中考数学总复习资料大全(精华版)

合集下载

新课标九年级数学中考复习强效提升分数精华版 (中招综合题)

新课标九年级数学中考复习强效提升分数精华版 (中招综合题)

1.(本题满分12分)如图,二次函数m x mx y +++=)14(412(m <4)的图象与x 轴相交于点A 、B 两点. (1)求点A 、B 的坐标(可用含字母m 的代数式表示);(2)如果这个二次函数的图象与反比例函数xy 9=的图象相交于点C ,且 ∠BAC 的余弦值为4,求这个二次函数的解析式.1.解:(1)当时0=y ,0)14(412=+++m x mx ,………………………………(1分)04)4(2=+++m x m x ,m x x -=-=21,4.……………………………(2分)∵4<m ,∴A (–4,0),B (m -,0)………………………………(4分) (2) 过点C 作CD ⊥x 轴,垂足为D ,cos ∠BAC 54==AC AD ,设AD =4k ,AC =5k , 则CD =3k . ……………………(5分) ∵OA =4,∴OD =4k –4, 点C (4k –4,3k ) . …………………………………(6分)∵点C 在反比例函数x y 9=的图象上,∴4493-=k k . ………………(7分) ,03442=--k k 23),(2121=-=k k 舍去. ……………………………(8分)∴C (2,29).……………………(1分) ∵点C 在二次函数的图象上,∴m m+++⨯=)14(2241292,………(1分) ∴,1=m ………………(10分) ∴二次函数的解析式为145412++=x x y . ……………………………(12分)2(本题满分14分)如图,直角梯形ABCD中,AD∥BC,∠A=90o,∠C=60°,AD=3cm,BC=9cm.⊙O1的圆心O1从点A开始沿折线A—D—C以1cm/s的速度向点C运动,⊙O2的圆心O2从点B开始沿BA边以3cm/s的速度向点A运动,⊙O1半径为2cm,⊙O2的半径为4cm,若O1、O2分别从点A、点B同时出发,运动的时间为t s(1)请求出⊙O2与腰CD相切时t的值;(2)在0s<t≤3s范围内,当t为何值时,⊙O1与⊙O2外切?2.解:(1)如图所示,设点O 2运动到点E 处时,⊙O 2与腰CD 相切. 过点E 作EF ⊥DC ,垂足为F ,则EF =4cm .………………1分 方法一,作EG ∥BC ,交DC 于G ,作GH ⊥BC ,垂足为H . 通过解直角三角形,求得EB =GH =3)3389(⨯-cm .………………4分 所以t =(3389-)秒.………………6分 方法二,延长EA 、FD 交于点P .通过相似三角形,也可求出EB 长. 方法三,连结ED 、EC ,根据面积关系,列出含有t 的方程,直接求t . (2)由于0s<t ≤3s ,所以,点O 1在边AD 上.………………7分 如图所示,连结O 1O 2,则O 1O 2=6cm .………………8分由勾股定理得,2226)336(=-+t t ,即01892=+-t t .………………10分解得t 1=3,t 2=6(不合题意,舍去).………………12分 所以,经过3秒,⊙O 1与⊙O 2外切.………………14分 B B3.(本题满分12分)正方形ABCD 的边长为4,P 是BC 上一动点,QP ⊥AP 交DC 于Q ,设PB =x ,△ADQ 的面积为y .(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围.(2)(1)中函数若是一次函数,求出直线与两坐标轴围成的三角形面积,若是二次函数,请利用配方法求出抛物线的对称轴和顶点坐标.(3)画出这个函数的图象.(4)点P 是否存在这样的位置,使△APB 的面积是△ADQ 的面积的32,若存在,求出BP 的长,若不存在,说明理由.25.解:(1)画出图形,设QC =z ,由Rt △ABP ~Rt △PCQ ,x -44=z x , z =4)4(x x -,①y =21×4×(4-z ),② 第25题图(1)把①代入② y=21x 2-2x +8(0<x <4). (2)y=21x 2-2x +8=21(x -2)2+6.∴对称轴为x =2,顶点坐标为(2,6).(3)如图所示 第25题图(2) (4)存在,由S △APB =32S △ADQ ,可得y =3x , ∴21x 2—2x +8=3x , ∴x =2,x =8(舍去),∴当P 为BC 的中点时,△P AB 的面积等于△ADQ 的面积的32.4.(14分)函数y =-43x -12的图象分别交x 轴,y 轴于A ,C 两点, (1)求出A 、C 两点的坐标.(2)在x 轴上找出点B ,使△ACB~△AOC ,若抛物线经过A 、B 、C 三点,求出抛物线的解析式.(3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同的速度沿AC 、BA 向C 、A 运动,连结PQ ,设AP=m ,是否存在m 值,使以A 、P 、Q 为顶点的三角形与△ABC 相似,若存在,求出所有的m 值;若不存在,请说明理由.4.(1)A (-16,0) C (0,-12) ····································································· 2分 (2)过C 作CB ⊥AC ,交x 轴于点B ,显然,点B 为所求, ······················ 3分 则OC2=OA ×OB 此时OB=9,可求得B (9,0) ·········································· 5分 此时经过A ,B ,C 三点的抛物线的解析式为:y=121x2+127x-12 ·································································································· 8分(3)当PQ ∥BC 时,△APQ ~△ACB ······························································· 9分得AC AP =AB AQ ········································································································ 10分 ∴20m =2525m -解得m=9100 ············································································ 11分当PQ ⊥AB 时,△APQ ~△ACB ········································································· 12分得:AC AQ =AB AP ···································································································· 13分 ∴2025m -=25m 解得m=9125 ········································································ 14分5.(本题满分10分)如图,在直角坐标系中,以点A(3,0)为圆心,以32为半径的圆与x 轴交于B 、C 两点,与y 轴交于D 、E 两点. (1)求D 点坐标.(2)若B 、C 、D 三点在抛物线c bx ax y ++=2上,求这个抛物线的解析式.(3)若⊙A 的切线交x 轴正半轴于点M ,交y 轴负半轴于点N ,切点为P ,∠OMN=30º,试判断直线MN 是否经过所求抛物线的顶点?说明理由.5.解:(1)连结AD ,得OA=3,AD=23 ……………………1分 ∴OD =3, D(0,-3) ………………………………………………2分(2)由B (-3,0),C (33,0),D (0,-3)三点在抛物线c bx ax y ++=2上,……3分得 ⎪⎩⎪⎨⎧=-++=+-=c c b a c b a 333270330 解得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-==333231c b a ………………………………5分∴3332312--=x x y …………………………………………………………6分 (3)连结AP ,在Rt △APM 中,∠PMA==30º,AP=23 ∴AM =43, M (53,0) …………………………7分5333530tan =⋅=︒⋅=MO ON ∴N (0,-5) ……………………………………………8分 直线MN 解析式为:533-=x y 抛物线顶点坐标为(3,-4) ………………………………9分订线内不得答题xx∵45333533-=-⨯=-x ∴抛物线顶点在直线MN 上. ……………………………10分七、(12分)如图3.以A(0,3)为圆心的圆与x 轴相切于坐标点O,与y 轴相交于点B,弦BD 的延长线交x 轴的负半轴于点E, 且∠BEO = 600 , AD 的延长线交x 轴于点C. (1)分别求点E, C 的坐标.(2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式.(3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心, ME 为半径的圆与☉A 的位置关系,并说明理由.一个圆柱的一条母线为AB,BC 是上底面的直径.一只蚂蚁从点A 出发,沿着圆柱的表面爬行到点C .⑴如图①,如果底面周长为24cm,高为4cm,那么蚂蚁的最短行程是多少cm?⑵如图②,如果底面半径为rcm,高为hcm,那么你认为蚂蚁可能有哪几种行程较短的路径?试画出平面展开图说明路径(至少画两种不同的路径),不必说明理由.⑶通过计算比较②中各种路径的长度,你能得到什么一般性的结论?或者说,蚂蚁选择哪条路径可使行程最短?A图①BA图②B28、(12分)某企业有员工300人,生产A 种产品,平均每人每年可创造利润m 万元(m 为大于零的常数)。

