大地电磁测深法

合集下载

大地电磁测深精度提高与去噪方法

大地电磁测深精度提高与去噪方法

270当代矿山地质地球物理新进展大地电磁测深精度提高与去噪方法颜良(中南大学信息物理工程学院,长沙,410083)【摘要】大地电磁测深法是工程勘探,特别是石油非地震勘探的主要方法之一。

但是如何提高精度是一个重要问题。

本文首先从理论研究、仪器使用、野外采集、资料处理与解释等方面分析了一些去噪方法和技术,以提高堡!!!曼壅。

【关键词】大地皂磁法;毒堡!鲮,、.国外研究大地电磁测深法(简称MT)始于20世纪50年代,60年代我国开始研究并于1980年前后开始应用。

由于其具有探测深度大(可探测至上地馒),不受高阻层屏蔽,分辨能力较强(特别是对良导介质),等值范围较窄,工作成本低(相对地震勘探)和野外装备轻便等特点而广泛应用于矿产勘探,特别是油气勘探等领域。

如何去噪是提高其探测精度一个重要方面,本文从仪器、野外采集、资料处理与解释、理论研究等各方面进行了分析讨论。

1仪器仪器是大地电磁法的信号进行处理的第~个外部条件,所以对它的要求是比较高的。

现在在仪器中大量采用去噪方法和抗干挠措施。

20世纪50年代中期到70年代中期国外使用的勘探仪器主要是模拟大地电磁测深仪,70年代末到现在国内外普遍使用的是数字大地电磁测深仪。

70年代末到80年代末我国一般使用美国生产的PROM系列大地电磁测深仪,采用磁带记录,记录时问系列数据,采集电磁场的五分量信号,这种仪器将信号放大、信号模拟、信号记录三部分集中为三个箱体(重达500kg左右)并安装在仪器车上。

由于PROM系列仪器较为笨重只适用勘探地表相对平坦、地形条件简单的地区,目前已基本被淘汰。

现在大地电磁测深中正在更新有多道、数传、同步、宽频带(1×10~~1x104nz)、多种方法、实时定位、实时处理、遥控遥测等更加轻便、实用的新型仪器w。

我们要在这些仪器中使用多种去噪的措施。

如进行选频滤波,可以采用同步检波及积分采样(因为同步检波甚至对同频率的干扰都有很强的压制能力,而积分对对称性干扰压制能力极强),提高接收机的灵敏度并且采取多次叠加等技术,以达到提高信噪比的目的”・。

大地电磁测深的野外工作方法简介

大地电磁测深的野外工作方法简介

大地电磁测深的野外工作方法简介大地电磁测深的野外工作,首先必须根据所要研究的地质、地球探测问题和任务进行施工设计;然后根据设计1,正确的进行观测布极,资料采集时要求观测资料要求观测资料必须包含有足够的频率成分,足够的记录长度并满足一定的质量指标。

最后对观测资料进行自评。

下面介绍野外工作中值得重视的几个环节。

一施工设计在进行MT野外施工之前,应根据地质任务的要求进行施工设计,主要包括以下内容:(1)收集工区及邻区已有的地质和地球物理资料,初步建立起工区的地层-电性关系模式。

根据地质任务的要求,结合已知的构造走向和地质露头情况,确定测线间距、测点距离、测线方位,并根据勘探目标的深度和地层电性特征,提出对观测数据最低频的要求。

(2)对工区进行现场实地踏勘,了解工区的地形、交通、地质露头情况及各种电干扰源(铁路、输电线、水电站和煤矿等)的分布情况。

提出避开电干扰、确保野外观测质量的措施。

(3)根据有关规范要求和实际情况,提出仪器一致性点和质量检查点的要求,提出对电极距的基本要求。

二、野外资料采集1、选点MT法观测质量与测点所处环境关系很大,为了获得高质量的野外观测资料,测点选择的原理是:(1)根据地质任务及施工设计书,布置测线、测点,在施工中允许根据实际情况在一定范围内调整,但必须满足规范要求。

若测区范围内发现有意义的异常,应及时申请加密测线、测点,以保证至少应有三个测点位于异常部位;(2)测点尽量不要选在狭窄的山顶或深沟底,应选开阔的平地布极,至少在两对电极的范围内地面相对高差与电极距之比小于10%;(3)布极应尽可能避开近地表局部电性不均匀体;(4)所选测点应远离电磁干扰源。

