中考数学复习正多边形和圆2[人教版]

合集下载

人教版数学《正多边形和圆》_精美课件

人教版数学《正多边形和圆》_精美课件
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
1.半径为R的圆内接正三角形的面积是 ( D )
A. 3 R 2
B.πR2
C.3 3 R2 2
D.3 3 R2 4
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
写出答案). (般的正n
边形情况(n为大于2的偶数)?若能,写出推广问题和结论;若不 能,请说明理由.
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
由勾股定理,得OG= 3 . ∴正六边形ABCDEF的各个顶点的坐标分别为 A(-2,0),B(-1,- 3 ),C(1,- 3 ),D(2,0),E(1, 3 ),F(-1,3 ).
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
【获奖课件ppt】人教版数学《正多边 形和圆 》_精 美课件1 -课件 分析下 载
解:如图24 - 111所示,连接OE, 设EF交y轴于点G. 由于正六边形是轴对称图形, ∴在Rt△OGE中,∠GOE=30°,OE=2, ∴GE=1.
解:(1)如图(1)所示,连接OA,OB, 过点O作OM⊥AB,垂足为M.
2.(常德中考)阅读理解:如图(1)所示,在平面内选一

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿

人教版九年级数学上册24.3.2《正多边形和圆(2)》说课稿一. 教材分析人教版九年级数学上册24.3.2《正多边形和圆(2)》这一节主要介绍了正多边形的性质以及正多边形与圆的关系。

在教材中,通过图形的观察和推理,引导学生发现正多边形的性质,并且能够运用这些性质解决实际问题。

教材内容紧凑,逻辑清晰,通过丰富的例题和练习题,帮助学生巩固所学知识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对图形的认识和推理能力有一定的掌握。

但是,对于正多边形的性质以及与圆的关系的理解还需要进一步的引导和培养。

因此,在教学过程中,需要关注学生的学习情况,针对学生的特点进行教学设计和调整。

三. 说教学目标1.知识与技能:通过学习,使学生了解正多边形的性质,能够运用这些性质解决实际问题;培养学生对圆的性质的理解,能够运用圆的性质解决几何问题。

2.过程与方法:通过观察、推理、交流等方法,培养学生的图形认知能力和逻辑思维能力。

3.情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。

四. 说教学重难点1.教学重点:正多边形的性质,以及正多边形与圆的关系。

2.教学难点:正多边形的性质的证明,以及如何运用这些性质解决实际问题。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作法等,引导学生主动探究,积极思考。

2.教学手段:利用多媒体课件,直观展示图形的性质和变化,帮助学生更好地理解和掌握知识。

六. 说教学过程1.导入:通过展示一些生活中的正多边形和圆的图形,引导学生对正多边形和圆的性质产生兴趣,激发学生的学习热情。

2.新课导入:介绍正多边形的定义和性质,通过示例和练习,使学生掌握正多边形的性质。

3.知识拓展:引导学生发现正多边形与圆的关系,通过示例和练习,使学生理解正多边形与圆的性质。

4.课堂练习:设计一些具有挑战性的练习题,引导学生运用所学的知识解决实际问题。

5.小结:通过总结本节课所学的内容,帮助学生巩固知识,提高学生的总结能力。

人教版九年级数学上册作业课件 第二十四章 圆 正多边形和圆 (2)

人教版九年级数学上册作业课件 第二十四章 圆 正多边形和圆 (2)

a,则正六
边形的面积为 6×21
×a×
3 2
a=32 3
a2,正方
形的面积为 a×a=a2,∴正六边形与正方形的面
(2积)易比得为O3F2=3 Ea2F∶=aF2=G,3 ∴3 ∠∶O2GF=12 (180°-60°-90°)=15°
16.如图①,②,③,④,M,N分别是⊙O的内接正三角形ABC,正方 形ABCD,正五边形ABCDE,正n边形ABCDEF…的边AB,BC上的点,且 BM=CN,连接OM,ON.
人教版
第二十四章 圆
24.3 正多边形和圆
1.各边_相__等__、各角也_相__等__的多边形是正多边形. 练习1:下列图形中是正多边形的是( D ) A.等腰三角形 B.菱形 C.矩形 D.正方形
2.正多边形外接圆的圆心叫做这个正多边形的_____,中外心接圆的 _____叫半做径正多边形的半径,正多边形每一边所对的圆心角叫做正多 边形的______中,心中角心到正多边形的一边的_____叫距做离正多边形的
(2)90° 72° (3)∠MON=36n0°
(1)求图①中∠MON的度数; (2)图②中∠MON的度数是_9_0_°___,_ 图③中∠MON的度数是_7_2_°___;_ (3)试探究∠MON的度数与正n边形的边数n的关系.(直接写出答案)
解:(1)连接OA,OB,图略.∵正三角形ABC内接于⊙O,∴AB=BC, ∠OAM=∠OBN=30°,∠AOB=120°.∵BM=CN,∴AM=BN,又 ∵OA=OB,∴△AOM≌△BON(SAS),∴∠AOM=∠BON,∴∠AOM+ ∠BOM=∠BON+∠BOM,∴∠AOB=∠MON=120°
∠DEB=72°,∴∠AME=∠EAC,∴ME=AE