新课标九年级数学中考复习强效提升分数精华版一元二次方程 (246)

新课标九年级数学中考复习强效提升分数精华版一元二次方程 (246)

一元二次方程一.选择题1.(中招日照)如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是( )A .-3,2 B.3,-2 C.2,-3 D.2,3 2.(中招兰州)上海世博会的某纪念品原价168元,连续两次降价a %后售价为128元. 下列所列方程中正确的是( )A .128)% 1(1682=+aB .128)% 1(1682=-a C .128)% 21(168=-a D .128)% 1(1682=-a 3.(中招玉溪)一元二次方程x 2-5x+6=0 的两根分别是x 1,x 2,则x 1+x 2等于( )A. 5B. 6C. -5D. -64.(中招桂林)一元二次方程2340x x +-=的解是 ( ). A .11x =,24x =- B .11x =-,24x = C .11x =-,24x =- D .11x =,24x =5.(中招昆明)一元二次方程220x x +-=的两根之积是( )A .-1B .-2C .1D .2 6.(中招杭州)方程 x 2 + x – 1 = 0的一个根是( ) A. 1 –5 B.251- C. –1+5 D. 251+- 7.(中招上海)已知一元二次方程 x 2 + x ─ 1 = 0,下列判断正确的是( ) A .该方程有两个相等的实数根 B .该方程有两个不相等的实数根C .该方程无实数根D .该方程根的情况不确定 8.(中招益阳)一元二次方程)0(02≠=++a c bx ax 有两个不相等...的实数根,则ac b 42-满足的条件是( ) A.ac b 42-=0 B.ac b 42->0 C.ac b 42-<0D.ac b 42-≥09. (中招滨州)一元二次方程230x kx +-=的一个根是1x =,则另一个根是( )A. 3 B .1- C .3- D .2-10. (中招常德)方程2560x x --=的两根为( ) A.6和-1 B.-6和1 C.-2和-3 D.2和311.(中招常德)2008年常德GDP 为1050亿元,比上年增长13.2%,提前两年实现了市委、市政府在“十一五规划”中提出“到中招年全年GDP 过千亿元”的目标.如果按此增长速度,那么我市今年的GDP 为( ) A .1050×(1+13.2%)2 B .1050×(1-13.2%)2 C .1050×(13.2%)2 D .1050×(1+13.2%)12.(中招绥化)方程(x -5)( x -6)=x -5的解是( )A .x =5B .x =5或x =6C .x =7D .x =5或x =713. (中招潍坊)关于x 的一元二次方程2620x x k -+=有两个不相等的实数根,则实数k 的取值范围是( )A.92k ≤B.92k <C. 92k ≥D. 92k >14.(中招甘肃)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+= 15.(中招包头)关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .2516.二.填空题1.(中招遵义)已知012=--a a ,则=+-20093a a .2. (中招丹东)某商场销售额3月份为16万元,5月份为25万元,该商场这两个月销售额的平均增长率是 .3. (中招莱芜)某公司在2009年的盈利额为200万元,预计2011年的盈利额将达到242万元, 若每年比上一年盈利额增长的百分率相同,那么该公司在2010年的盈利额为________万元. 4.(中招遵义)如图,在宽为m 30,长为m 40的矩形地面上修建两条宽都是m 1的道路,余下部分种植花草.那么,种植花草的面积为 2m .5. (中招河北)已知x = 1是一元二次方程02=++n mx x 的一个根,则 222n mn m ++的值为 .6.(中招成都)设1x ,2x 是一元二次方程2320x x --=的两个实数根,则2211223x x x x ++的值为__________________.7.(中招无锡) 方程2310x x -+=的解是 。