在不能调整测点位置的情况下应采取其它措施减小电磁干扰。

1、观测装置的布设每一测点上需要测量彼此正交的电磁场水平分量及垂直磁场分量,野外采集装置的布设示意如图21)布极(1)方位:如果已知测区的地质构造走向,最好取x,y分别与构造的走向和倾角平行,这样可直接测量入射场的TE极化波和TM极化波,若地质构造走向未知,则通常取正北为x轴,正东为y轴。

音频大地电磁测深(AMT)方法在西藏某金矿的应用效果

音频大地电磁测深(AMT)方法在西藏某金矿的应用效果

地质勘探G eological prospecting音频大地电磁测深(AMT)方法在西藏某金矿的应用效果宁 堃,李才江,邹 浩(四川省核工业地质局二八二大队,四川 德阳 618000)摘 要:本文从方法原理和应用实例方面介绍音频大地电磁测深(AMT)方法在西藏某金矿上的应用研究。

研究结果表明,利用音频大地电磁测深(AMT)方法在寻找赋矿脉岩、隐伏赋矿断裂破碎带及圈定隐伏岩体等方面是行之有效的。

关键词:音频大地电磁测深;金矿中图分类号:P631.325 文献标识码:A 文章编号:1002-5065(2018)05-0172-3The application effect of audio magnetotelluric sounding (AMT) method in a gold mine in TibetNING Kun, LI Cai-jiang, ZOU Hao(Sichuan provincial Nuclear Industry Geology Bureau 282 brigade, Sichuan Deyang 618000)Abstract: In this paper, the application of audio magnetotelluric sounding (AMT) method in a gold mine in Tibet is introduced from the principle of method and application. The results show that the use of audio frequency magnetotelluric sounding (AMT) method is effective in finding ore vein rocks, concealed ore bearing fracture zones and delineating concealed rock masses.Keywords: Audio magnetotelluric sounding; gold mine众所周知,应用物探方法寻找金属矿产已经取得了比较好的效果,但应用物探方法直接找金矿的工作较少,效果也不稳定,其主要原因是金在矿石中的含量仅为ppm级,不足以影响矿石的物理特性。

瞬变电磁法和可控源音频大地电磁测深法在地下矿山水文地质调查工作中的应用

瞬变电磁法和可控源音频大地电磁测深法在地下矿山水文地质调查工作中的应用

瞬变电磁法和可控源音频大地电磁测深法在地下矿山水文地质调查工作中的应用1、技术应用背景随着国家对安全生产的高压监管,尤其地下矿山的安全生产工作显得格外重要。

地下矿山中特别一些水文地质条件复杂大水矿山的防治水工作在矿山日常安全生产工作中的重要性不言而喻。

做好防治水工作的重要前提是对矿山的水文地质条件要有深入的了解,通过过去投入钻探、地质调查和矿山生产过程中积累的地质资料等已基本掌握矿山的水文地质条件,为更好服务矿山的防治水工作,目前可以通过物探方法例如瞬变电磁法和可控源音频大地电磁测深法对矿区范围400m深度以浅的主要含水构造异常和含水体异常,推断含水构造走向、含水体位置进行勘查。

为矿山安全生产与防治水工作提供技术依据。

2、工作区位置济南市莱芜金牛矿业开发公司金牛铁矿建矿时间为1993年,目前为年产20万吨的小型铁矿。

矿山位于济南市莱芜区城区西约6km,行政区划属莱芜区牛泉镇,工作区东距莱芜—泰安高速公路(S26)莱芜西出入口约1.5km,北侧有省道(S330)公路通过,莱芜—牛泉的简易公路穿过工作区,交通条件便利。

3、地球物理特征通常情况下,同一地层(或电性特征差异不明显的不同地层)受梯度增温和上伏地层压力影响,在反演电阻率断面图上表现为:①电阻率值沿地层倾斜方向(以下简称横向)无明显变化,等值线横向无明显弯曲(理想状态下为一条直线)②沿地层层面法线方向(以下简称纵向)电阻率等值线呈均匀梯度变化,通常随深度增加电阻率值逐渐增大。

电性特征差异明显地层间的整合接触(或平行不整合接触)会破坏纵向电性的均匀变化,其在反演电阻率断面图上通常表现为:①电阻率值横向无明显变化,等值线无明显弯曲②电阻率值纵向变化明显,等值线在地层接触面位置处呈密集层状分布。