人教版九年级上册数学《正多边形和圆形》圆说课研讨复习教学课件巩固

人教版九年级上册数学《正多边形和圆形》圆说课研讨复习教学课件巩固
24.3 正多边形和圆
第2课时
课件
学习目标
1.进一步理解并掌握正多边形半径和边长、边心距、中心角之间的关系
2.掌握圆内接正多边形的两种画法: (1)用量角器等分圆周法作正多边形; (2)用尺规作图法作特殊的正多边形
01 新课导入
新课导入
实际生活中,经常遇到画正多边形的问题,比如画一个六角螺 帽的平面图、画一个五角星等,这些问题都与等分圆周有关, 要制造下图中的零件,也需要等分圆周.
回顾旧识
中心:一个正多边形 的外接圆的圆心叫做 这个正多边形的中心
半径:正多边形的外 接圆的半径叫做正多 边形的半径.
中心角:正多边形每一 边所对的圆心角叫做正 多边形的中心角
边心距:正多边形的中心到正多边 形的一边的距离叫做正多边形的边 心距.
回顾旧识
正多边形和圆有怎样的关系?
正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以 作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
探究二:等分圆周,正多边形的有关概念
重点、难点知识★▲
(2)尺规作图:用圆规在⊙O上截取长度等于半径(2cm)的弦,连 结AB、BC、CA即可,如图3。
图3
(3)计算与尺规作图结合法:由圆内接正三角形的边长与圆的半径
的关系可得,正三角形的边长为 2 3 cm,R=2cm,用圆规在⊙O上截 取长度为 2 3cm的弦AB、AC,连结AB、BC、CA即可。
知识回顾 问题探究 课堂小结
探究二:等分圆周,正多边形的有关概念
重点、难点知识★▲
2. 用尺规等分圆: (1)作正四边形、正八边形。
只要做出已知⊙O的互相垂直的直径即得圆内接正方形,再过 圆心作各边的垂线与⊙O相交,或作各中心角的角平分线与⊙O相 交,即得圆内接正八边形,照此方法依次可作正十六边形、正三十 二边形、正六十四边形……

人教版数学九年级上册第二十四章《24.3 正多边形和圆》课件(共19张PPT)

人教版数学九年级上册第二十四章《24.3  正多边形和圆》课件(共19张PPT)

对于一些特殊的正多边形,还可以用圆规和直尺来作图. 再如,用直尺和圆规作两条互相垂直的直径,就可以把圆四等分,从而作 出正方形.
用尺规等分圆: 用尺规作图的方法等分圆周,然后依次连接圆上各分点得到正多边形,这 种方法有局限性,不是任意正多边形都能用此法作图,这种方法从理论上 讲是一种准确方法.
2.如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
如图,正五边形ABCDE的对角线AC和BE相交于点M. 求证:(1) AC//ED;(2) ME=AE.
归纳新知
正多边形 的画法
用量角器等分圆 用尺规等分圆
此方法可将圆任意n等分,所以用 该方法可作出任意正多边形,但边 数很大时,容易产生较大的误差.
度量法③:
用圆规在⊙O 上顺次截取6条长度等于半径(2 cm)的弦,连接其中的 AB, BC,CA 即可.
B
O
A
C
对于一些特殊的正多边形,还可以用圆规和直尺来作图. 例如,我们也可以这样来作正六边形.由于正六边形的边长等于半径,所以 在半径为R的圆上依次截取等于R的弦,就可以把圆六等分,顺次连接各分 点即可得到半径为R的正六边形.
课堂练习
1.画一个半径为2 cm的正五边形,再作出这个正五边形的各条对角线,画 出一个五角星.
2.面积相等的正三角形与正六边形的边长之比为
.
中考实题
1.已知⊙O如图所示. (1) 求作⊙O的内接正方形(要求尺规作图,保留作图痕迹,不写作法); (2) 若⊙O的半径为4,求它的内接正方形的边长.
此方法是一种比较准确的等分圆的方 法,但有局限性,不能将圆任意等分.
再见
合作探究
已知⊙O 的半径为 2 cm,画圆的内接正三角形. 度量法①: 用量角器或 30°角的三角板度量,使∠BAO=∠CAO=30°.