中考数学计算题专题(有理计算,化简求值,不等式组,分式方程300道试题精华版)

中考数学计算题专题(有理计算,化简求值,不等式组,分式方程300道试题精华版)

中考数学计算题专题(139题精准押题)有理数及三角函数混合运算(一)1.计算:|−12|+(−1)2019+2sin30∘+(√3−√2)0 2. 计算:2sin60∘+|√3−2|+(−1)−1−√−833. 计算:|−12|+(−1)2019+2−1−(π−3)0;4.计算:(−2)−1−√9+cos60∘+(√2019−√2018)0+82019×(−0.125)2019.5. 计算:|−12|+(−1)2019+2−1−(2−√2)0+2cos45∘. 6. 计算:√83−4cos60∘−(π−3.14)0−(12)−17. 计算:(−13)−1−√12+3tan30∘−(π−√3)0+|1−√3| 8. 计算:|−2|−2cos60∘+(16)−1−(2018−√3)0 9. 计算:|√3−1|+(−1)2017+4sin60∘+√4.10. 计算:√12+|3−√3|−2sin60∘+(2017−π)0+(12)−2 11. 计算:(−√33)−2+(π−√2)0−|√2−√3|+tan60∘+(−1)2017.12. 计算:(−12)−2−(3.14−π)0+|1−√2|−2sin45∘. 13. 计算:(√3−2014)0+|−tan45∘|−(12)−1+√8 14. 计算:(−2015)0+|1−√2|−2cos45∘+√8+(−13)−2. 15. 计算−√4÷|−2√2×sin45∘|+(−12)−1÷(−14×12) 16. 计算:|√3−2|+3tan30∘+(12)−1−(3−π)0−(√2)2. 17. 计算:(−13)−1+(2015−√3)0−4sin60∘+|−√12| 18. 计算:(13)−2+(π−2014)0+sin60∘+|√3−2|. 19. 计算:(√3−2)0+(13)−1+4cos30∘−|√3−√27|20. 计算:2tan30∘−|1−√3|+(2014−√2)0+√13. 21. 计算:√8+(−13)−1+|1−√2|−4sin45∘−(π−√2)0 22. 计算:(π−3.14)0+|1−2√2|−√8+(12)−1 23. 计算:−12+√18−4cos45∘−|1−√2| 24. 计算:(13)−2+(π−2018)0+sin60∘+|√3−2|25.计算:345tan 32312110-︒-⨯⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛-- 26.计算:()()()︒⨯-+-+-+⎪⎭⎫ ⎝⎛-30tan 3312120122010311001227.计算:()()112230sin 4260cos 18-+︒-÷︒---28.计算:120100(60)(1)|2(301)cos tan -÷-+--o o29计算: |2-|o 2o 12sin30((tan 45)-+-+; 30.计算:12)21(30tan 3)21(001+-+---31、计算:0452005)︒-+32.计算:√27−(3.15−π)0−3tan30∘+(−12)−2−|√3−2| 33. |√3−2|+(π−2012)0−(−13)−1−3tan30∘+√12; 2. 34. 计算:(−2)2−(2006−π)0+(√3+2)(√3−2)−√2sin45∘. 35. 计算:|2−tan60∘|−(π−3.14)0+(−12)−2+12√12.36. 计算:(−13)−2−|−2|+2√3tan30∘cos45∘−∘0√2+15.37. 计算:2−1+|1−√2|−2sin45∘−(1−cos30∘)0. 38. 计算:√12−(−12)−1−tan60∘+√−83+|√3−2|.39. 计算:(−1)101+(π−3)0+(12)−1−√(1−√2)2. 40. 计算:2cos60∘+(−12)−1−√(√3−2)2÷(3−√3)0.中考数学化简求值(二)1.(2019•遂宁)先化简,再求值:(+)÷,其中x=﹣1.2.化简求值:,a 取﹣1、0、1、2中的一个数.3.(2019•黔东南州)先化简,再求值:÷﹣,其中x=﹣4.4.(2019•抚顺)先化简,再求值:(1﹣)÷,其中x=(+1)0+()﹣1•tan60°5.(2019•苏州)先化简,再求值:,其中6.(2019•)先化简,再求值:,其中a=﹣1.7.(2019•泰州)先化简,再求值:(1﹣)÷﹣,其中x 满足x 2﹣x ﹣1=0.8.(2019•凉山州)先化简,再求值:÷(a+2﹣),其中a 2+3a ﹣1=0.9.÷(x ﹣),其中x 为数据0,﹣1,﹣3,1,2的极差.10.(2019•鄂州)先化简,再求值:(+)÷,其中a=2﹣.11.(2019•宁夏)化简求值:(﹣)÷,其中a=1﹣,b=1+.12.(2019•牡丹江)先化简,再求值:(x ﹣)÷,其中x=cos60°.13.(2019•齐齐哈尔)先化简,再求值:(﹣)÷,其中x=﹣1.14.(2019•安顺)先化简,再求值:(x+1﹣)÷,其中x=2.15.(2019•毕节地区)先化简,再求值:(﹣)÷,其中a2+a﹣2=0.16.÷(1﹣),再从不等式2x﹣3<7的正整数解中选一个使原式有意义的数代入求值.17.÷(﹣)+,其中x的值为方程2x=5x﹣1的解.18.(2019•抚州)先化简:(x﹣)÷,再任选一个你喜欢的数x代入求值.19.(2019•河南)先化简,再求值:÷(2+),其中x=﹣1.20.(2019•郴州)先化简,再求值:(﹣),其中x=2.21.(2019•张家界)先化简,再求值:(1﹣)÷,其中a=.22.(2019•成都)先化简,再求值:(﹣1)÷,其中a=+1,b=﹣1.23.(﹣)÷,再从0,1,2三个数中选择适当的数作为a的值代入求值.24.先化简,再求值:(x﹣1﹣)÷,其中x是方程﹣=0的解.25.(2019•随州)先简化,再求值:(﹣)+,其中a=+1.26.(2019•黄石)先化简,后计算:(1﹣)÷(x﹣),其中x=+3.27.(2019•永州)先化简,再求值:(1﹣)÷,其中x=3.28.先化简,再求值:(﹣)÷,其中x=()﹣1﹣(π﹣1)0+.29.先化简,再求值:()÷,其中a ,b 满足+|b ﹣|=0.30.(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代31.先化简 ),4(24422x x xx x x -÷-+-然后从55<<-x 的范围内选取一个合适的整数作为x 的值代入求值。

