知A、B、C三点在同一条直线上,△ABD与△BCE都是等边三角形,其中线段AE交DB于点F,线段CD交BE于点G.求证:=.
24.(10分)某工厂在生产过程中每消耗1万度电可以产生产值5.5万元,电力公司规定,该工厂每月用电量不得超过16万度;月用电量不超过4万度时,单价是1万元/万度;超过4万度时,超过部分电量单价将按用电量进行调整,电价y与月用电量x的函数关系可用如图来表示.(效益=产值﹣用电量×电价) (1)求y与用电量x之间的函数关系式,并写出自变量的取值范围; (2)设工厂的月效益为z(万元),写出z与月用电量x之间的函数关系式; (3)求工厂最大月效益. 第5页(共21页) 第6页(共21页)
2015-2016学年安徽省马鞍山市当涂县初三上学期期末数学试卷 参考答案与试题解析
一、选择题(每小题3分,共30分) 1.(3分)下列各组中的四条线段成比例的是( ) A.1cm,2cm,20cm,40cm B.1cm,2cm,3cm,4cm C.4cm,2cm,1cm,3cm D.5cm,10cm,15cm,20cm 【解答】解:根据两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段. 所给选项中,只有A中,1×40=2×20,四条线段成比例, 故选:A. 2.(3分)若抛物线y=(x﹣m)2+(1﹣m)的顶点在第一象限,则m的取值范围为( ) A.m>0 B.m>1 C.﹣1<m<0 D.0<m<1 【解答】解:由y=(x﹣m)2+(1﹣m),得出顶点坐标为(m,1﹣m)
根据题意,, 解得m>0, 解得m<1. 所以不等式组的解集为0<m<1. 故选:D. 3.(3分)将抛物线y=x2﹣2x+3向右平移2个单位长度,再向上平移3个单位长度后,得到的抛物线的解析式为( ) A.y=(x+1)2+5 B.y=(x﹣4)2+4 C.y=(x+2)2+4 D.y=(x﹣3)2+5 【解答】解:y=x2﹣2x+3=(x﹣1)2+2,其顶点坐标为(1,2). 向右平移2个单位长度,再向上平移3个单位长度后的顶点坐标为(3,5),得到的抛物线的解析式是y=(x﹣3)2+5, 第7页(共21页)
故选:D. 4.(3分)当锐角A>30°时,∠A的余弦值( ) A.小于 B.大于 C.大于 D.小于
【解答】解:∵cos30°=,余弦函数随角增大而减小, ∴当锐角A>30°时,∠A的余弦值小于. 故选:A. 5.(3分)抛物线y=x2+x﹣1与x轴的交点的个数是( ) A.3 B.2 C.1 D.0 【解答】解:令y=0,得到x2+x﹣1=0, ∵△=1+4=5>0, ∴此方程有两个不相等的实数根, 则抛物线y=x2+x﹣1与x轴的交点的个数是2. 故选:B. 6.(3分)如图,已知△ABC,P为AB上一点,连接CP,以下条件中不能判定△ACP∽△ABC的是( )
A.∠ACP=∠B B.∠APC=∠ACB C. D. 【解答】解:∵∠A=∠A, ∴当∠ACP=∠B时,△ACP∽△ABC,故A选项正确; ∴当∠APC=∠ACB时,△ACP∽△ABC,故B选项正确; ∴当时,△ACP∽△ABC,故C选项正确;
∵若,还需知道∠ACP=∠B,∴不能判定△ACP∽△ABC.故D选项错误. 故选:D. 7.(3分)在菱形ABCD中,E是BC边上的点,连接AE交BD于点F,若EC=2BE,则的值是( ) 第8页(共21页)
A. B. C. D. 【解答】解:如图, ∵在菱形ABCD中,AD∥BC,且AD=BC, ∴△BEF∽△DAF, ∴=, 又∵EC=2BE, ∴BC=3BE,即AD=3BE, ∴==, 故选:B.
8.(3分)在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是( ) A. B. C. D. 【解答】解:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误. B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误. 第9页(共21页)
C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意, D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误. 故选:C. 9.(3分)如图,已知△ABC的三个顶点均在格点上,则cosA的值为( )
A. B. C. D. 【解答】解:过B点作BD⊥AC,如图, 由勾股定理得, AB==,
AD==2 cosA===, 故选:D.
10.(3分)如图,一艘海轮位于灯塔P的北偏东55°方向,距离灯塔2海里的点A处,如果海轮沿正南方向航行到灯塔的正东方向,海轮航行的距离AB长是( )