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳

中考数学复习指导《正多边形与圆》知识点归纳一、正多边形的定义正多边形是指所有边相等,所有角相等的多边形。

我们以正n边形来进行讨论,其中n表示边的个数。

二、正多边形的性质1.角的个数:正n边形有n个内角和n个外角。

2.外角和:正n边形的外角和为360°。

3.内角和:正n边形的内角和为(2n-4)×90°。

4.中心角和:正n边形的中心角和为360°。

5. 半径和边长之间的关系:正n边形的边长为a,半径为R,则有R=a/(2×sin(π/n))。

三、正多边形的对称性正n边形有n条对称轴,每条对称轴都把正多边形分成两个对称的部分。

四、圆的性质1.圆心角:圆心角是圆的半径所对应的圆弧所夹的角。

圆心角的大小等于其对应的圆弧的度数。

2.弧长:圆心角对应的圆弧的长度称为弧长。

如果圆的半径为R,圆心角的大小为θ,那么圆弧的长度S=R×θ。

3.弦长:弦是圆上的两点之间的线段,弦长可以通过两角的正弦来计算。

4.弦割定理:圆上的一弦分割出的弧长等于该圆的半径与该弦分割出的小弧的两圆心角的和。

即S=S1+S2=R×θ1+R×θ25.弧度制:弧度制是一种角度的度量方式,将角度定义为弧长与半径的比值:角度=弧长/半径。

单位为弧度。

6.周长和面积:圆的周长等于2πR,面积等于πR²。

五、圆与正多边形的关系1.正多边形逼近圆:正多边形的边数越多,逼近的程度越高,其内接圆越接近于外接圆。

2.正多边形的周长与圆的周长:正n边形的周长与内接圆的周长之比约为n/2π。

3. 正多边形的面积与圆的面积:正n边形的面积与内接圆的面积之比约为(1/2•n•sin(2π/n))/π)。

以上就是《正多边形与圆》的一些重要知识点的归纳。

在复习时,可以通过理论学习、练习习题以及解决实际问题的应用题来巩固和提升自己的理解能力。

加油!。

人教版九年级数学上册《正多边形和圆》第2课时教学课件


∴ = ,


1
∠ = ∠ = 60°,
2
∴ △ 是等边三角形.
探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.






探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.


30°
30°


探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用量角器度量,使∠ = ∠ = 30°.
但画图的误差积累到最后一个等分点,误差较大.
3
尺规作图,虽然精确,但不是任意等分圆周都能用这种
方法,而且作图时存在误差.
4
本节课提到的其他一些方法只适用于某些特殊的正多边形.
练习
1
如何在半径为 的⊙ 中作出内接正九边形呢?


40°
练习
2
如何借助圆画出一个五角星呢?

72°
72°


练习
情境引入
实际生活中,经常遇到画正多边形的问题,比如画一个
六角螺帽的平面图,画一个五角星等,这些问题都与等分圆
周有关. 要制造如下图中的零件,也需要等分圆周.
引入新知
已知⊙ 的半径为 ,画圆的内接正三角形.

探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.






探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.