最新九年级数学必考要点分类汇编精华版 切线的判定与性质

最新九年级数学必考要点分类汇编精华版 切线的判定与性质

最新九年级数学必考要点分类汇编精华版中考数学复习(一)切线的判定与性质知识考点:1、掌握切线的判定及其性质的综合运用,在涉及切线问题时,常连结过切点的半径,切线的判定常用以下两种方法:一是连半径证垂直,二是作垂线证半径。

2、掌握切线长定理的灵活运用,掌握三角形和多边形的内切圆,三角形的内心。

经典例题:【例1】如图,AC 为⊙O 的直径,B 是⊙O 外一点,AB 交⊙O 于E 点,过E 点作⊙O 的切线,交BC 于D 点,DE =DC ,作EF ⊥AC 于F 点,交AD 于M 点。

(1)求证:BC 是⊙O 的切线; (2)EM =FM 。

分析:(1)由于AC 为直径,可考虑连结EC ,构造直角三角形来解题,要证BC 是⊙O 的切线,证到∠1+∠3=900即可;(2)可证到EF ∥BC ,考虑用比例线段证线段相等。

证明:(1)连结EC ,∵DE =CD ,∴∠1=∠2 ∵DE 切⊙O 于E ,∴∠2=∠BAC ∵AC 为直径,∴∠BAC +∠3=900∴∠1+∠3=900,故BC 是⊙O 的切线。

(2)∵∠1+∠3=900,∴BC ⊥AC 又∵EF ⊥AC ,∴EF ∥BC ∴CDMFAD AM BD EM == ∵BD =CD ,∴EM =FM【例2】如图,△ABC 中,AB =AC ,O 是BC 的中点,以O 为圆心的圆与AB 相切于点D 。

求证:AC 是⊙O 的切线。

分析:由于⊙O 与AC 有无公共点未知,因此我们从圆心O 向AC 作垂线段OE ,证OE 就是⊙O 的半径即可。

证明:连结OD 、OA ,作OE ⊥AC 于E∵AB =AC ,OB =OC ,∴AO 是∠BAC 的平分线 ∵AB 是⊙O 的切线,∴OD ⊥AB 又∵OE ⊥AC ,∴OE =OD∙例1图321MFOE D CBA例2图EODCBA∴AC 是⊙O 的切线。

【例3】如图,已知AB 是⊙O 的直径,BC 为⊙O 的切线,切点为B ,OC 平行于弦AD ,OA =r 。

新课标九年级数学中考复习强效提升分数精华版中考数学压轴题精选精析

新课标九年级数学中考复习强效提升分数精华版中考数学压轴题精选精析

中考数学压轴题精选精析19.(浙江温州·模拟9)化工商店销售某种新型化工原料,其市场指导价是每千克160元(化工商店的售价还可以在市场指导价的基础上进行浮动),这种原料的进货价是市场指导价的75%.(1)为了扩大销售量,化工商店决定适当调整价格,调整后的价格按八折销售,仍可获得实际售价的20%的利润.求化工商店调整价格后的标价是多少元?打折后的实际售价是多少元?(2)化工商店为了解这种原料的月销售量y(千克)与实际售价x(元/千克)之间的关系,每个月调整一次实际售价,试销一段时间后,部门负责人把试销情况列成下表:实际售价x(元/千克)…150 160 168 180月销售量y(千克)…500 480 464 440 …①请你在所给的平面直角坐标系中,以实际售价x(元/千克)为横坐标,月销售量y(千克)为纵坐标描出各点,观察这些点的发展趋势,猜想y与x之间可能存在怎样的函数关系;②请你用所学过的函数知识确定一个满足这些数据的y与x之间的函数表达式,并验证你在①中的猜想;③若化工商店某月按同一实际售价共卖出这种原料450千克,请你求出化工商店这个月销售这种原料的利润是多少元?第24题20.(浙江温州·模拟10)如图,抛物线的顶点坐标是⎪⎭⎫ ⎝⎛8925,-,且经过点) 14 , 8 (A .(1)求该抛物线的解析式;(2)设该抛物线与y 轴相交于点B ,与x 轴相交于C 、D 两点(点C 在点D 的左边),试求点B 、C 、D 的坐标;(3)设点P 是x 轴上的任意一点,分别连结AC 、BC . 试判断:PB PA +与BC AC +的大小关系,并说明理由.DA O xyCB .(第24题图)直线x=1交x 轴于点B 。

