百喜草对红壤坡地氮磷养分流失特征影响分析

百喜草对红壤坡地氮磷养分流失特征影响分析
百喜草对红壤坡地氮磷养分流失特征影响分析

面源氮磷流失生态拦截工程

面源氮磷流失生态拦截工程 一、工程目的和意义 农业面源氮磷流失由农田排水和径流、乡村生活污水及农户畜禽养殖尾水等组成,其污水源具有面广、量大、分散、间歇的峰值和高无机沉淀物负荷的特点。采用生态湿地处理技术、生态隔离带技术及农区自然塘池缓冲与截留技术可以减少表土径流及氮磷污染物的流失。特别是生态沟渠塘改造是目前最为经济有效的生态湿地处理工程。 据实地勘察和初步估算,乡村面源氮磷流失的大部分淌入现有用于排水的沟渠塘流经入湖河道汇聚到太湖,许多沟渠塘成了农村固体废弃物的堆积场所,成为农业污染源的重要传播途径,必须尽快加以工程化技术改造,建立新型的沟渠塘生态湿地系统。 二、工程内容和特点 工程主要内容为先清除垃圾、清除淤泥、清除杂草,沟渠塘岸边种植垂柳、草被植物,侧面和底部搭配种植各类氮磷吸附能力强的半旱生植物和水生植物,减缓水速,促进流水携带颗粒物质的沉淀,有利于构建植物对沟壁、水体和沟底中逸出养分的立体式吸收和拦截,从而实现对农业面源污染排出养分的控制。整个植物系统最终达到“拦截污水、拦截泥沙、拦截漂浮物”的目的,不仅具有净化水质、绿化村庄、美化环境的效果,而且具有一定的经济价值。南京土壤所“863”科技计划最新研究成果显示,该系统对农田径流中总氮、总磷的去除效果分别达到48.36%和40.53%。 经工程化改造后,现有排水沟渠塘去污能力进一步提升,成本

大幅度降低。具有排水和湿地系统的双重功效,不仅可以吸附农田、漫溢水中氮、磷营养物质,而且能拦截蔬菜园地径流表层肥沃土壤进入河道,还可作为部分农村生活污水、畜禽养殖场尾水导流截污的排放通道之一。生态拦截工程与农村分散居住农户生活污水生物净化池、入湖河道控制性种养水生植物构成了农村面源氮磷流失的生态拦截和净化吸附的新型农业湿地系统,并且不占用耕地,符合太湖流域平原水网地区农田沟渠的实际,尤其适用于太湖、长荡湖、滆湖入湖河道两侧等周边水功能区域,具有巨大的推广应用潜力。 三、工程设计和管理维护 1、沟渠改造 充分利用现有排水沟渠,对其进行一定的工程改造,建设成生态拦截型沟渠塘系统。对淤积严重,连通度差或杂草丛生的区段,先进行清淤,拓宽沟渠容量。为保证水生植物正常生长,清理时要保留部分原有水生植物和一定量的淤泥。 2、渠体设计 渠体的断面为等腰梯形,沟壁和沟底均为土质,配置多种植物,并设置透水坝、拦截坝和节制闸等辅助性工程设施,使之在具有原有的排水功能基础上,增加对排水中氮、磷养分的拦截、吸附、沉积、转化和吸收利用。生态沟渠建设可以考虑适度增加沟渠的蜿蜒性,延长排水时间。建设密度应能满足排水和生态拦截的需要,分布在农田四周与农田区外的沟渠连接起来,并利用地形地貌将低洼地或者弃养渔塘改造成生态池塘,种植富集氮、磷的水生蔬菜,增加二次或三次净化,进一步提高系统的生态拦截能力。 3、植物配置

土壤中氮和磷的存在形态和特点

土壤养分含量以及存在形态和特点 土壤形态 一、根据在土壤中存在的化学形态分为 (1)水溶态养分:土壤溶液中溶解的离子和少量的低分子有机化合物。 (2)代换态养分:是水溶态养分的来源之一。 (3)矿物态养分:大多数是难溶性养分,有少量是弱酸溶性的(对植物有效)。 (4)有机态养分:矿质化过程的难易强度不同。 二、氮的形态与转化 1、氮的形态:(全氮含量0.02%——0.3%) (1)无机态氮:铵离子和硝酸根离子,在土壤中的数量变化很大,1—50mg/kg (2)有机态氮:A、腐殖质和核蛋白,大约占全氮的90%,植物不能利用; B、简单的蛋白质,容易发生矿质化过程; C、氨基酸和酰胺类,是无机态氮的主要来源。 (3)气态氮: 2、氮的转化: 有机态氮的矿质化过程:氨化作用、硝化作用和反硝化作用; 铵的固定:包括2:1型的粘土矿物(依利石、蒙脱石等)对铵离子的吸附;和 微生物吸收、同化为有机态氮两种形式。 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分 子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 三、磷的形态与转化 1、形态(土壤全磷0.01%——0.2%) (1)有机态磷:核蛋白、卵磷脂和植酸盐等,占全磷总量的15%——80%; (2)无机磷:(占全磷20%—85%) 根据溶解度分为三类 A、水溶性磷: 一般是碱金属的各种磷酸盐和碱土金属一代磷酸盐,数量仅为0.01—— 1mg/kg。在土壤中不稳定,易被植物吸收或变成难溶态。