3




探究新知
已知⊙ 的半径为 ,画圆的内接正三角形.
方法
用圆规在⊙ 上顺次截取两条长度等于 3 的弦,连

(名师整理)人教版数学中考《正多边形和圆》专题复习精品教案

中考数学人教版专题复习:正多边形和圆一、教学内容:正多边形和圆1. 正多边形的有关概念.2. 正多边形和圆的关系.3. 正多边形的有关计算.二、知识要点:1. 正多边形的定义各边相等、各角也相等的多边形叫做正多边形. 如正三角形(即等边三角形)、正四边形(即正方形)、正五边形、正六边形、正n 边形等.2. 正多边形与圆的关系(1)从圆的角度看:等分圆周可获得正多边形,把圆分成n (n ≥3)等份. ①依次连结各分点所得的多边形是这个圆的内接正n 边形.②经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n 边形.(2)从正多边形的角度看:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆.3. 正多边形的有关概念(1)正多边形的中心:正多边形的外接圆(或内切圆)的圆心. (2)正多边形的半径:正多边形外接圆的半径.(3)正多边形的边心距:中心到正多边形的一边的距离(即正多边形的内切圆的半径).(4)正多边形的中心角:正多边形每一边所对的圆心角. 正多边形的每一个中心角的度数是360°n.O R B 1A 1B 2A 2B 3A 3C r4. 正n 边形的对称性当n 为奇数时,正n 边形只是轴对称图形;当n 为偶数时,正n 边形既是轴对称图形,也是中心对称图形. 5. 一些特殊正多边形的计算公式边数n 内角A n 中心角αn 半径R 边长a n 边心距r n 周长P n 面积S n3 60° 120° R 3R 12R 33R343R 2 4 90° 90° R 2R 22R 42R 2R 2 6120°60°RR32R 6R323R 2三、重点难点:重点是正多边形的概念和计算,难点是正确理解正多边形和圆的关系.【典型例题】例1. 如图所示,既是轴对称图形,又是中心对称图形的有__________.线段正三角形正方形正五边形正六边形(1) (2) (3) (4) (5)解:(1)(3)(5)评析:因正方形、正六边形的边数为偶数,所以线段、正方形、正六边形既是轴对称图形,又是中心对称图形.例2. (1)如果一个正多边形的中心角为24°,那么它的边数是__________. (2)正多边形的一个外角等于45°,那么这个正多边形的内角和等于__________,中心角是__________.分析:利用正多边形的内角和及中心角的计算公式求解. (1)依题意得360°n=24°,∴n =15. (2)n ×45°=360°,∴n =8. 由内角和公式得(8-2)·180°=1080°,∴中心角为360°8=45°.解:(1)15,(2)1080°,45°.例3. 如图所示,小明同学在手工制作中,把一个边长为12cm 的等边三角形纸片贴在一个圆形纸片上. 若三角形的三个顶点恰好都在这个圆上,求该圆的半径.A BCOD分析:由题意知这个三角形是圆的内接正三角形.解:如图所示,连结OB ,过O 作OD ⊥BC 于D ,则正△ABC 的中心角=360°3=120°,∠BOD =12×120°=60°,∠OBD =90°-∠BOD =30°,∴OD =12BO.又BD =12BC =12×12=6(cm ),∴OB 2-OD 2=62,即OB 2-(12OB )2=62,∴OB =43cm .评析:把实际问题转化为正三角形的外接圆的问题是解题的关键.例4. 已知圆内接正方形的面积为8,求同圆内接正六边形的面积. 分析:解决问题的关键是“同圆”,通过圆的半径可以把正方形的条件转化为正六边形的条件,从而解决问题.解:由正方形的面积为8,可知正方形的边长为22,设该圆半径为R ,正六边形的边长和边心距分别为a 6和r 6. 则2R =4,a 6=R ,r 6=32·a 6.∴S 6=6×12a 6·r 6=6×12×2×32×2=6 3.例5. 用折纸的方法,可直接剪出一个正五边形(如图所示)方法是:拿一张长方形纸对折,折痕为AB ,以AB 的中点O 为顶点将平角五等分,并沿五等份的线折叠,再沿CD 剪开,使展开后的图形为正五边形,则∠OCD 等于( ) A. 108° B. 90° C. 72° D. 60°AB ABOOCD分析:本题考查学生的动手能力和灵活运用所学知识的能力,这里的O 点是所剪正五边形的中心,由题可知∠COD =36°,所以剪得的三角形正好是五边形一边和两条半径所构成的三角形的一半,所以∠OCD =90°. 解:B例6. 如图(1)、(2)、(3)、…、(n ),M 、N 分别是⊙O 的内接正三角形ABC 、正方形ABCD 、正五边形ABCDE 、…、正n 边形ABCDE …的边AB 、BC 上的点,且BM =CN ,连接OM 、ON.