P 为线段AB 上一动点,作直线PC ⊥PO ,交直线x=1于点C 。

过P 点作直线MN 平行于x 轴,交y 轴于点M ,交直线x=1于点N 。

(1)当点C 在第一象限时,求证:△OPM ≌△PCN ;(2)当点C 在第一象限时,设AP 长为m ,四边形POBC 的面积为S ,请求出S 与m 间的函数关系式,并写出自变量m 的取值范围;(3)当点P 在线段AB 上移动时,点C 也随之在直线x=1上移动,△PBC 是否可能成为等腰三角形?如果可能,求出所有能使△PBC 成为等腰直角三角形的点P 的坐标;如果不可能,请说明理由。

新课标九年级数学中考复习强效提升分数精华版圆试题集锦

新课标九年级数学中考复习强效提升分数精华版圆试题集锦

圆试题集锦圆知识点一、圆的定义及有关概念1、圆的定义:平面内到定点的距离等于定长的所有点组成的图形叫做圆。

2、有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。

圆上任意两点间的部分叫做圆弧,简称弧。

连接圆上任意两点间的线段叫做弦,经过圆心的弦叫做直径,直径是最长的弦。

在同圆或等圆中,能够重合的两条弧叫做等弧。

例1 P 为⊙O 内一点,OP=3cm ,⊙O 半径为5cm ,则经过P 点的最短弦长为________;•最长弦长为_______. 解题思路:圆内最长的弦是直径,最短的弦是和OP 垂直的弦,答案:8 cm ,10 cm.例2 如图,在Rt △ABC 中,∠ACB=90度.点P 是半圆弧AC 的中点,连接BP 交AC 于点D ,若半圆弧的圆心为O ,点D 、点E 关于圆心O 对称.则图中的两个阴影部分的面积S 1,S 2之间的关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .不确定解题思路:根据条件上面的半圆关于OP 对称,因而S 1,S 2直径AC 上面的两部分的面积相等,△CDB 与△AEB 的底CD 与AE 相等,高相同,因而面积相同,因而S 1=S 2.例3 如图,正方形的边长为a ,以各边为直径在正方形内画半圆,所围成的图形(阴影部分)的面积为( C )知识点二、平面内点和圆的位置关系平面内点和圆的位置关系有三种:点在圆外、点在圆上、点在圆内 当点在圆外时,d >r ;反过来,当d >r 时,点在圆外。

当点在圆上时,d =r ;反过来,当d =r 时,点在圆上。

当点在圆内时,d <r ;反过来,当d <r 时,点在圆内。

例1 如图,在R t ABC △中,直角边3A B =,4B C =,点E ,F 分别是B C ,A C 的中点,以点A 为圆心,A B 的长为半径画圆,则点E 在圆A 的_________,点F 在圆A 的_________.解题思路:利用点与圆的位置关系,答案:外部,内部例2 在直角坐标平面内,圆O 的半径为5,圆心O 的坐标为(14)--,.试判断点(31)P -,与圆O 的位置关系. 答案:点P 在圆O 上.例3 如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°,公路PQ 上A 处距离O 点240米,如果火车行驶时,周围200米以内会受到噪音的影响,那么火车在铁路MN 上沿MN 方向以72千米/小时的速度行驶时,A 处受到噪音影响的时间为( B )A .12秒B .16秒C .20秒D .24秒例4 矩形ABCD 中,AB=8,BC=3那么下列判断正确的是( C )A .点B 、C 均在圆P 外 B .点B 在圆P 外、点C 在圆P 内 C .点B 在圆P 内、点C 在圆P 外D .点B 、C 均在圆P 内例5 一个点到圆的最大距离为11cm ,最小距离为5cm ,则圆的半径为( B ) A .16cm 或6cm B .3cm 或8cm C .3cm D .8cm知识点三、圆的基本性质1、圆是轴对称图形,其对称轴是任意一条过圆心的直线。

