运放的选择
共模反馈电路运放设计要求

共模反馈电路运放设计要求共模反馈电路是一种重要的运放电路,它具有良好的共模抑制能力,广泛应用于电子技术领域。
为了保证共模反馈电路的性能和稳定性,设计人员需要遵循一定的设计要求,下面将从几个方面进行阐述。
1.运放的选择共模反馈电路的核心是运放,因此运放的选择非常重要。
一般来说,应选用具有高输入阻抗、低噪声、低温漂、高增益、良好的共模抑制特性的运放。
常用的运放有AD620、OPA114、AD822等,根据具体的应用场合选择合适的运放是保证共模反馈电路性能和稳定性的基础。
2.反馈电路的稳定共模反馈电路需要保持稳定的工作状态,否则会引起输出信号的失真和不稳定。
设计人员需要对反馈电路进行稳定性分析和仿真,选择合适的反馈电阻和补偿电容,以保证反馈电路的稳定性。
此外,还需要将反馈电路安装在紧凑的PCB板上,采取有效的屏蔽措施,以减少对外界干扰的敏感度。
3.输入和输出的阻抗匹配共模反馈电路输入和输出的阻抗匹配非常重要,变化的输入和输出阻抗会导致反馈电路的失真和不稳定。
因此,设计人员需要采取一些措施来保证输入和输出的阻抗匹配,如使用低噪声、高阻抗的输入放大器和低输出阻抗的输出驱动器,以及合理的布局和连接方式等。
4.降噪和滤波共模反馈电路需要具有较好的降噪和滤波能力,以提高信号的纯度和减少噪声的影响。
为此,设计人员可以采用一些滤波电路和降噪技术,如低通滤波器、带通滤波器、微信噪声降低等。
综上所述,共模反馈电路设计要求包括选择合适的运放、稳定的反馈电路、输入输出阻抗匹配、降噪和滤波等多个方面,通过科学合理的设计和精心的实施,可以使共模反馈电路具有更好的性能和稳定性,为其在电子技术领域的应用提供有力的保障。
方波跟随器电路

方波跟随器电路
方波跟随器电路是一种用于传输方波信号的电路。
它由一个高性能的运算放大器和几个外围元件组成,能够将输入的方波信号无失真地传输到输出端。
方波跟随器电路的工作原理是利用运算放大器的高输入阻抗和低输出阻抗,将输入信号进行缓冲和放大。
输入的方波信号通过运算放大器的同相输入端进入,经过放大后从反相输入端输出。
输出信号的电压和相位与输入信号相同,从而实现了跟随的功能。
为了确保方波跟随器电路的性能,在设计电路时需要考虑以下几个方面:
1. 运放的选择:选用单位增益带宽至少达到几十MHz的运算放大器,以满足方波信号传输的带宽需求。
2. 压摆率的考虑:压摆率是影响方波跟随器电路性能的重要因素之一,应选择具有较高压摆率的运放。
3. 输入电容的影响:运放的输入电容会影响电路的高频响应,应选择输入电容较小的运放。
通过合理的设计和选用高性能的元器件,方波跟随器电路可以实现方波信号的无失真传输,在电子工程领域中得到了广泛的应用。
运算放大器常见指标及重要特性

运算放大器常见指标及重要特性运算放大器是一种电子放大器,用于放大微弱电信号。
它是现代电子系统中的关键组件之一,广泛应用于各种电路中,如音频放大器、通信电路、仪器仪表、运算放大电路等。
了解运算放大器的常见指标和重要特性对于正确选择和应用运算放大器至关重要。
下面是关于运算放大器常见指标和重要特性的详细介绍。
1.常见指标(1)增益:运算放大器的增益是指输入信号和输出信号之间的放大倍数。
运算放大器的增益通常用电压增益来表示,即输出电压与输入电压之比。
(2)输入阻抗:运算放大器的输入阻抗是指输入端对外界电路的负载特性,也就是输入电路对外界电路之间的阻抗。
输入阻抗越大,对外界电路的负载影响越小。
(3)输出阻抗:运算放大器的输出阻抗是指输出端对外界电路的负载特性,也就是输出电路对外界电路之间的阻抗。
输出阻抗越小,对外界电路的阻抗匹配越好。
(4)带宽:运算放大器的带宽是指在指定的增益范围内,能够传递的频率范围。
带宽越大,运算放大器能够传递的高频信号越多。
(5)零点抵消:运算放大器的零点抵消是指在输出电压为零时,输入电压不为零的情况下,输出电压的漂移量。
零点抵消越好,运算放大器的精度越高。
2.重要特性(1)运算精度:运算放大器的运算精度是指在给定的测量条件下,输出结果与实际值之间的偏差大小。
运算精度越高,运算放大器输出的信号越准确。
(2)稳定性:运算放大器的稳定性是指在不同工作条件下,输出信号的稳定程度。