(1)求图(1)中∠MON 的度数; (2)图(2)中∠MON 的度数是__________,图(3)中∠MON 的度数是__________; (3)试探究∠MON 的度数与正n 边形边数n 的关系(直接写出答案). 分析:(1)连接OB 、OC ,注意△OBM ≌△OCN ,可得∠MON =∠BOC =120°. (2)同理,由△OBM ≌△OCN ,可得∠MON =∠BOC =90°. (3)由(1)(2)知,∠MON =∠BOC ,即∠MON =∠BOC =90°.A BCO M N A B C DOM N BC D E O MN ABC OM N …(1)(2)(3)(n )A解:(1)方法一:连接OB 、OC ,∵正△ABC 内接于⊙O , ∴∠OBM =∠OCN =30°,∠BOC =120°, 又∵BM =CN ,OB =OC ,∴△OBM ≌△OCN , ∴∠BOM =∠CON ,∴∠MON =∠BOC =120°. 方法二:连接OA 、OB ,∵正△ABC 内接于⊙O. AB =BC ,∠OAM =∠OBN =30°,∠AOB =120°. 又∵BM =CN ,∴AM =BN ,又∵OA =OB ,∴△AOM ≌△BON ,∴∠AOM =∠BON ,∴∠MON =∠AOB =120°.(2)图(2)中,∠MON =360°4=90°,图(3)中,∠MON =360°5=72°.(3)图(n )中,∠MON =360°n.评析:(1)△OBM 与△OCN 是旋转全等三角形. 图(1)中△OCN 绕点O 顺时针旋转120°,与△OBM 重合;图(2)旋转90°,图(3)旋转72° (2)注意由特殊到一般的思想,归纳出∠MON =360°n.【方法总结】1. 正n 边形的中心角为360°n,与正n 边形的一个外角相等,与正n 边形的一个内角互补. 求中心角常用以上方法.2. 正多边形的外接圆半径R 与边长a 、边心距r 之间的关系式为R 2=r 2+(12a )2,这是把正n 边形分成了2n 个全等的直角三角形,把正n 边形的有关计算转化为直角三角形中的问题.【预习导学案】 (弧长和扇形面积)一、预习前知1. 圆的周长公式是__________. 其中π是圆的周长与它的直径的比值,叫做__________,它是一个常数,π=3.1415926…,根据问题精确度的要求来取π的近似值.2. 圆的面积公式是__________.3. 如图所示,阴影部分由圆心角的两条半径和圆心角所对的弧围成的图形叫做__________,这是__________的一部分.4. 圆柱可以看作是__________而得到的图形,旋转轴叫做__________,圆柱侧面上平行于轴的线段叫做__________,两个底面之间的距离是__________,圆柱的侧面展开图是__________.5. 圆柱的侧面积S 侧=__________,全面积S 表=__________.二、预习导学1. 半径为R 的圆中,n °的圆心角所对的弧长l =__________.2. 半径为R ,圆心角为n °的扇形面积的计算公式是__________,半径为R ,弧长为l 的扇形面积计算公式是__________.3. 圆锥可以看作是__________而得到的图形,连结圆锥的顶点和底面圆上任意一点的线段叫做__________,连结圆锥的顶点和底面圆心的线段叫做__________,圆锥的侧面展开图是__________.4. 圆锥的侧面积S 侧=__________,全面积S 表=__________. 反思:(1)如何求不规则图形的面积.(2)圆锥的侧面展开后所得扇形的半径、弧长与圆锥的哪些量对应?【模拟试题】(答题时间:50分钟) 一、选择题1. 若一个正多边形的一个外角是40°,则这个正多边形的边数是( ) A. 10 B. 9 C. 8 D. 62. 下列命题中正确的是( ) A. 正多边形都是中心对称图形B. 正多边形一个内角的大小与边数成正比C. 正多边形一个外角的大小随边数的增加而减小D. 边数大于3的正多边形对角线都相等3. 一个正多边形的中心角是36°,则其一定是( ) A. 正五边形 B. 正八边形 C. 正九边形 D. 正十边形4. 正多边形的一边所对的中心角与该正多边形一个内角的关系是( ) A. 两角互余 B. 两角互补 C. 两角互余或互补 D. 不能确定5. 圆内接正三角形的边心距与半径的比是( ) A. 2∶1 B. 1∶2 C. 3∶4 D. 3∶26. 下列命题中:①三边都相等的三角形是正三角形;②四边都相等的四边形是正四边形;③四角都相等的四边形是正四边形;④各边都相等的圆的内接多边形是正多边形. 其中正确的有( )A. 1个B. 2个C. 3个D. 4个*7. 