新课标九年级数学中考复习强效提升分数精华版面积最大(小)值问题

新课标九年级数学中考复习强效提升分数精华版面积最大(小)值问题

班级姓名二次函数的实际应用复习——面积最大(小)值问题[课前热身]:在矩形ABCD中,AB=6cm,BC=12cm,点P从点A出发,沿AB边向点B以1cm/s的速度移动,同时点Q从点B出发沿BC边向点C以2cm/s的速度移动,如果P、Q两点同时出发,分别到达B、C两点后就停止移动.(1)运动第t秒时,△PBQ的面积y(cm²)是多少?(2)此时五边形APQCD的面积是S(cm²),写出S与t的函数关系式,并指出自变量的取值范围.(3)t为何值时s最小,最小值时多少?典例精讲[1]某居民小区要在一块一边靠墙(墙长15m)的空地上修建一个矩形花园ABCD,花园的一边靠墙,另三边用总长为40m的栅栏围成.若设花园的宽为x(m) ,花园的面积为y(m²).(1)求y与x之间的函数关系,并写出自变量的取值范围;(2)根据(1)中求得的函数关系式,描述其图象的变化趋势;并结合题意判断当x取何值时,花园的面积最大,最大面积是多少?[2]已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.月 日[3]某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE 、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE 、△ABE 和四边形AEFD 的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH .(1)判断图(2)中四边形EFGH 是何形状,并说明理由;(2)E 、F 在什么位置时,定制这批地砖所需的材料费用最省?小测:1、如图所示,在一个直角△MBN 的内部作一个长方形ABCD ,其中AB 和BC 分别在两直角边上,设AB =x m ,长方形的面积为y m 2,要使长方形的面积最大,其边长x 应为( )A .424mB .6 mC .15 mD .25m2、小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏,为了浇花和赏花的方便,准备在花圃的中间再围出一条宽为一米的通道及在左右花圃各放一个1米宽的门(木质).花圃的长与宽如何设计才能使花圃的面积最大?1.(中招浙江台州)某人从地面垂直向上抛出一小球,小球的高度h (单位:米)与小球运动时间t (单位:秒)的函数关系式是,那么小球运动中的最大高度 最大h 米.2.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m 长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x 米.(1)要使鸡场面积最大,鸡场的长度应为多少m ?(2)如果中间有n (n 是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少班级 姓名米?比较(1)(2)的结果,你能得到什么结论?3.(湖北恩施)将一张边长为30㎝的正方形纸片的四角分别剪去一个边长为x㎝的小正方形,然后折叠成一个无盖的长方体.当x取下面哪个数值时,长方体的体积最大( )A .7B .6C .5D .44.如图,矩形ABCD 的边AB=6 cm ,BC=8cm ,在BC 上取一点P ,在CD 边上取一点Q ,使∠APQ 成直角,设BP=x cm ,CQ=y cm ,试以x 为自变量,写出y 与x 的函数关系式.A B C DP Q5.(南京市)如图,在矩形ABCD 中,AB=2AD ,线段EF=10.在EF 上取一点M ,•分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN=x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?6.(中招四川内江)如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给他做了一个简易的秋千,拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为 米.7、(黑龙江哈尔滨)小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 答:当为15米时,才能使矩形场地面积最大,最大面积是225平方米.月日8.(山东聊城)如图,把一张长10cm,宽8cm的矩形硬纸板的四周各剪去一个同样大小的正方形,再折合成一个无盖的长方体盒子(纸板的厚度忽略不计).(1)要使长方体盒子的底面积为48cm2,那么剪去的正方形的边长为多少?(2)你感到折合而成的长方体盒子的侧面积会不会有更大的情况?如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由;(3)如果把矩形硬纸板的四周分别剪去2个同样大小的正方形和2个同样形状、同样大小的矩形,然后折合成一个有盖的长方体盒子,是否有侧面积最大的情况;如果有,请你求出最大值和此时剪去的正方形的边长;如果没有,请你说明理由.9、(兰州)一座拱桥的轮廓是抛物线型(如图16所示),拱高6m,跨度20m,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图17所示),求抛物线的解析式;(2)求支柱的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m的隔离带),其中的一条行车道能否并排行驶宽2m、高3m的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.班级 姓名1.(中招凉山州)已知ABC A B C '''△∽△且1:2ABC A B C S S '''=△△:,则:A B A B ''= .2.(中招孝感)如图,点M 是△ABC 内一点,过点M 分别作直线平行于△ABC 的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△ABC 的面积是 .3.(2012牡丹江市)如图,Rt ABC △中,90ACB ∠=°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S =△四边形,则CF AD= .4. (中招日照市)将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B ′,折痕为EF .已知AB =AC =3,BC =4,若以点B ′,F ,C 为顶点的三角形与△ABC 相似,那么BF 的长度是 .5.(中招重庆)已知ABC △与DEF △相似且面积比为4∶25,则ABC △与DEF △的相似比为 .6.(中招莆田)如图,A B 、两处被池塘隔开,为了测量A B 、两处的距离,在AB 外选一适当的点C ,连接AC BC 、,并分别取线段AC BC 、的中点E F 、,测得EF =20m ,则AB =__________m .7、 (中招山东烟台)如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( )A 、b a c =+B 、b ac =C 、222b ac =+ D 、22b a c ==8.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?5.如图,等腰Rt △ABC 的直角边AB =2,点P 、Q 分别从A 、C 两点同时出发,以相等的速度作直线运动,已知点P 沿射线AB 运动,点Q 沿边BC 的延长线运动,PQ 与直线相交于点D 。

新课标九年级数学中考复习强效提升分数精华版专题二:数形结合

新课标九年级数学中考复习强效提升分数精华版专题二:数形结合

专题二:数形结合简要分析数形结合思想是一种重要的数学思想方法。

近几年各地中考试题中都体现了这种数学思想方法。

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

典型例题例1、小明根据邻居家的故事写了一首小诗:“儿子学成今日返,老父早早到车站,儿子到后细端详,父子高兴把家还。

”如果用纵轴y 表示父亲与儿子进行中离家的距离,用横轴x 表示父亲离家的时间,那么下面的图像与上述诗的含义大致吻合的是()A B C D例2、已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( )A .a >0B .当x >1时,y 随x 的增大而增大C .c <0D .3是方程ax 2+bx +c =0的一个根【分析】从二次函数的图象可知,图象开口向下,a <0;当x >1时,y 随x 的增大而减小; x=0时,y =c >0;函数的对称轴为x=1,函数与x 轴的一个交点的横坐标为-1,函数与x 轴的另一个交点的横坐标为3。