湖北省稻田地表径流氮磷养分流失规律初探

湖北省稻田地表径流氮磷养分流失规律初探 摘要:在湖北省水稻主要种植区设置3个田间原位监测点,采用径流池收集地表径流的方法,研究水稻田地表径流产生和氮磷养分流失的规律。结果表明,2010年,全省稻田平均产生地表径流8次,产流量平均为304.5mm,产流系数为34.7%,径流主要发生在4~8月降雨比较集中的时段;施肥后全省稻田年平均总氮的流失量为4.90~10.67kg/hm2,总磷流失量为0.63~1.44kg/hm2;径流水中总氮平均浓度为1.83~3.83mg/l,总磷浓度为0.16~0.49mg/l;可溶态氮是地表径流氮素流失的主要形态,约占总氮的70.2%~86.7%,其中尤以硝态氮的流失量最大,占总氮的51.8%~69.5%,铵态氮流失量较小,约占总氮的7.4%~34.9%;磷素的流失以颗粒态磷为主,占总磷的60.4%~87.7%;肥料氮、磷养分流失量平均分别为当季施肥量的0.46%和0.37%。施肥和径流量是影响地表径流氮、磷流失的主要因素,施肥导致氮、磷养分流失量增加,径流产生量大的时段,其氮、磷的流失量也增加。 关键词:氮磷养分流失;地表径流;稻田;养分形态;湖北省 abstract:experimentalplots insituwereconductedinthem ainriceplantingregionsofhu

beiprovincein2010,therunoffwaterineachplot was collectedandtested,toinvestigatetheregularpatternofthesurfacerunoffeventsandthenitrogenandphosphoruslossesofthe ricefield.theresultsshowedthatthesurfacerunoffeventsusuallyoccurredinrainingseasonfromapriltoaugust.onaverage,8timesofrunoffeventsoccurredinayear,theannualamountofrunoffwas304.5mmandtherunoffgenerationcoefficientwas34.7%; theannualamountofnitrogenlossesfromricefieldwas4.90~10.67kg/hm2,thephosphoruslosseswas0.63~1.44kg/hm2.themeanconcentrationofnitrogenlosseswas1.83~3.83mg/land0.16~0.49mg/lforthe

农田氮_磷的流失与水体富营养化(精)

农田氮、磷的流失与水体富营养化① 司友斌王慎强陈怀满② (中国科学院南京土壤研究所南京210008 摘要农田氮、磷的流失,不仅造成化肥的利用率降低,农业生产成本上升,还对水环境造成污染,引起水体富营养化。本文讨论了农田氮磷流失对水体富营养化的贡献、农田氮磷流失途径及影响因素,提出了减少农田氮磷流失、控制水体富营养化的措施。 关键词农田氮素;农田磷素;淋溶作用;水体富营养化 肥料提供了植物生长必需的营养元素,对保持作物高产稳产起了重要的作用,但是由施肥不当或过量施肥带来的环境污染问题也越来越突出,其中农田氮磷流失引起的水体富营养化问题目前已受到人们的普遍关注。 1水体富营养化的表现及形成原因 水体富营养化通常是指湖泊、水库和海湾等封闭性或半封闭性的水体,以及某些滞留(流速<1米/分钟河流水体内的氮、磷和碳等营养元素的富集,导致某些特征性藻类(主要是蓝藻、绿藻等的异常增殖,致使水体透明度下降,溶解氧降低,水生生物随之大批死亡,水味变得腥臭难闻。引起水体富营养化起关键作用的元素是氮和磷。研究表明,对于湖泊、水库等封闭性水域,当水体内无机态总氮含量大于 0.2mg/L,PO3-4-P的浓度达到0.02mg/ L时,就有可能引起藻华(Algae Bloms现象的发生。 据对我国25个湖泊的调查,水体全氮无一例外超过了富营养化指标,全磷只有2个湖泊(大理洱海和新疆博斯腾湖低于0.02mg/L的临界指标,其余92%的湖泊皆超过了这个标准,比国际上一般标准高出10倍或10倍以上(表1。 表1我国25个湖泊中的全N全P浓度(mg/L及所占比例[1]

全N全P <0.2>1.0>2.0>5.0<0.02>0.1>0.2>0.5 湖泊数 %0 21 84 13 52 5 20 2 8 16 64 12 48 6 24

南方水网区农田氮磷流失治理技术

南方水网区农田氮磷流失 治理技术

(一)技术基本情况 农业面源污染是影响水环境、土壤环境和农村生态环境质量的重要因素之一,由于其涉及范围广、随机性大、隐蔽性强、不以溯源、难以监管等原因,治理的难度很大,已经成为我国现代农业和社会可持续发展的瓶颈。据全国第一次污染源普查数据,农业源排放的总氮、总磷占总排放量的57.2%和67.4%,控制农业源氮磷排放是实现水环 境质量根本改善的核心。然而在农业源氮磷排放中,来自农田的氮磷排放又占很大比例。因此,要实现农业面源污染的有效控制,必须首先控制农田面源污染。 南方水网区农田氮磷流失治理集成技术,即源头减量(reduce),农田氮磷投入源头减量技术;过程拦截(retain),农田径流排放的 过程拦截技术;养分再利用(reuse),养分循环利用技术;末端修复(restore),末端的生态修复技术。 (二)技术示范推广情况 农业农村从2013年起,在三峡库区兴山县、太湖流域宜兴市、 巢湖流域巢湖市、洱海流域洱源县开展农业面源综合防治示范区建设。四个示范区核心示范面积达11585亩,其中巢湖流域示范区核心面积2500亩,洱海流域示范区核心面积2320亩,太湖流域示范区核心面积约1500亩,三峡库区示范区核心面积5265亩。通过源头控制、过程拦截、末端处理等工程的建设,实现了示范区畜禽粪便、农村污水处理利用率90%以上,化学需氧量、总氮和总磷排放量分别减少40%、30%和30%以上,有效改善了当地农业生态环境和人居环境。