已知四边形ABCD 内接于⊙O ,给出下列三个条件:①︵AB =︵BC =︵CD =︵DA ;②AB =BC =CD =DA ;③∠A =∠B =∠C =∠D. 则在这些条件中,能够判定四边形ABCD 是正四边形的条件共有( )A. 0个B. 1个C. 2个D. 3个**8. A 点是半圆上一个三等分点,B 点是︵AN 的中点,P 是直径MN 上一动点,⊙O 的半径为1,则AP +BP 的最小值为( )OABMNPA. 1B.22C. 2D. 3-1二、填空题1. 用一张圆形的纸片剪一个边长为4cm 的正六边形,则这个圆形纸片的半径最小为__________cm .2. 如果一个正多边形的内角和是900°,则这个多边形是正__________边形.3. 正十边形至少绕中心旋转__________度,它与原正十边形重合.4. 若正三角形、正方形、正六边形的周长都相等,它们的面积分别为S 3、S 4、S 6,则S 3、S 4、S 6由大到小的排列顺序是__________. ]5. 正六边形DEFGHI 的顶点都在边长为6cm 的正三角形ABC 的边上,则这个正六边形的边长是__________cm .*6. 如图是某广场地面的一部分,地面的中央是一块正六边形地砖,周围用正三角形和正方形的大理石密铺,从里向外共铺了12层(不包括正六边形地砖),每一层的外边界都围成一个多边形. 若正中央正六边形地砖的边长为0.5米,则第12层的外边界所围成的多边形的周长是__________.三、解答题1. 解答下列各题:(1)分别求出正十边形、正十二边形的中心角.(2)已知一个正多边形的一个中心角为18°,求它的内角的度数. (3)正六边形的两条平行边间的距离为12cm ,求它的外接圆的半径. 2. 如图所示,求中心为原点O ,顶点A 、D 在x 轴上,半径为4cm 的正六边形ABCDEF 的各个顶点坐标.xy OA B C D E F3. 用一块半径R =60cm 的圆形木料,做“八仙桌”(正方形)桌面或“八角桌”(正八边形)桌面,哪个面积大?大多少?(结果保留三个有效数字)**4. 请阅读,完成证明和填空. 九年级数学兴趣小组在学校的“数学长廊”中兴奋地展示了他们小组探究发现的结果,内容如下:A A A BBB CCCD DO OOM M M NN N E图1图2图3…(1)如图1,正三角形ABC 中,在AB 、AC 边上分别取点M 、N ,使BM =AN ,连接BN 、CM ,发现BN =CM ,且∠NOC =60°. 请证明:∠NOC =60°.(2)如图2,正方形ABCD 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、DM ,那么AN =__________,且∠DON =__________度.(3)如图3,正五边形ABCDE 中,在AB 、BC 边上分别取点M 、N ,使AM =BN ,连接AN 、EM ,那么AN =__________,且∠EON =__________度.(4)在正n 边形中,对相邻的三边实施同样的操作过程,也会有类似的结论. 请大胆猜测,用一句话概括你的发现:______________________________.【试题答案】 一、选择题1. B2. C3. D4. B5. B6. B7. C8. C (提示:如图所示,作点B 关于直线MN 的对称点B ’,连结OB ’,PB ’,BB ’.OABMN PB'二、填空题1. 42. 七3. 364. S 6>S 4>S 35. 26. 39米三、解答题1. (1)正十边形的中心角为360°10=36°,正十二边形的中心角是360°12=30°. (2)中心角为18°的正多边形的边数为36018=20,正二十边形的内角为(20-2)·180°20=162°. (3)由题意得r 6=6(cm ),由于正六边形的边长与半径相等,∴R 2=(12R )2+r 62,∴34R 2=36,R =43(cm ).2. A (-4,0)、B (-2,-23)、C (2,-23)、D (4,0)、E (2,23)、F (-2,23)3. “八仙桌”的面积为7200平方厘米,“八角桌”的面积为72002平方厘米,所以“八角桌”比“八仙桌”的面积大2980平方厘米.4. (1)证明:∵△ABC 是正三角形,∴∠A =∠ABC =60°,AB =BC ,在△ABN和△BCM 中,⎩⎪⎨⎪⎧AB =BC∠A =∠ABCAN =BM,∴△ABN ≌△BCM . ∴∠ABN =∠BCM. 又∵∠ABN +∠OBC =60°,∴∠BCM +∠OBC =60°,∴∠NOC =60°. (2)在正方形中,AN=DM ,∠DON =90°. (3)在正五边形中,AN =EM ,∠EON =108°. (4)以上所求的角恰好等于正n 边形的内角(n -2)·180°n.。