例3、如图所示,点A 的坐标为(2,0),点B 在直线上运动,当线段AB 最短时,点B 的坐标为例4、如图,直线b x k y +=1与反比例函数xk y 2=的图象 交于A )6,1(,B )3,(a 两点. (1)求1k 、2k 的值; (2)直接写出021>-+xk b x k 时x 的取值范围; (3)如图,等腰梯形OBCD 中,BC //OD ,OB =CD ,OD 边在x 轴上,过点C 作CE ⊥OD 于点E ,CE 和反比例函数的图象交于点P ,当梯形OBCD 的面积为12时,请判断PC 和PE 的大小关系,并说明理由.OPE DCBAyx【分析】(1)略(2)021>-+xk b x k 的x 的范围,就是当y 1>y 2时,自变量的x 的范围,从图象上看:直线在双曲线上方,即x 的范围是在点A 、B 的横坐标之间,这是“以形助数” (3)要判断PC 和PE 的大小关系,只需要分别求出它们的长度,“以数助形”.设点P 的坐标为(m ,n ),易得C (m ,3),点的坐标转化成线段长度CE=3,BC=m-2,OD=m+2,利用梯形的面积是12列方程,可求得m 的值,从而求得点P 的坐标,根据线段的长度关系可知PC=PE .考 点 训 练一、填空题1、已知二次函数c bx ax y ++=2的图象如图所示,则0___42,0____,0___,0___ac b c b a -2、如图,抛物线y =-x 2+2x +m (m <0)与x 轴相交于点A (x 1,0)、B (x 2,0),点A 在点B 的左侧.当x =x 2-2时,y ______0(填“>”“=”或“<”号).3、如图所示,矩形AOCB 的两边OC 、OA 分别位于x 轴,y 轴上,点B 的坐标为B,D 是AB 边上的一点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学总复习资料大全第一章 实数★重点★ 实数的有关概念及性质,实数的运算 ☆内容提要☆ 一、 重要概念 1.数的分类及概念 数系表:说明:“分类”的原则:1)相称(不重、不漏) 2)有标准2.非负数:正实数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

3.倒数: ①定义及表示法②性质:A.a ≠1/a (a ≠±1);B.1/a 中,a ≠0;C.0<a <1时1/a >1;a >1时,1/a <1;D.积为1。

4.相反数: ①定义及表示法②性质:A.a ≠0时,a ≠-a;B.a 与-a 在数轴上的位置;C.和为0,商为-1。

5.数轴:①定义(“三要素”)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。

6.奇数、偶数、质数、合数(正整数—自然数) 定义及表示: 奇数:2n-1偶数:2n (n 为自然数) 7.绝对值:①定义(两种): 代数定义:实数 无理数(无限不循环小数)0 (有限或无限循环性数) 整数分数正无理数负无理数0 实数 负数 整数 分数无理数 有理数正数整数分数无理数 有理数│a │ 2aa (a ≥0) (a 为一切实数) a(a≥0)-a(a<0)│a │=几何定义:数a 的绝对值顶的几何意义是实数a 在数轴上所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。

二、 实数的运算 1. 运算法则(加、减、乘、除、乘方、开方) 2. 运算定律(五个—加法[乘法]交换律、结合律;[乘法对加法的]分配律) 3.运算顺序:A.高级运算到低级运算;B.(同级运算)从“左”到“右”(如5÷51×5);C.(有括号时)由“小”到“中”到“大”。

三、 应用举例(略) 附:典型例题 1. 已知:a 、b 、x 在数轴上的位置如下图,求证:│x-a │+│x-b │=b-a.2.已知:a-b=-2且ab<0,(a ≠0,b ≠0),判断a 、b 的符号。

第二章 代数式★重点★代数式的有关概念及性质,代数式的运算 ☆内容提要☆ 一、 重要概念 分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

单独 的一个数或字母也是代数式。

整式和分式统称为有理式。

2.整式和分式含有加、减、乘、除、乘方运算的代数式叫做有理式。

没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式。

有除法运算并且除式中含有字母的有理式叫做分式。

3.单项式与多项式没有加减运算的整式叫做单项式。

(数字与字母的积—包括单独的一个数或字母) 几个单项式的和,叫做多项式。

说明:①根据除式中有否字母,将整式和分式区别开;根据整式中有否加减运算,把单项式、多项式区分开。

②进行代数式分类时,是以所给的代数式为对象,而非以变形后的代数式为对象。

划分代数式类别时,是从外形来看。

如,xx2=x,2x =│x │等。

4.系数与指数区别与联系:①从位置上看;②从表示的意义上看 5.同类项及其合并条件:①字母相同;②相同字母的指数相同 合并依据:乘法分配律 6.根式表示方根的代数式叫做根式。

a xb 单项式整式 分式样有理式无理式 代数式含有关于字母开方运算的代数式叫做无理式。

注意:①从外形上判断;②区别:3、7是根式,但不是无理式(是无理数)。

7.算术平方根⑴正数a 的正的平方根(a [a ≥0—与“平方根”的区别]); ⑵算术平方根与绝对值 ①联系:都是非负数,2a =│a │②区别:│a │中,a 为一切实数;a 中,a 为非负数。