为推广上述示范区建设取得的可复制可推广的技术模式,2016 年农业农村部会同国家发展改革委,在太湖、淮河、巢湖、洞庭湖、鄱阳湖、洱海、三峡库区及丹江口库区等典型流域整县推进实施农业面源综合治理试点项目,总结一批成功治理范例和适用模式。每个试点项目的示范区覆盖耕地面积2万亩以上,养殖量不小于2万头猪当量,中央补助资金3000万元,总投资约4000万元。 (三)提质增效情况 1.农田氮磷投入源头减量技术。在保证水稻高产的基础上,减少氮肥投入10-20%,提高氮肥农学效率10-20%,减少氮排放20%以上。 2.农田径流排放的过程拦截技术。在保障农田排水的同时,对排水中的氮磷进行高效去除,氮磷的拦截率在40%以上。 3.养分循环利用技术。径流氮磷平均浓度下降70-80%,并通过氮素回用减少稻田氮肥投入20%。 4.末端的生态修复技术。通过高效吸收氮磷植物群落的合理搭配(经济型、景观型)、生态浮床/岛的组合应用、水位落差的设计以及高效脱氮除磷环境材料与微生物的应用等等,形成了农田面源污染治理的最后一道屏障。同时,水生植物定期收获后进行资源化再利用,生产成有机肥回用农田。 (四)技术获奖情况 南方水网区农田氮磷流失治理集成技术被列入农业农村部2018年十项重大引领性农业技术之一。

肥料中氮磷钾养分的主要存在形式

肥料中氮磷钾养分的主要存在形态肥料的质量好与否,除了总养分含量和氮、磷、钾各自的单养分比例外,作为营养元素的氮、磷、钾养分的在肥料中的存在形态也和施用效果有着直接的联系,也是衡量肥料品质的一个比较重要指标。 由于国家规定肥料在标明养分含量时,对其中的氮磷钾养分存在的形态并没有明确的要求,因此,往往被人们忽视了这些重要营养成分的形态。例如对氮的含量就是一个例 子,并不要求标明其中有多少铵态氮(NH 4+-N),多少硝态氮(NO 3 --N),多少尿素态氮。 下面针对氮磷钾在肥料中存在的主要形态及各自的作用分别加以说明: 一、氮的主要形态 肥料中的氮主要有三种存在形式: 铵态氮 硝态氮 尿素氮(或酰胺态氮) 大量研究及田间表明,植物可以大量吸收的氮,是铵态氮和硝态氮,也可吸收少量有机态氮,如尿素和结构比较简单的氨基酸。 铵态氮是还原态,为阳离子;硝态氮是氧化态,为阴离子。它们所带的电荷不用,在土壤中的行为以及对植物的营养特点也不一样。不能简单地说哪种形态好,哪种形态不好。它们的好坏与施用条件和作物种类等有关。铵态氮在带阴离子的土壤胶体中容易被吸附,而硝态氮则不能被吸附,具有更大的移动性。硝态氮被植物吸收后,要经过硝酸还原酶和亚硝酸还原酶还原成铵态氮后,才能进一步合成氨基酸。不同作物施用两种形态氮的反应往往不一。水稻施用铵态氮的效果比硝态氮好。因为水稻幼苗根中缺少硝酸还原酶,对硝态氮不能很好利用。除水稻本身原因外,水田中施用硝态氮易于流失,而且在淹水条件下的反硝化作用也是氮素损失的原因。因此,在水稻田施用硝态氮肥,有资料认为其肥效只有铵态氮肥的60%—70%。而与此相反的是烟草和蔬菜,它们是喜硝态氮的作物。硝态氮肥极易溶解,在土壤中活动性大,能迅速提供作物氮素营养,同时,又易于流失,肥效较短。这种特性符合烟草的要求,叶片要生长快,在适当时候又能落黄“成熟”。而且硝态氮有利于烟草体内形成柠檬酸、苹果酸等有机酸,烤出的烟叶品质好,燃烧性好。蔬菜施用硝态氮产量高,如硝态氮低于肥料全氮的50%,产量明显下降。因此,生产烟草、蔬菜专用肥时,氮肥中要有一定比例的硝态氮。但由于在土壤水分、温度、通气条件适宜时,铵态氮可经硝化作用,氧化成硝态氮。所以,烟草、蔬菜也不是绝对不能施用含铵态氮的肥料。另外,施用硫酸铵等生理酸性肥料作物生长不好,往往不是由于铵态氮肥不宜,而是由于生理酸性造成的。尿素是生产干粉法粒状复混肥常用的氮源,施入土壤后一般要经过脲酶水解,转化成铵态氮肥,才能