4、工作方法4.1测地工作测量工作主要是为本次可控源音频大地电磁测量和瞬变电磁法布设工作提供精度可靠的测量成果。

利用RTK测量技术实施平面测量和高程测量。

4.1.1 技术标准《全球定位系统(GPS)测量规范》(GB/T 18314-2016)《全球定位系统实时动态测量(RTK)技术规范》(CH/T2009-2010)4.1.2 仪器设备测地工作采用国产中海达RTK接收机1台套,仪器编号为:337。

可控源音频大地电磁测深法在双尖山矿区勘探中的应用

可控源音频大地电磁测深法在双尖山矿区勘探中的应用

可控源音频大地电磁测深法在双尖山矿区勘探中的应用大地电磁测深法(Electromagnetic sounding method)是一种使用电磁信号探测地下电阻率分布的地球物理勘探方法。

可控源音频大地电磁测深法(CSAMT)是大地电磁测深法的一种改进方法,其利用宽频带和可控源的特点,可以提供更高分辨率和更准确的地下信息。

双尖山矿区是位于中华人民共和国河北省保定市涞水县境内的一个矿区,以其丰富的矿产资源而闻名。

然而,由于地质结构复杂和地下情况的不确定性,传统的地质勘探方法往往难以得到准确的地下信息。

因此,CSAMT方法在双尖山矿区的勘探中具有广阔的应用前景。

CSAMT方法通过在地面上设置一对天线,其中一个天线作为发射源,产生一定频率的电磁信号,另一个天线则用于接收信号,通过测量接收到的信号的幅度和相位差,可以计算出地下电阻率分布。

CSAMT方法相比传统的大地电磁测深法具有以下优势:1. 宽频带:CSAMT方法使用宽频带的电磁信号,可以提供更广泛的频率响应范围。

这使得CSAMT方法能够探测更大范围的地下结构,并提供更详细的地下信息。

2. 可控源:CSAMT方法可以通过改变发射源的电流频率和幅度,来探测不同深度的地下结构。

这使得CSAMT方法能够在同一地点进行多次测量,从而提供更全面的地下信息。

在双尖山矿区的勘探中,CSAMT方法可以应用于以下几个方面:1. 矿产资源勘探:CSAMT方法可以提供关于地下岩石类型、含矿物质的分布和矿床形态等方面的信息。

这对于确定矿区的产状、规模和开采方式等具有重要意义。

3. 工程地质勘探:CSAMT方法可以用于探测地下构造和地质断裂带等信息,从而评估地震、滑坡和地质灾害等风险。

这对于矿区的工程建设具有重要意义。

综上所述,CSAMT方法在双尖山矿区的勘探中具有广泛的应用前景。

通过利用其宽频带和可控源的特点,可以获得更准确、更全面的地下信息,为矿区的开发和保护提供科学依据。

关于可控源音频大地电磁测深法(CSAMT)勘探深度的探讨

关于可控源音频大地电磁测深法(CSAMT)勘探深度的探讨

关于可控源音频大地电磁测深法(CSAMT)勘探深度的探讨[摘要]近年来,可控源音频大地电磁测深法(csamt)作为一种有效的物探方法在资源普查等领域中取得了显著的成绩,该方法以抗干扰能力强、勘探深度大、工作效率高等优点著称,本文从该方法的有效探测深度谈起,分析总结影响该方法勘探深度的各种因素。

[关键词]csamt法勘探深度场源中图分类号:o441文献标识码:a文章编号:1009-914x(2013)17-0295-020 引言可控源音频大地电磁测深法(controlled source audiofrequency magneto telluric),是指根据电磁感应原理研究可控音频场源在大地中激励的交变电磁场分布,并由观测到的电磁场分布研究地下电性及地质特征的一种电磁法。

20世纪70年代中期至今,该方法的理论和仪器逐渐发展,在普查、勘探石油、天然气、地热、金属矿产、水文、工程、环境保护等领域都有广泛的应用。

本文结合电磁波传播理论及场源效应的特征,对影响该方法的勘探深度的各种因素进行探讨和总结。

1 csamt法及其勘探深度在csamt法勘探中,场源为时谐场,因此电磁场波动方程非平面波效应是由于中间区、近区电磁波不再垂直入射地表面造成的,研究这种效应,对于合理选择场源位置具有指导意义。