8.同类二次根式、最简二次根式、分母有理化化为最简二次根式以后,被开方数相同的二次根式叫做同类二次根式。

满足条件:①被开方数的因数是整数,因式是整式;②被开方数中不含有开得尽方的因数或因式。

把分母中的根号划去叫做分母有理化。

9.指数(na —幂,乘方运算)⑴①a >0时,na >0;②a <0时,na >0(n 是偶数),na <0(n 是奇数)⑵零指数:0a =1(a ≠0) 负整指数:pa-=1/pa (a ≠0,p 是正整数)二、 运算定律、性质、法则1.分式的加、减、乘、除、乘方、开方法则 2.分式的性质 ⑴基本性质:a b =ambm (m ≠0)⑵符号法则:ab ab ab -=-=-⑶繁分式:①定义;②化简方法(两种) 3.整式运算法则(去括号、添括号法则) 4.幂的运算性质:①ma ·na =nm a+;②m a ÷n a =nm a-;③n m a )(=mna;④n ab )(=n a nb ;⑤nn nba ba=)(技巧:ppba ab)()(=-5.乘法法则:⑴单×单;⑵单×多;⑶多×多。

6.乘法公式:(正、逆用)2222)(b ab a b a +±=± (a+b )(a-b )=22b a -(a ±b))(22b ab a + =33b a ±a ·a …a=n a n 个7.除法法则:⑴单÷单;⑵多÷单。

8.因式分解:⑴定义;⑵方法:A.提公因式法;B.公式法;C.十字相乘法;D.分组分解法;E.求根公式法。

9.算术根的性质:2a =a ;)0()(2≥=a a a ;b a ab ⋅=(a ≥0,b ≥0);ba ba =(a ≥0,b >0)(正用、逆用)10.根式运算法则:⑴加法法则(合并同类二次根式);⑵乘、除法法则;⑶分母有理化:A.a1;B.aab ab =; C.bna m-1.11.科学记数法:na 10⨯(1≤a <10,n 是整数=) 三、 应用举例(略) 四、 数式综合运算(略)第三章 统计初步★重点★ ☆ 内容提要☆ 一、 重要概念 1.总体:考察对象的全体。

2.个体:总体中每一个考察对象。

3.样本:从总体中抽出的一部分个体。

4.样本容量:样本中个体的数目。

5.众数:一组数据中,出现次数最多的数据。

6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数) 二、 计算方法 1.样本平均数: ⑴)(121n x x x nx +++=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则a x x +='(a —常数,1x ,2x ,…,n x 接近较整的常数a);⑶加权平均数:)(212211n f f f nf x f x f x x k kk =++++++=;⑷平均数是刻划数据的集中趋势(集中位置)的特征数。

通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。

2.样本方差: ⑴])()()[(1222212x x x x x x ns n -++-+-=;⑵若a x x -=1'1,a x x -=2'2,…,a x x n n -=',则])[(12'2'2'22'12xn x x x ns n-+++=(a —接近1x 、2x 、…、n x 的平均数的较“整”的常数);若1x 、2x 、…、n x 较“小”较“整”,则])[(12222212x n x x x ns n -+++=;⑶样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。

3.样本标准差:2ss =三、 应用举例(略)第四章 直线形★重点★相交线与平行线、三角形、四边形的有关概念、判定、性质。

☆ 内容提要☆ 一、 直线、相交线、平行线 1.线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。

2.线段的中点及表示3.直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”) 4.两点间的距离(三个距离:点-点;点-线;线-线) 5.角(平角、周角、直角、锐角、钝角) 6.互为余角、互为补角及表示方法 7.角的平分线及其表示8.垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”) 9.对顶角及性质10.平行线及判定与性质(互逆)(二者的区别与联系)11.常用定理:①同平行于一条直线的两条直线平行(传递性);②同垂直于一条直线的两条直线平行。

12.定义、命题、命题的组成 13.公理、定理 14.逆命题 二、 三角形分类:⑴按边分;⑵按角分 1.定义(包括内、外角)2.三角形的边角关系:⑴角与角:①内角和及推论;②外角和;③n 边形内角和;④n 边形外角和。

⑵边与边:三角形两边之和大于第三边,两边之差小于第三边。

⑶角与边:在同一三角形中,3.三角形的主要线段讨论:①定义 ②××线的交点—三角形的×心 ③性质①高线②中线③角平分线④中垂线⑤中位线⑴一般三角形⑵特殊三角形:直角三角形、等腰三角形、等边三角形4.特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质 5.全等三角形⑴一般三角形全等的判定(SAS 、ASA 、AAS 、SSS ) ⑵特殊三角形全等的判定:①一般方法②专用方法 6.三角形的面积⑴一般计算公式⑵性质:等底等高的三角形面积相等。

7.重要辅助线⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线 8.证明方法⑴直接证法:综合法、分析法⑵间接证法—反证法:①反设②归谬③结论等边 等角 大边 大角 小边 小角⑶证线段相等、角相等常通过证三角形全等 ⑷证线段倍分关系:加倍法、折半法 ⑸证线段和差关系:延结法、截余法 ⑹证面积关系:将面积表示出来 三、 四边形 分类表:1.一般性质(角) ⑴内角和:360°⑵顺次连结各边中点得平行四边形。

推论1:顺次连结对角线相等的四边形各边中点得菱形。

推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。

⑶外角和:360° 2.特殊四边形⑴研究它们的一般方法:⑵平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 ⑶判定步骤:四边形→平行四边形→矩形→正方形 ┗→菱形──↑⑷对角线的纽带作用:3.对称图形⑴轴对称(定义及性质);⑵中心对称(定义及性质) 4.有关定理:①平行线等分线段定理及其推论1、2 ②三角形、梯形的中位线定理 ③平行线间的距离处处相等。

相关文档
最新文档