坡耕地氮磷流失及其控制技术研究进展

土 壤(Soils), 2009, 41 (6): 857~861 坡耕地氮磷流失及其控制技术研究进展① 吴电明1,2, 夏立忠2*, 俞元春1, 李运东2 (1 南京林业大学,南京 210037; 2 中国科学院南京土壤研究所,南京 210008) 摘 要:坡耕地N、P流失是造成农业面源污染的重要原因。文章综述了国内外有关坡耕地N、P流失的过程特征,降雨、土壤、地形、耕作与管理因素对N、P流失的影响等方面工作的研究进展,探讨了不同控制措施,如覆盖、植物篱、保护性耕作、坡改梯等,控制N、P流失的控制机制、效果和可操作性;并进一步对坡耕地N、P流失的研究与控制方面等今后应加强研究的趋势进行了展望。 关键词: 坡耕地;氮磷流失;控制技术 中图分类号: S157.1 坡耕地土壤养分流失是由于降雨作用于表层土壤,引起表层土壤N、P等养分溶解流失,或径流泥沙含有和吸附的颗粒态养分随径流迁移,进入水体的过程。坡耕地养分流失一方面造成了土壤质量退化、土地生产力下降,另一方面养分进入河流、湖泊等水体,引发了水体富营养化等一系列问题[1]。而施肥量的逐年增加,养分利用率低下,更加剧了农业面源污染[2],并直接威胁到居民饮用水安全。因此,开展坡耕地养分流失研究具有重要的现实意义。 早在1905年,英国科学家Warrington[3]就开始注意到土壤中N素淋失的问题,并在此后几十年中一直没有中断对养分流失的研究。但当时偏重土壤侵蚀方面,养分流失没有得到足够重视。直到19世纪50 ~ 70年代,由于肥料投入的增加造成了湖泊污染,养分流失问题才受到关注。近年来,坡耕地养分流失的研究主要集中于人工模拟降雨探讨不同土地利用方式下养分流失的机理,建立基于3S技术支撑的预测模型,通过农业利用方式的调整和工程及管理技术的改进,控制N、P养分流失[4-5]。本文主要针对坡耕地土壤N、P 流失的特征,主要影响因素的作用机制以及控制技术的研究进展进行系统阐述,为下一步深入研究提供技术思路。 1 坡面径流氮磷流失的形态与过程特征 坡面N、P流失是降雨和径流驱动下,坡面土壤侵蚀及土壤N、P随径流迁移的过程。深入揭示降雨产流、径流侵蚀和养分流失过程特征,剖析关键影响因素的作用机制,是探讨坡面N、P流失控制技术的理论基础。 坡耕地土壤养分流失通过两个途径:一是土壤养分溶解于坡耕地表面的径流,随着径流而损失;二是径流携带的泥沙本身含有或吸附的有机无机养分。通过前者损失的养分称为溶解态,后者为颗粒态。黄土高原与长江中上游紫色土坡耕地的试验表明,坡面径流养分流失以颗粒态为主[5-6]。从损失养分在不同粒径分布结构体来看,泥沙中<0.02 mm的微团聚体和<0.002 mm的黏粒是养分流失的主要载体[7]。而径流携带的泥沙对P有富集作用,且不同粒径团聚体对P的富集作用和富集系数也不同[4]。 径流产生不同阶段养分流失有规律性变化。在不同的产流阶段中,以初始阶段N、P流失严重,径流中养分输出浓度最高[8];并且土壤养分流失随时间的变化与泥沙流失的趋势一致,泥沙中速效养分的含量在降雨前期较高,而后逐渐减少,最后平稳。在年际变化中,以每年第一次产流浓度最大。 可见,人们已经认识到坡面径流养分流失的形态、载体分布与流失规律,但对于影响坡面径流养分流失过程的关键因素,尤其是可以人为调控影响要素的作用机理,缺乏深入的研究,不利于坡耕地农业面源污染的有效控制。 ①基金项目:国家自然科学基金项目(30870410)、中国科学院西部行动计划项目(KZCX2-XB2-07-02)和国家林业公益性行业科研专项(200804040)资助。 * 通讯作者 (lzxia@https://www.360docs.net/doc/bb2915161.html,) 作者简介:吴电明 (1985—) , 男, 山东菏泽人, 硕士研究生, 主要从事土壤与农业生态研究。Email: dmwu@https://www.360docs.net/doc/bb2915161.html,

生物炭对农业面源污染氮、磷流失的影响研究进展.