理论上,收发距(场源与测深点之间的垂直距离)越大,远区数据越多,但实际上收发距不可能无限增大,因为过大的收发距必然导致信号减弱。

信号强度直接影响数据质量,尤其对于低频信号影响更大,从而对勘探深度造成影响。

在野外工作时,可以通过增大极距(一般极距为2km左右,条件允许的话越大越好)或者把ab 偶极的中点布置在勘探研究剖面的中垂线上等方法来提高信号强度。

为保证频率在远区,一般要求收发距是该频率对应探测深度的5~9倍,即收发距②场源附加效应zonge等1980年首次指出了场源下的地质情况可能影响csamt测深数据,场源附加效应是指场源下的地质情况对于过渡带和近区数据会产生强烈的影响,也可能引起微弱的静态位移。

电测深和AMT简介

电测深和音频大地电磁测深简介电测深和音频大地电磁(AMT)测深可以统称为电法测深,前者为常规电法,后者为电磁法。

电测深法是在地表某点测量电极不动,按规定不断加大供电电极距,从而研究地表某点下方电性的垂向变化。

这里实际测量过程中因为要考虑到信号强度问题,测量电极在供电电极距增加到一定程度后,也会有相应的增加,而供电电极距的增加,没有个规定的标准,一般按对数比例来增加。

由于供电电极距的不断增大,增大了电流在地下的分布范围,实际上相当于加大了勘探深度。

因此通过分析电测深视电阻率曲线可了解测点沿垂向地质情况的变化。

电测深法的实际工作中,通常采用对称四极装置。

即供电电极AB和测量电极MN均对称于测点布设,每改变一次供电电极距,便可按下式计算该极距的视电阻率ρs,即ρs=K∗U MN I其中,K为装置系数,不同的电法装置有不同的计算公式,此处对称四极的装置系数K 为K=π∗AM∗AN MN对称四极野外施工装饰示意图如下大地电磁测深(MT)是以天然电磁场为场源来研究地球内部电性结构的一种重要地球物理勘探手段。

当交变电磁场在地下介质中传播时,由于趋肤效应的作用,不同频率的信号具有不同的穿透深度,在地面上观测大地电磁场,它的频率响应将反映着地下介质电性的垂向分布情况。

音频大地电磁测深(AMT)理论基于大地电磁测深(MT),两者之间的区别就是采集的数据频带的差异,大地电磁测深频带低,一般为10000s-10Hz左右,音频大地电磁测深的频带较高,为1s-100000Hz左右,这里频段为大概值,没有完全统一的划分。

相对应的采集深度也就不同。

电磁波的趋肤效应,就是电磁波在向导体内部渗透时,,因能量损失而逐渐衰减。

当波幅衰减到表面波幅的1/e倍时的深度,就称为交变电磁场对导体的透入深度。

也是我们音频大地电磁测深估算探测深度的理论基础之一。

前苏联学者提洪诺夫在1950年提出了关于大地电磁方法的三点假设:①大地电磁场本身结构虽然比较复杂,但可以近似地看作平面波垂直入射到地球;②在地点学中可引入阻抗的概念(在地表测得的彼此正交的大地电场和磁场分量之比),它反映地球电性分布对大地电磁场的影响;③有可能利用单个点上的大地电磁场观测信息探测地球。

大地电磁测深一维正反演(附matlab代码)

大地电磁测深一维正反演摘 要 本文推导了大地电磁测深的理论计算表达式,并以水平层状介质为例,利用推导的正演计算式在MATLAB 软件平台上进行正演,比较了不同层介质参数的视电阻率曲线。

简要介绍了阻尼最小二乘法反演的基本原理和反演迭代步骤,并对多种层介质进行了反演。

关键词 大地电磁,一维正反演,阻尼最小二乘法1 引 言20世纪50年代初,苏联学者吉洪诺夫和法国学者卡尼亚的经典著作奠定了大地电磁测深法(MT )的基础。

它是利用大地仲频率范围很宽(4410~10-Hz )广泛分布的天然变化的电磁场,进行深部地质构造研究的一种频率域电磁测深法。

由于该法不需要人工建立场源,装备轻便、成本低,且具有比人工源频率测深法更大的勘探深度,所以除主要用于研究地壳和上地幔地质构造外,也常被用来进行油气勘查、地热勘探以及地震预报等研究工作。