稳定性越好,运算放大器的输出信号波动越小。
(3)噪声:运算放大器的噪声是指在运放输入端产生的不可避免的电压或电流波动。
噪声越小,运算放大器的信噪比越高。
(4)温度漂移:运算放大器的温度漂移是指在温度变化的情况下,输出信号的稳定程度。
温度漂移越小,运算放大器的性能越稳定。
(5)电源电压范围:运算放大器的电源电压范围是指能够正常工作的电源电压范围。
电源电压范围越大,运算放大器的适用范围越广。
(6)输入偏置电流:运算放大器的输入偏置电流是指在没有输入信号的情况下,输入端电流的大小。
运算放大器输入电阻如何选取

运算放大器输入电阻如何选取
运算放大器输入电阻如何选取
现在的运放一般的输入阻抗很高,所以运放信号输入端电阻选择余地比较大。
但反向放大的输入阻抗是不大的,所以反向放大的时候,要考虑信号源的内阻。
通常为了减小偏置电流带来的影响,还有就是降低噪声和温飘的影响,这个输入电阻一般选择在10K~100K左右的区间。
反相放大的放大倍数就是反馈电阻除以输入电阻。
同相端通过一个电阻接地。
一般选择这个电阻等于反相端输入电阻与反馈电阻阻值的并联值.
运算放大器的工作原理
运算放大器具有两个输入端和一个输出端,如图所示,其中标有“+”号的输入端为“同相输入端”而不能叫做正端),另一只标有“一”号的输入端为“反相输入端”同样也不能叫做负端,如果先后分别从这两个输入端输入同样的信号,则在输出端会得到电压相同但极性相反的输出信号:输出端输出的信号与同相输人端的信号同相,而与反相输入端的信号反相。
运算放大器所接的电源可以是单电源的,也可以是双电源的,如图3-1所示。
运算放大器有一些非常有意思的特性,灵活应用这些特性可以获得。
集成运算放大器原理及应用(含习题)

集成运算放大器原理及应用将电路的元器件和连线制作在同一硅片上,制成了集成电路。
随着集成电路制造工艺的日益完善,目前已能将数以千万计的元器件集成在一片面积只有几十平方毫米的硅片上。
按照集成度(每一片硅片中所含元器件数)的高低,将集成电路分为小规模集成电路(简称SSI) ,中规模集成电路(简称MSI), 大规模集成电路(简称LSI)和超大规模集成电路(VLSI)。
运算放大器实质上是高增益的直接耦合放大电路,集成运算放大器是集成电路的一种,简称集成运放,它常用于各种模拟信号的运算,例如比例运算、微分运算、积分运算等,由于它的高性能、低价位,在模拟信号处理和发生电路中几乎完全取代了分立元件放大电路。
集成运放的应用是重点要掌握的内容,此外,本章也介绍集成运放的主要技术指标,性能特点与选择方法。
一、集成运算放大器简介1. 集成运放的结构与符号1. 结构集成运放一般由4部分组成,结构如图1所示。
142图1 集成运放结构方框图其中:输入级常用双端输入的差动放大电路组成,一般要求输入电阻高,差摸放大倍数大,抑制共模信号的能力强,静态电流小,输入级的好坏直接影响运放的输入电阻、共模抑制比等参数。
中间级是一个高放大倍数的放大器,常用多级共发射极放大电路组成,该级的放大倍数可达数千乃数万倍。
输出级具有输出电压线性范围宽、输出电阻小的特点,常用互补对称输出电路。
偏置电路向各级提供静态工作点,一般采用电流源电路组成。
2. 特点:○1硅片上不能制作大容量电容,所以集成运放均采用直接耦合方式。
○2运放中大量采用差动放大电路和恒流源电路,这些电路可以抑制漂移和稳定工作点。
○3电路设计过程中注重电路的性能,而不在乎元件的多一个和少一个○4用有源元件代替大阻值的电阻○5常用符合复合晶体管代替单个晶体管,以使运放性能最好3. 集成运放的符号从运放的结构可知,运放具有两个输入端v P和v N和一个输出端v O,这两个输入端一个称为同相端,另一个称为反相端,这里同相和反相只是输入电压和输出电压之间的关系,若输入正电压从同相端输入,则输出端输出正的输出电压,若输入正电压从反相端输入,则输出端输出负的输出电压。
ad828运放放大倍数电阻选取

标题:ad828运放放大倍数电阻选取正文:一、ad828运放简介ad828是一款高性能、低噪声的运放,广泛应用于音频放大、精密仪器和传感器信号处理等领域。
其低失真、高增益和高输入阻抗的特点,使其成为工程师们选择的首选元件之一。