生物炭对农业面源污染氮、磷流失的影响研究进展摘要:综述了近年来国内外应用生物炭削减农田氮、磷养分流失的研究进展,从生物炭的作用机制和对土壤环境效应的影响2个方面出发,重点阐述了生物炭对土壤中氮、磷养分的吸附与转化,生物炭的作物效应以及生物炭对土壤淋溶过程的影响。生物炭不仅能够改善土壤环境,提高土壤氮、磷养分的有效性,促进作物的吸收和生长,而且由于其特殊的结构和理化性质,可以吸附土壤中未被作物利用的水分和养分,延缓养分释放,减弱其在土壤中的迁移转化能力,最终实现减少土壤氮、磷养分流失的目的。最后,着眼于当前相关研究的薄弱之处对今后研究重点和方向进行展望,供相关研究者参考。 关键词:生物炭;氮流失;磷流失;吸附;环境效应 近年来,随着点源污染得到有效控制,农业面源污染已经成为我国各大湖泊水体富营养化的主要污染源。目前,针对农业面源污染治理的主要措施包括污染物源头的控制、污染物流失路径的截断以及污染地的修复J。其中,污染物源头的控制作为最有效的防治措施,不但能够实现污染物的最小量输出,而且可以在一定程度上起到控制污染范围的作用。因此,如何在不改变农村种植结构和耕作方式的前提下从源头控制面源污染物的产生就显得尤为重要。 自从H ILTO N等在1963年观察到生物黑炭对土壤中非草隆等有机农药具有良好吸附效果之后,生物炭就作为一种有效的土壤改良剂而被应用于温室气体减排、污染土壤修复以及生物有效性调控等方面卜m J。以往国内外在生物炭治理土壤环境污染上的研究多集中于对土壤有机污染物¨卜和重金属的修复,而通过添施生物炭来削减农业面源污染中氮、磷流失的研究则相对较少。鉴于此,笔者在当前农村普遍增施氮、磷肥的情况下,探讨生物炭对农田土壤氮、磷养分流失的作用机理,为我国农业面源污染的治理提供理论借鉴。 1生物炭对土壤中氮、磷的吸附作用 1.1生物炭对氦、磷的吸附机制 生物炭的吸附机制主要包括分配作用机制、表面吸附机制、联合作用机制以及其他微观机制。其中,表面吸附机制被认为是生物炭吸附土壤中NH、N O一和PO 卜等非极性离子的主要机制。表面吸附指被吸附物质与吸附表面之间通过分子间引力(物理吸附)或化学键(化学吸附)而形成的吸附过程。生物炭由于 其自身的多孔结构、巨大的比表面积卜以及表面富含多种官能团,不仅可以通过分子问引力(即范德华力)对土壤中未被作物吸收的N H、N O和P O等离子产生交换吸附作用卜船,【核心期刊发表】而且还能通过稳定的化学键对其产生不可逆的吸附。有研究表明,改性生物炭对硝酸盐和磷酸盐的吸附不仅符合物理吸附特性,同时还符合二级动力学反应方程,而二级或准二级动力学反应方程都可用来描述化学吸附过程,因此生物炭吸附硝酸盐和磷酸盐的过程又属于化学吸附。

水土流失实验

水土流失实验 一、活动原理:自然地理环境的整体性原理 二、活动方案设计: 1.活动材料: 两个浅底圆盘、若干土壤、适量草皮、适量水 2.活动步骤: (1)将土壤分成两份,分别置于A,B两个圆盘中央,堆成形状大体相近的两个圆锥体。 (2)在A盘的土堆上覆盖一层草皮。 (3)分别将一杯清水在距土堆顶部约20厘米的高度慢慢淋至两盘内。 (4)比较A,B两盘土堆边缘泥土的多少。 三、活动结果:A盘土堆边缘泥土较少,B盘土堆边缘有较多泥土。 四、结果分析: 植物对降水有较大的节留作用,良好的植被能迟滞雨水从地表中流出的时间,控制地表经流,减少对地表的冲刷作用。 导致水土流失的原因有自然原因和人为原因。 ⑴自然因素。主要有地形、降雨、土壤(地面物质组成)、植被四个方面。 ①地形。地面坡度越陡,地表径流的流速越快,对土壤的冲刷侵蚀力就越强。坡面越长,汇集地表径流量越多,冲刷力也越强。 ②降雨。产生水土流失的降雨,一般是强度较大的暴雨,降雨强度超过土壤入渗强度才会产生地表(超渗)径流,造成对地表的冲刷侵蚀。 ③地面物质组成。 ④植被。达到一定郁闭度的林草植被有保护土壤不被侵蚀的作用。郁闭度越高,保持水土的越强。 ⑵人为因素。。 人为原因主要指地表土壤加速破坏和移动的不合理的生产建设活动,以及其他人为活动,如战乱。 引发水土流失的生产建设活动主要有陡坡开荒、不合理的林木采伐、草原过度放牧、开矿、修路、采石等。人类对土地不合理的利用、破坏了地面植被和稳定的地形,以致造成严重的水土流失。 在我国,人口多,粮食、民用燃料需求等压力大,在生产力水平不高的情况下,对土地实行掠夺性开垦,片面强调粮食产量,忽视因地制宜的农林牧综合发展,把只适合林,牧业利用的土地也辟为农田。大量开垦陡坡,以至陡坡越开越贫,越贫越垦,生态系统恶性循环;滥砍滥伐森林,甚至乱挖树根、草坪,树木锐减,使地表裸露,这些都加重了水土流失。另外,某些基本建设不符合水土保持要求,例如,不合理修筑公路、建厂、挖煤、采石等,破坏了植被,使边坡稳定性降低,引起滑坡、塌方、泥石流等更严重的地质灾害。 我国是个多山国家,山地面积占国土面积的2/3;我国又是世界上黄土分布最广的国家。山地丘陵和黄土地区地形起伏。黄土或松散的风化壳在缺乏植被保护情况下极易发生侵蚀。我国大部分地区属于季风气候,降水量集中,雨季降水量常达年降水量的60%~80%,且多暴雨。易于发生水土流失的地质地貌条件和气候条件是造成我国发生水土流失的主要原因。由于我国对自然资源使用不合理,我国多地区出现水土流失,如黄土高原、南方低山丘陵、河西走廊、宁蒙河套平原等。 就黄土高原而言,黄土高原地表支离破碎,千沟万壑,有70%是坡地,植被覆盖极差,