几十年来,由于大地电磁测深法具有以下几个优点:不受高阻屏蔽,对低阻分辨率高;不用人工供电,勘探成本低且工作方便;勘探深度范围大。

使大地电磁法在矿产勘探及普查、地壳岩石圈电性结构研究、海洋地球物理勘探、地热勘探、能源勘探、隐伏岩溶水结构、天然地震预测等都扮演着至关重要的角色。

大地电磁也存在一些缺点,比如在实际应用的过程中整理后的数据存在分散的情况;频率范围不够宽,特别是缺少高频成分,受噪音影响大信噪比低;所需观察时间长,致使野外工作效率低。

随着基础理论、技术手段、仪器设备的不断完善和发展,进一步改进和解决这些问题,才能将大地电磁法更好的应用于生产服务当中。

2 视电阻率及水平地层大地电磁测深曲线的理论计算方法 2.1大地电磁测深理论的几点假设和论证吉洪诺夫和卡尼亚提出了假设并论证了以下几点:①将场源近似地看为平面电磁波垂直入射大地。

②引入波阻抗的概念(Z=E/H ),表征地球电性分布对大地电磁场的响应。

③利用单点大地电磁场观测研究地球电性分布是可能的。

2.2视电阻率及水平地层上的理论计算表达式视电阻率概念是从均匀介质中电阻率和波阻抗关系引申出来的。

可控源音频大地电磁测深法刍议

可控源音频大地电磁测深法刍议1 概述可控源音频大地电磁测深法,它是一种根据人工源频率进行地球物理深部探测的一种方法。

它发展于20世纪50年代,但是自80年代起才开始大面积应用于实际探测中。

可控源音频大地电磁测深法自实际应用以来,以其他探测方法无法比拟的优势,在各个领域取得了相当的成就。

不管是金属矿、煤炭、石油、天然气的勘探,还是地热、地质、水文的探测,可控源音频大地电磁测深法都能以其强大的勘查功能,完成测探作业。

2 可控源音频大地电磁测深法工作原理与优势2.1 可控源音频大地电磁测深法探测原理可控源音频大地电磁测深法克服了大地电磁测深方法等旧有技术的缺点,在矿体勘探中可以从纵向和横向两个方面进行地质辨别,形成准确的勘探结果。

可控源音频大地电磁测深法在勘探作业中,是根据电偶源发射出不同频率的电磁波,然后根据这个不同频率电磁波的反应数据,观测电场响应水平分量振幅以及磁场响应水平分量振幅,然后根据公式计算对应频率的视电阻率和阻抗相位。

视电阻率公式如下:(1)阻抗相位公式如下:(2)式中:Ex表示电场响应水平分量振幅;Hy表示磁场响应水平分量振幅。

根据电磁波传播原理可得其穿透深度即趋肤深度的方程公式:(3)然后根据趋肤深度可计算出探测深度:(4)2.2 可控源音频大地电磁测深法的应用优势分析可控源音频大地电磁测深法和传统的音频大地电磁测探法、大地电磁法等,其优点表现为:首先,可控源音频大地电磁测深法对于低阻地质的辨别反应极为灵敏,可快速分辨物理性质,而对于高阻地质,则可以削弱其屏蔽性,快速穿透阻隔层,探查深处地质性质。

不管是高阻地质还是低阻地质,可控源音频大地电磁测深法的查找速度均快于普通勘探方法,探测信号强,抗干扰能力高;其次,可控源音频大地电磁测深法垂直方向分辨能力非常好,定位准确度高,对于断层的识别尤其擅长,且地形对可控源音频大地电磁测深法带来的影响性是比较小的,校正也简单,具有非常高的作业效率。

大地电磁测深的野外工作方法简介

大地电磁测深的野外工作方法简介大地电磁测深的野外工作,首先必须根据所要研究的地质、地球探测问题和任务进行施工设计;然后根据设计1,正确的进行观测布极,资料采集时要求观测资料要求观测资料必须包含有足够的频率成分,足够的记录长度并满足一定的质量指标。

最后对观测资料进行自评。

下面介绍野外工作中值得重视的几个环节。

一施工设计在进行MT野外施工之前,应根据地质任务的要求进行施工设计,主要包括以下内容:(1)收集工区及邻区已有的地质和地球物理资料,初步建立起工区的地层-电性关系模式。