二、ad828运放放大倍数的计算在使用ad828运放进行信号放大时,通常需要根据实际需求来确定放大倍数。
放大倍数的计算公式为:放大倍数 = Rf / Rin其中,Rf为反馈电阻的阻值,Rin为输入电阻的阻值。
三、ad828运放放大倍数电阻选取的考虑因素在选取放大倍数时,需要考虑以下因素:1. 信号的幅度:根据输入信号的幅度大小,确定合适的放大倍数,避免信号过大或过小。
2. 输入输出阻抗匹配:确保输入和输出端的阻抗匹配,避免信号失真。
3. 噪声和失真:尽量选择合适的放大倍数,以保证信号的清晰度和准确性。
4. 功耗和稳定性:考虑电路的功耗和稳定性,选择合适的电阻阻值。
四、ad828运放放大倍数电阻选取的实际操作步骤在实际操作中,可以按照以下步骤进行放大倍数电阻的选取:1. 确定输入信号的幅度范围,例如0-10V。
2. 根据输入信号的幅度范围,确定所需的放大倍数,例如放大10倍。
3. 根据所需的放大倍数,选择合适的反馈电阻阻值。
通常可以根据放大倍数和输入电阻的阻值来计算反馈电阻的阻值。
4. 确定输入电阻的阻值,根据实际电路中的输入信号源的输出阻抗来确定。
5. 根据计算得到的反馈电阻和输入电阻的阻值,选择合适的电阻,并进行电路设计和实验验证。
五、结论在ad828运放放大倍数电阻选取时,需要充分考虑输入信号的幅度、输入输出阻抗匹配、噪声和失真、以及功耗和稳定性等因素。
通过合理的计算和实验验证,可以选择合适的电阻阻值,从而实现理想的信号放大效果。
ad828运放放大倍数电阻选取需要综合考虑多种因素,工程师们在实际应用中应该根据具体情况灵活选择,以达到最佳的放大效果。
六、ad828运放放大倍数电阻选取的实际案例为了更加具体地说明ad828运放放大倍数电阻的选取过程,我们举个实际的案例来说明。
运算放大器工作原理与选择(附常用运放型号)
运算放大器工作原理与选择(附常用运放型号)1.模拟运放的分类及特点模拟运算放大器从诞生至今,已有40多年的历史了。
最早的工艺是采用硅NPN工艺,后来改进为硅NPN-PNP工艺(后面称为标准硅工艺)。
在结型场效应管技术成熟后,又进一步的加入了结型场效应管工艺。
当MOS管技术成熟后,特别是CMOS技术成熟后,模拟运算放大器有了质的飞跃,一方面解决了低功耗的问题,另一方面通过混合模拟与数字电路技术,解决了直流小信号直接处理的难题。
经过多年的发展,模拟运算放大器技术已经很成熟,性能曰臻完善,品种极多。
这使得初学者选用时不知如何是好。
为了便于初学者选用,本文对集成模拟运算放大器采用工艺分类法和功能/性能分类分类法等两种分类方法,便于读者理解,可能与通常的分类方法有所不同。
1.1.根据制造工艺分类根据制造工艺,目前在使用中的集成模拟运算放大器可以分为标准硅工艺运算放大器、在标准硅工艺中加入了结型场效应管工艺的运算放大器、在标准硅工艺中加入了MOS工艺的运算放大器。
按照工艺分类,是为了便于初学者了解加工工艺对集成模拟运算放大器性能的影响,快速掌握运放的特点。
标准硅工艺的集成模拟运算放大器的特点是开环输入阻抗低,输入噪声低、增益稍低、成本低,精度不太高,功耗较高。
这是由于标准硅工艺的集成模拟运算放大器内部全部采用NPN-PNP管,它们是电流型器件,输入阻抗低,输入噪声低、增益低、功耗高的特点,即使输入级采用多种技术改进,在兼顾起啊挺能的前提下仍然无法摆脱输入阻抗低的问题,典型开环输入阻抗在1M欧姆数量级。
为了顾及频率特性,中间增益级不能过多,使得总增益偏小,一般在80~110dB之间。
标准硅工艺可以结合激光修正技术,使集成模拟运算放大器的精度大大提高,温度漂移指标目前可以达到0.15ppm。
通过变更标准硅工艺,可以设计出通用运放和高速运放。
典型代表是LM324。
在标准硅工艺中加入了结型场效应管工艺的运算放大器主要是将标准硅工艺的集成模拟运算放大器的输入级改进为结型场效应管,大大提高运放的开环输入阻抗,顺带提高通用运放的转换速度,其它与标准硅工艺的集成模拟运算放大器类似。
电位器消抖电路
电位器消抖电路1.引言1.1 概述电位器消抖电路是一种常见的电子电路设计,用于解决电位器读数时的抖动问题。