生物炭对农业面源污染氮、磷流失的影响研究进展

生物炭对农业面源污染氮、磷流失的影响研究进展 摘要:综述了近年来国内外应用生物炭削减农田氮、磷养分流失的研究进展,从生物炭的作用机制和对土壤环境效应的影响2个方面出发,重点阐述了生物炭对土壤中氮、磷养分的吸附与转化,生物炭的作物效应以及生物炭对土壤淋溶过程的影响。生物炭不仅能够改善土壤环境,提高土壤氮、磷养分的有效性,促进作物的吸收和生长,而且由于其特殊的结构和理化性质,可以吸附土壤中未被作物利用的水分和养分,延缓养分释放,减弱其在土壤中的迁移转化能力,最终实现减少土壤氮、磷养分流失的目的。最后,着眼于当前相关研究的薄弱之处对今后研究重点和方向进行展望,供相关研究者参考。 关键词:生物炭;氮流失;磷流失;吸附;环境效应 近年来,随着点源污染得到有效控制,农业面源污染已经成为我国各大湖泊水体富营养化的主要污染源。目前,针对农业面源污染治理的主要措施包括污染物源头的控制、污染物流失路径的截断以及污染地的修复J。其中,污染物源头的控制作为最有效的防治措施,不但能够实现污染物的最小量输出,而且可以在一定程度上起到控制污染范围的作用。因此,如何在不改变农村种植结构和耕作方式的前提下从源头控制面源污染物的产生就显得尤为重要。 自从H ILTO N等在1963年观察到生物黑炭对土壤中非草隆等有机农药具有良好吸附效果之后,生物炭就作为一种有效的土壤改良剂而被应用于温室气体减排、污染土壤修复以及生物有效性调控等方面卜m J。以往国内外在生物炭治理土壤环境污染上的研究多集中于对土壤有机污染物¨卜和重金属的修复,而通过添施生物炭来削减农业面源污染中氮、磷流失的研究则相对较少。鉴于此,笔者在当前农村普遍增施氮、磷肥的情况下,探讨生物炭对农田土壤氮、磷养分流失的作用机理,为我国农业面源污染的治理提供理论借鉴。 1生物炭对土壤中氮、磷的吸附作用 1.1生物炭对氦、磷的吸附机制 生物炭的吸附机制主要包括分配作用机制、表面吸附机制、联合作用机制以及其他微观机制。其中,表面吸附机制被认为是生物炭吸附土壤中NH、N O 一和PO卜等非极性离子的主要机制。表面吸附指被吸附物质与吸附表面之间通过分子间引力(物理吸附)或化学键(化学吸附)而形成的吸附过程。生物炭由于

次暴雨下作物植被类型对农田氮磷径流流失的影响(1).

2009年 3月 水利学报 SH UI LI X UE BAO 第 40卷第 3期 收稿日期 :2008203214 基金项目 :国家自然科学基金重点项目 (50639040;50739003 作者简介 :焦平金 (1980- , 男 , 安徽人 , 博士生 , 主要从事农田排水与水环境保护方面的研究。 E 2mail :jiaopj@iwhr. com 文章编号 :055929350(2009 0320296207 次暴雨下作物植被类型对农田氮磷径流流失的影响 焦平金 1 , 王少丽 1 , 许迪 1 , 王友贞 2 (1. 中国水利水电科学研究院水利研究所 , 北京 100044; 2. 安徽省 , 233000 摘要 :基于汛期次暴雨径流实验数据 , 。结果表明 , 作物植被类型差异对地表径流量 >玉米地 >棉花地 >黄豆地。因素。。对具有较高植被覆盖度的黄 , 而玉

米地中颗粒态氮和可溶性磷分别是农田氮磷、棉花等高叶面积指数的作物可有效减少氮磷地表径流流失 , 减缓农业面源污染带来的威胁。 关键词 :降雨 ; 作物 ; 植被 ; 径流 ; 土壤侵蚀 ; 氮磷 ; 流失中图分类号 :S157.1; X 144 文献标识码 :A 1研究背景 地表径流与土壤侵蚀引起的氮磷流失是导致农业面源污染、河流湖泊等地表水体产生富营养化的 主要原因 , 其带来的环境、经济及社会问题已引起国内外普遍关注 [1-2] , 研究农田氮磷径流流失规律对提高化肥利用率、减轻农业面源污染、缓解水资源危机具有重要理论意义和实用价值。现有大量针对氮磷地表径流流失机理与规律的研究多在室内外模拟降雨条件下基于坡面产流或农田径流状态开展 , 其 考虑了植被覆盖、施肥、雨强、耕作方式等因素对地表径流氮磷流失规律的影响 [3-6] , 以及地表径流中不 同形态氮磷的构成 [7], 研究发现作物植被覆盖对农田氮磷地表径流流失的影响较为明显 [8-9] 。由于人工降雨模拟条件与自然降雨状态间在降雨属性等方面存在着差异 , 上述得出的相关研究结论用于指导实践具有一定局限性 [10] , 故深入研究自然降雨条件下作物植被类型差异对农田氮磷径流流失规律的影响凸显重要。本文基于汛期典型暴雨径流实验观测数据 , 研究不同作物植被类型下的农田地表氮磷径流流失规律和特征 , 探讨作物植被类型差异对地表径流量、