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。

2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。

②正多边形的半径:外接圆的半径叫做正多边形的半径。

③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。

④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。

练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。

初中数学中考复习正多边形与圆的有关的证明和计算

初中数学中考复习正多边形与圆的有关的证明和计算正多边形与圆的关系是初中数学中重要的内容。

在中考复习中,我们需要掌握正多边形与圆的有关知识,并能够进行证明和计算。

一、正多边形的性质与计算:1.正多边形的定义:正多边形是指所有边相等,所有角也相等的多边形。

2.正多边形的计算:正n边形的内角和为180°(n-2),每个内角为(180°(n-2))/n。

正n边形的外角和为360°,每个外角为360°/n。

正n边形的中心角为360°/n。

例题1:求正六边形的内角和。

解:内角和为180°(6-2)=720°。

例题2:求正五边形的每个内角大小。

解:每个内角为(180°(5-2))/5=108°。

二、正多边形与圆的关系:1.圆的定义:圆是平面上一组到一个固定点(圆心)距离相等的点的集合。

2.正多边形与圆的关系:正多边形的顶点均在圆上,且正多边形的外接圆和内切圆都满足以下性质:①外接圆:正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆:正多边形的内切圆的圆心与正多边形的中心重合,且内接圆的半径等于正多边形的边长的一半。

3.正多边形与圆的证明:①外接圆的证明:由正多边形的定义可知,正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

而圆心与正多边形的中心重合,所以正多边形的外接圆的圆心与正多边形的中心重合。

②内切圆的证明:首先,通过正多边形的定义,可以证明正多边形的每个顶点到圆心的距离都相等,即正多边形的顶点在圆上。

其次,由于正多边形的边长相等,所以正多边形的中心到各个顶点的距离也相等。

而内切圆的半径等于正多边形中心到任意一个顶点的距离,所以正多边形的内切圆的圆心与正多边形的中心重合,且内切圆的半径等于正多边形的边长的一半。

例题3:如图,正六边形ABCD中,O为外接圆的圆心,求AB的长。

解:由于正六边形的外接圆的圆心与正多边形的中心重合,所以O即为正六边形的中心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