在现实应用中,由于电位器的机械结构和环境因素的影响,经常会出现读数抖动的情况,这会导致不准确的测量结果以及系统的不稳定性。
为了消除电位器的抖动,工程师们设计了电位器消抖电路。
该电路通过使用滤波器、比较器和延时器等元件,能够稳定地读取电位器的准确数值并消除抖动干扰。
通过该电路的设计和优化,可以有效提高电位器的稳定性和测量精度。
在电位器消抖电路的设计过程中,需要考虑几个关键要点。
首先,选择合适的滤波器类型和参数,以确保消抖电路对高频噪声的抑制效果良好。
其次,比较器的阈值设置需要合理,使其能够正确判断电位器读数的变化,并及时作出响应。
此外,延时器的设计也需要注意,保证信号的稳定和延时时间的准确控制。
综上所述,电位器消抖电路是一种重要的电子电路设计,在电位器的使用和测量中起到关键作用。
通过合理的设计和优化,可以有效地消除电位器的抖动问题,提高测量的准确性和系统的稳定性。
未来,随着电子技术的不断发展,电位器消抖电路还有望进一步优化和创新,以满足更广泛的应用需求。
1.2 文章结构文章结构部分是为了说明本文的整体框架和各个章节的内容安排。
在本文中,文章结构包括引言、正文和结论三部分。
引言部分起到引入文章主题的作用。
其中概述部分将介绍电位器消抖电路的背景和基本定义,引起读者的兴趣。
文章结构部分则给出本文的整体框架和各个章节的内容安排,让读者对全文有一个大致的了解。
目的部分说明了本文撰写的目的和意义,即为了研究和探索电位器消抖电路的原理和设计要点。
正文部分是文章的主体部分,包含了电位器消抖电路的原理和设计要点两个章节。
原理部分将详细介绍电位器消抖电路的工作原理、组成结构以及基本特点,让读者对电位器消抖电路有一个清晰的认识。
设计要点部分则强调电位器消抖电路设计过程中需要注意的关键要素,包括参数选择、电路布局、抗干扰能力等方面的内容。
物理实验中的放大器选择与配置技巧
物理实验中的放大器选择与配置技巧在物理实验中,使用合适的放大器进行信号放大是非常重要的。
放大器能够增强信号,使得实验结果更加准确,并提供更多的数据分析选项。
然而,选择合适的放大器并进行正确的配置并不总是容易的。
本文将介绍一些物理实验中的放大器选择与配置技巧,帮助您在实验中取得更好的结果。
一、理解不同类型的放大器在选择放大器之前,我们需要了解不同类型的放大器的特点和适用范围。
常见的放大器包括运放放大器、功放放大器和示波器。
运放放大器适用于小信号放大,具有高增益和低噪声特点。
功放放大器适用于大功率信号放大,主要用于声音和音乐放大等应用。
示波器则用于观察和分析电压波形。
根据实验需求,选择合适的放大器类型是至关重要的。
二、考虑信号频率范围另一个需要考虑的因素是要放大的信号频率范围。
不同的放大器有不同的频率响应特性,因此,根据实验中的信号频率选择合适的放大器非常重要。
例如,在高频实验中,需选择具有较宽带宽的放大器,以确保信号的高频部分能够被完整地放大,避免信号失真。
三、考虑放大器的增益和噪声在选择放大器时,我们还需要考虑其增益和噪声特性。
增益指的是放大器的输出与输入之间的比例关系。
对于需要高增益的实验,选择增益较高的放大器是合理的选择。
然而,较高的增益往往伴随着更高的噪声水平。
因此,需要在增益和噪声之间进行权衡。
一些先进的放大器具有低噪声特性,以及可调节的增益,这使得它们成为物理实验中的理想选择。
四、考虑输入和输出阻抗输入和输出阻抗是放大器的重要参数。
输入阻抗决定了放大器对外部信号源的响应程度,而输出阻抗影响着放大器与其他电路的连接。
在实验中,为了确保信号的传递和质量,需要选择能够匹配实验电路阻抗的放大器。
一般来说,输入阻抗应比信号源的阻抗高几个数量级,以确保不对信号源造成负载,而输出阻抗则应尽量小,以确保信号传输的稳定性。
五、适当调整放大器的参数一旦选择了合适的放大器,我们还需要适当调整其参数以满足实验需求。
如何选择适合的运放
如何选择适合的运放在电子设备中,运放(Operational Amplifier,简称Op Amp)是一种重要的电子器件,广泛应用于信号放大、滤波、波形整形等电路中。
正确选择适合的运放对于电路性能的稳定与提高至关重要。
本文将介绍如何选择适合的运放。