有机替代对农田土壤肥力及氮磷流失的影响

步法農划律2019年第60卷第7期 文献著录格式:张康宁,俞巧钢,叶静,等;有机替代对农田土壤肥力及氮磷流失的影响[J]?浙江农业科学,2019,60(7):1154-1158. DOI:10.16178/j.issn.0528-9017.20190725 有机替代对农田土壤肥力及氮磷流失的影响 张康宁1!2,俞巧钢2",叶静2,马军伟2,符建荣2 (1.浙江师范大学化学与生命科学学院,浙江金华321004; 2.浙江省农业科学院环境资源与土壤肥料研究所,浙江杭州310021) 摘要:化肥施用过量和养分利用率较低是我国当前农业生产施肥中普遍存在的问题,化肥减量有机替代是针对性策略之一。论文阐述化肥减量有机替代的必要性与重要意义,综述化肥减量有机替代的方法,对农田 土壤结构、土壤养分、土壤微生物与酶活性指标的变化,以及农田氮、磷流失的影响,同时,指出现有的有机替代有机肥标准管理的不足之处,并对未来有机替代背景下开展重金属的相关研究做出展望。 关键词:化肥减量;有机肥;秸秆还田;氮磷流失;紫云英还田 中图分类号:S156;S158文献标志码:A文章编号:0528-9017(2019)07-1154-05 目前,我国化肥施用普遍过量,利用率低,损失十分严重。化肥较低利用率与高流失率使大量养分随地表径流、淋溶损失,破坏流域水环境并导致农业生态系统失衡,并造成严重的面源污染。过高的化肥施用量、不合理的肥料配比和肥料养分流失严重等是引发农田面源污染的主要原因,其最重要部分则由化学肥料营养元素的流失和水体富集构成,而若继续增加化肥投入强度和密度,其结果往往导致化肥流失量剧增,使得农田面源污染日趋严重-1]o有机无机肥料配施的有机替代模式能改善土壤氮素供应过程,使土壤养分平稳释放。化肥减量有机替代模式与单施化肥相比,既能提高作物产量,又能提高作物品质,还可以减少农田氮磷养分流失,使生态环境得到切实保护,值得目前生产实际中大力推广应用-2]。 1有机替代的益处及主要替代有机肥种类 常量施肥处理和高量施肥处理都可以快速显著提高土壤全氮、颗粒有机氮、可溶性有机氮、微生物量氮,以及轻组有机氮的含量,但有机替代模式有机肥的施用有着更深层次的作用。宋震震等-3]经过26a的研究证明,长期施有机肥比长期施化肥更能提高土壤各活性氮库组分含量,并且土壤颗粒有机氮含量与有机肥的施用量呈正相关。而化肥、有机肥配合施用使土壤有机碳含量和土壤碳素明显提高,土壤易氧化有机质的含量逐渐增加-4],改善土壤质量,提高土壤肥力,保持土地的可持续利用。但不施肥土壤有机质则显著下降,单施化肥或高量化肥土壤有机碳、氮库保持稳定或小幅波动。农业上常用的有机替代有机肥种类有畜禽粪便、绿肥和农业有机废弃物等。 1.1畜禽粪便 畜禽粪便主要指畜禽养殖业中产生的一类农村固体废物,包括猪粪、牛粪、羊粪、鸡粪等。我国畜禽粪便资源充足,2010年全国畜禽粪便总排放量为19.00亿7,若再加上内蒙古、新疆、青海、西藏4省区牛、羊和其他大牲畜的粪便排放量,则总排放量为22.26亿75],而2020年我国畜禽粪便排放量将会比2007年增加37%[6]。畜禽粪便含有丰富的有机物和氮、磷、钾等营养元素,也能供给作物所需的钙、镁、硫等多种矿物质及微量元素,满足作物生长过程中对多种养分的需要。 畜禽粪便可作为制作生物炭的原料。牛粪秸秆混合生物炭较好的炭产率、pH值和孔隙特性,适于作吸附剂等使用。猪粪秸秆混合生物炭具有较好的养分特性,可作为磷肥生产辅料或土壤改良剂使用[7], 1.2绿肥 绿肥是用绿色植物体制成的肥料,主要来源闲置地的绿色植物。绿肥按其来源分为栽培绿肥和野 收稿日期:2019-05-18 基金项目:国家重点研发计划项目(2016YFD0800500);浙江省重大科技专项重点农业项目(2015C02011;2015C02013) 作者简介:张康宁(1992—),女,河南杞县人,硕士研究生,研究方向为土壤资源与生态,E-mail:1023846838@qq.corn, 通信作者:俞巧钢,E-mail:yqganghzzj@https://www.360docs.net/doc/bb2915161.html, 。