供卵试管,又名赠卵试管婴儿,或供卵试管,是指在准母亲由于卵巢储备衰竭或其他遗传疾病等原因自有卵子不能使用的情况下,可以借 助试管婴儿技术 ; / 供卵试管 jbh80lcf 从第三方卵子捐赠者那里取出卵子,与准父亲的精子结合后,形成受精卵胚胎,再将胚胎移植回准母亲或者替代母亲子宫中受孕的过程。 [2] ·由于子宫比卵巢的老化速度慢很多,供卵试管技术能够为40岁以上的大龄夫妻和有其他生育障碍的夫妻提供成功率较高的生育机 会。
第十讲
正多边形和圆
1.填空题: ⑴一个正三角形的周长与一个正六边 形的周长相等,则这个正三角形与这 个正六边形的面积之比为 。 ⑵一个扇形的半径等于一个圆的半 径的√3倍,且面积相等,则这个扇 形的圆心角等于 度。
2.选择题
⑴如图,⊙O1的弦AB是⊙O2的切线, 且AB//O1O2.若AB=12cm,则无法计算.
在外,受的那些苦楚,可不像是太平盛世该有的。名门贵族,花团锦绣,中等人家,不失温饱,下层窟窿,可穷得都烂了。穷则生变呐! 真有变数时,有个作强贼的儿孙,岂不也好?明柯的本事,怕不在强贼中作个头儿!兵荒马乱时,料他念着亲情,还是要照顾照顾苏家的。 苏家便多一重靠山呢!“你埋怨我么?”苏小横又问裳儿。一边要送她进宫服侍皇上,一边在外头放个作强贼的人情。两面逢源的算盘, 打得也太顺溜了。“我埋怨什么?”裳儿叹道,“皇上听到了才生气呢!爷爷您对我一切坦白,我心中感念。要是没万一,官兵自去剿灭 他们,不必我们操心。要是有万一,我在宫里,原是死数,五哥说不定还能救我,那时,我要多谢爷爷这步闲棋。”苏小横答道:“我但 愿这步只是闲棋。”停了停,“你蕙妹妹生母那头亲眷,你来设法。”裳儿应着,低头踌躇。窗外又阴得厉害了,云层压得低,很缓慢的 流动着,像肮脏的雪河在天上流,总还没倾倒下来。到天晚时,雪终于下了,比前一天更大,鹅毛纷飞,下了三个更次,渐小,破晓时停 一停,第二天又下,陆陆续续,竟一直下到过年。太守征发三百多名民徭、并牢中苦役,赶了两日的工,将主要街道上的冰雪清开。今日 清开的,到晚上又积了新的雪,但比原来到底积得少了,等最后一天,再赶一赶,多撒些废煤灰渣子,人走在上头肯定没问题,一定能保 证过年的街市。灯架子已经陆陆续续扎起来,小贩们精心设计着摊位,孩童们早等不及的放起炮仗。到入夜,必定又是满城灯火,琉璃如 星、灿华胜雪,仕女娇童,喧哗满街,又有卖诗的、扎花的、杂耍的、点茶的、射盘卖糖的,从年夜一直会热闹到元宵夜呢!富贵人家又 会豪气的在街上铺设步障,方便内眷游玩。“今年我绝不会想从步障里溜出去!”宝音跟洛月保证。“ 您连文会都敢溜去!”乐韵毫不客 气。“正是因为那样大的事都做过了„„如今才不敢了嘛!”宝音陪笑。“好罢!不过您跟婢子们保证也没什么用。”乐韵叹道,“也要 咱们有出去的机会。”老太太身子不好,不想出去逛;明秀为了婚事,闹得灰头土脸,一句出去逛的话都不提;大太太一则心疼女儿,二 则要在老太太病榻前尽孝卖好,故也不说要逛;明蕙从前游玩是最积极的,而今据说是病死了,小灵柩还停在庙里,说不得了;二太太为 了院里出了大大丢人的事,巴不得把头埋进土里,作哑巴还来不及呢;三少爷云书在任上也逢着大雪灾,不得不主持赈济灾民的事,走不 开,只修书回来告罪;大少奶奶和柳少姨娘等辈,更不提什么了——因此上,苏府今年,最多派人去寺里上个香,其余活动,能取消就取 消罢!这个年就闷在家里过完了算数。宝音为何却在商议年节如何游玩?溜去文会的事,老太太便
4.设计院设计边长为1km的正方形生 活小区,为了美化环境,开辟四角(均为 全等的等腰三角形)建立绿化区,使得 余下的部分是正八边形,如图所示, M I C 试求绿化区的面 D 积,并计算绿化区 面积占生活小区 N H 总面积的百分数 (精确到1%). P G A
E F
B
5.如图,两根柱形钢片,它们的半径 分别为6cm和2cm,现用一根绳子把 它们捆紧,问至少需要多长的绳子. (不记绳子接头部分).
B O2
O1
A
⑵如图,以正△ABC的三边为弦作 弧交于△ABC的外心O,则所得菊形 的面积为 . A三个弓形面积减去两个三角形面积.
B.三个弓形面积减去一个三角形面积.
C.三个三角形面积减去一个弓形面积. D.三个三角形面积减去两个弓形面积.
3.已知⊙O,⑴画出⊙O的内接正六 边形. E D ⑵若⊙O的半径 为8cm,这个正 六边形记为正六 F O C 边形ABCDEF, 求四边形ABDE 的面积. B A
O1
O2
6.如图,以△ABC的边AC为直径的半 圆交AB于D,三边长a,b,c能使二次函 数y=1/2(c+a)x2-bx+1/2(c-a)的顶点在x 轴上且a是方程Z2+Z-20=0的一个根. ⑴证明:∠ACB=900; ⑵若设b=2x,弓形面积S弓形AED=S1, 阴影部分面积为S2,求 A E S1 (S2-S1)与x的函数关 系式; D ⑶在⑵的条件下,当b为 S2 何值时, (S2-S1)最大. C B
相关文档
最新文档