根据地质任务的要求,结合已知的构造走向和地质露头情况,确定测线间距、测点距离、测线方位,并根据勘探目标的深度和地层电性特征,提出对观测数据最低频的要求。

(2)对工区进行现场实地踏勘,了解工区的地形、交通、地质露头情况及各种电干扰源(铁路、输电线、水电站和煤矿等)的分布情况。

提出避开电干扰、确保野外观测质量的措施。

(3)根据有关规范要求和实际情况,提出仪器一致性点和质量检查点的要求,提出对电极距的基本要求。

二、野外资料采集1、选点MT法观测质量与测点所处环境关系很大,为了获得高质量的野外观测资料,测点选择的原理是:(1)根据地质任务及施工设计书,布置测线、测点,在施工中允许根据实际情况在一定范围内调整,但必须满足规范要求。

若测区范围内发现有意义的异常,应及时申请加密测线、测点,以保证至少应有三个测点位于异常部位;(2)测点尽量不要选在狭窄的山顶或深沟底,应选开阔的平地布极,至少在两对电极的范围内地面相对高差与电极距之比小于10%;(3)布极应尽可能避开近地表局部电性不均匀体;(4)所选测点应远离电磁干扰源。

在不能调整测点位置的情况下应采取其它措施减小电磁干扰。

1、观测装置的布设每一测点上需要测量彼此正交的电磁场水平分量及垂直磁场分量,野外采集装置的布设示意如图21)布极(1)方位:如果已知测区的地质构造走向,最好取x,y分别与构造的走向和倾角平行,这样可直接测量入射场的TE极化波和TM极化波,若地质构造走向未知,则通常取正北为x轴,正东为y轴。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大地电磁法
研究专家
单位姓名
中南大学柳建新
中国地质大学(武汉) 胡祥云
成都理工大学王绪本
技术原理
大地电磁法(Magnetotelluric mehtod, MT) 是利用天然电磁场作场源,是在地面布设仪器测量5个分量的电磁场(3各相互垂直的磁场分量Hx, Hy and Hz 和2个相互垂直的水平分量Ex, Ey)(图1).
图1 野外观测装置示意图(包括3个磁场分量,2个电场分量)
大地电磁数据处理
对观测记录的5个分量的原始时间序列(time series)数据,通过频谱(spectre)分析,获得各个场分量的频谱,然后计算它们各自的和相互之间的自功率谱和互功率谱(auto, cross- spectrum ),进而计算反映地下构造的张量阻抗(tensor impedance),以及视电阻率(apparent resistivity)、阻抗相位(impedance phase)等其他参数(图2)。

图2 数据处理流程示意图
图3 是得到的视电阻率和阻抗相位图 0.0010.0100.100 1.00010.000100.0001000.00010000.000
0.1
1.0
10.0
100.01000.010000.0
100000.0
l o g 10(a p p .r e s i s t i v i t y /O h m m )0.0010.0100.100 1.00010.000100.0001000.00010000.000
log10(period/sec)0
30
6090p h a s e (d e g )xy
yx
图3视电阻率(上图)和阻抗相位(下图), 横坐标是数据的周期
大地电磁数据反演
对视电阻率和阻抗相位等参数进行反演(inversion)解释得到地下的构造认识。

对于资料的反演,目前较成熟的是二维反演方法(2-D inversion)。

现世界上可用的先进的二维反演方法有几种,每种方法都有自己的优势,可以选择或对比使用。

图4是对观测资料(视电阻率、相位等)进行反演过程示意图
反演得到的是沿每个测量剖面的地下的二维电性结构(电阻率或电导率),基于电性结构,进行地质解释。

一些先进数据处理和解释技术的应用
当前,为了提高观测资料的质量,即克服其他干扰因素的影响,一般采用远参考道(remote reference MT)测量法,并结合先进的对数据进行处理的robust技术,得到资料误差尽量小的视点阻率、阻抗相位以及其他资料,以保证反演解释结果的可靠性。

远参考道方法是,在观测目标区之外的其他地方(一般选择构造相对简单、干扰相对较小的地方),架设另一套完整大地电磁测量仪器(测量5个分量),把这个站称为远基准站(remote station).利用远基准站观测的资料和观测目标区的仪器测量的资料联合进行处理,得到目标观测区的张量阻抗、视电阻率和阻抗相位等参数,达到压制其他干扰影响的目的。

为了克服进地表往往存在的小的三维异常体对资料产生的畸变(distortion)影响,可以采用小点距的的测量方法,或者采用各个相邻测点的测量电场的电极相互连接(称为电磁阵列剖面 EMAP electromagnetic array profile)技术进行测量。

图4 对观测资料(视电阻率、相位等)进行反演过程示意图。

相关文档
最新文档