读《氮磷在农田土壤中的迁移转化规律及其对水环境质量的影响》

读《氮磷在农田土壤中的迁移转化规律及其对水环境质量的影响》 作者——陈英旭梁新强 前言:本书是陈英旭教授领导的团队对太湖流域水环境近十年来持续研究的成果,从田间中观到区域宏观阐明农田土壤氮磷流失的发生机制和界面过程。估算了区域氮磷流失强度与通量,提出了利用新型硝化抑制剂,生态施肥和生态灌溉等方法圆头阻控氮磷流失的策略和措施建议。 国际上关于农田养分流失提出“最佳管理措施”(BMPs Best Management Practices )1、农田最佳养分管理,2、农业水土保持技术及其配套措施,3、等高线条带种植技术,4、在水源保护区指定和执行限定性农业生产技术标准。 内容 农业面源污染:泛指污染物从非固定的地点,通过径流汇入受纳水体并引起水体富营养化或其他形式的污染。三大特征:发生具有随机性,排放途径和排放污染物具有不确定性,时空的差异性。研究的核心过程:降雨径流(代表有美国SCS 模型),土壤侵蚀(美国提出的通用土壤流失方程USLE及后来改进的RUSLE),地表溶质溶出(有效混合深度EDI),土壤溶质溶出四个过程。 农业面源研究常用模型:RUSLE CREAMS AGNPS ANSWERS WEPP SWAT 美国农业部农业研究局(US departent of agriculture and agriculture research service USDAARS)在1992年12月正式发行RUSLE(revised universal soil loss equation)RUSLE是一套完整软件,可以测出适用于不同地区不同作物和耕作方式及林地、草地灯土壤侵蚀速率的很小的变化。 农业面源污染主要调控技术:面临的问题,缺乏适合中国农村特色的施肥技术,不合理的田间耕作管理模式。 稻田淹水时期通过降雨径流及排水径流大量流失的氮磷已经成为影响水体环境的一个重要农业面源污染源。研究对杭嘉湖平原的杭州市,湖州市和嘉兴市调查水中典型水生植物浮萍与藻的数量及分布情况,同时以嘉兴双桥农场大田为例,进一步探讨浮萍密度,藻的数量及多样性以及叶绿素a含量对不同施肥量的响应状况。大量研究表明,藻类数量总量与叶绿素a之间有很好的直线正相关关系,可以作为藻类生物量的表征。而叶绿素a含量与浮萍密度之间呈显著的线性负相关,说明浮萍的生长抑制了田面水中藻类的生长于繁殖。 浮萍除了本身吸收大量氮磷外还影响水体硝化和反硝化及氨挥发等主要氮素转化过程,稻田中大量生找的浮萍可加快田面水尿素态氮的水解过程,浮萍可以起到降低氮素流失的潜能作用,浮萍层的存在可明显降低氨挥发损失,同时有利于提高氮素利用率。 硝化作用是在通气条件下由土壤微生物把氨气和某些胺化合物化为硝态氮化合物的过程。SWAT(soil and water assessment tools)主要是模拟和预测不同土地利用类型和多种农业管理措施对流域的水,泥沙,化学物质的长期影响。

模拟降雨条件下农田径流中氮的流失过程

土壤与环境 2001, 10(1): 6~10 https://www.360docs.net/doc/bb2915161.html, Soil and Environmental Sciences E-mail: ses@https://www.360docs.net/doc/bb2915161.html, 基金项目 39790100 ???ú?? 男 章 申 男 中国科学院院士 中国环境科学学会副理事长 2000-12-02 文章编号 2001 章 申 陈喜保北京 100101 在室内降雨模拟试验条件下 结果表明 施用NH 4 HCO 3 显著地增大了农田径流中溶解态氮浓度及流失量 P =0.1 在大暴雨和裸露地试验条件下 在44 min 降雨径流中 侵蚀泥沙有富集氮养分的特点 LOG(ER )=0.770-0.300LOG(SED ) ?μμí±ííá?D?ùD§μa??·?o?á?ê? ??éù??ì?μ?±í??á÷μaá÷ê§μ?1??ü è?1¤?μóê μaá÷ê§ X14 文献标识码 Institute of Geographical Science and Resources Research, Chinese Academy of Sciences, Beijing 100101, China á×μè??·???μ? ±í??á÷?ò??ì?μ??¨ò?òy?eá?1?·oμ???êó ?? ??ì??ì3éá??±?óμ??eo| í?ê±μa ?? è???ì? òò′? á×??·??eê§1??é 研究暴雨径流条件下农田氮 以控制降雨强度和时间 其后在白洋淀地区也进行了尝试[1, 2] ×üì??à1?×êá???éù ?úê?ó?μa·êó?2? ê?·êμ?ì??t?? ?¨ ?èoí??ê′?àé3μaμ?o?á? ?aóDD§??????ì?μaμ??eê§oí·à?1??ì?μ???óa ???ˉìá1????§μ?òà?Y ?′1????μí3 ??á÷ê??éíáèàD???oí×??ˉ2é?ù ?÷ 2éó??à1ú SPRACO 锥形头 90 cm 长的延伸管 以及作装置稳定的 三角架和几条拉线构成 可在相对较低的降落高度下模拟天然降 雨每槽水平受水面积 0.5 m × 2 m ·à?1?μóê?àé3?|3?

相关文档
最新文档