一、了解运放的基本参数运放有许多基本参数需要了解,以下是几个重要的参数:1. 增益带宽积(Gain Bandwidth Product,GBW):表示运放的增益与频率的乘积,通常以MHz为单位。
选择运放时,应根据电路所需的最大增益和工作频率来确定适合的GBW值。
2. 输入失调电压(Input Offset Voltage,Vos):表示在两个输入端之间存在的微小电压差,会对输出结果产生影响。
通常以mV为单位,应尽量选择Vos较小的运放。
3. 输入失调电流(Input Offset Current,Ios):表示运放两个输入端之间的电流差异,也会对输出结果产生影响。
通常以nA为单位,应尽量选择Ios较小的运放。
4. 输入偏置电流(Input Bias Current,Ib):表示运放两个输入端的总电流,同样会对输出结果产生影响。
通常以nA为单位,应选择Ib较小的运放。
二、考虑电源电压范围运放通常需要工作在一定的电源电压范围内,过高或过低的电源电压都会影响运放的性能。
因此,在选择运放时,要根据实际应用的电源电压范围来确定适合的运放。
三、确定功耗要求功耗是选择运放时需要考虑的一个重要指标,如果对设备的功耗要求较高,应选择低功耗的运放。
四、选择合适的封装类型运放有多种封装类型,如DIP、SOP、SSOP等。
选择封装类型时,应根据实际使用环境和电路布局来确定合适的封装类型。
五、参考应用案例和厂商手册了解同类产品的应用案例和厂商手册中的参数说明是选择适合运放的有效方法。
可以参考厂商手册中的参数表,并与实际应用需求进行对比和分析。
选择适合的运放是一项重要而复杂的任务,需要结合实际需求和对运放性能的了解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运放的选择:
接触过很多电路设计新手,在设计模拟电路时,有的人根本不知道如何选择运放,手头有什么就用什么,也许你曾经这样做了100次,都幸运的成功了,但是第101次会怎么样哪?另外一些人是恰恰相反,抱这五六本原厂资料翻来翻去,结果好不容易寻到了梦中情人,中关村又买不到。
不才向大家推荐一些俗俗的运放,肯定能买到,能适应大多场合。
1. 速度要求不高,或直流放大:
LF441(单),LF442(双),LF444(四),TL084(四)
(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)
OP07(单,高精度,有调零端,速度可是特别慢,用于直流放大不错)
2. 速度比较高,音频范围,倍数不超过100:
LF356(单),LF353(双),LF347(四),TL074(四)
(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)
OP27(单,高精度,有调零端,速度比LF356快)
NE5534(用于音响放大,音质很好,但输入阻抗低)
3. 高速
OP37(单位频响50MHz,但一定不能用做跟随器!在闭环增益
小于5时会自激)
LF441(单),LF442(双),LF444(四),TL084(四)
(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)
OP07(单,高精度,有调零端,速度可是特别慢,用于直流放大不错)
2. 速度比较高,音频范围,倍数不超过100:
LF356(单),LF353(双),LF347(四),TL074(四)
(以上运放为JFET输入,阻抗极高,不必考虑输入端的阻抗平衡)
OP27(单,高精度,有调零端,速度比LF356快)
NE5534(用于音响放大,音质很好,但输入阻抗低)
3. 高速
OP37(单位频响50MHz,但一定不能用做跟随器!在闭环增益小于5时会自激)
4. 低压或单电源
LM324(四,说实话,我不喜欢它,太慢)
CA3130 高输入阻抗运算放大器 Intersil[DATA]
CA3140 高输入阻抗运算放大器
CD4573 四可编程运算放大器 MC14573
ICL7650 斩波稳零放大器
LF347(NS[DATA])带宽四运算放大器 KA347
LF351 BI-FET单运算放大器 NS[DATA]
LF353 BI-FET双运算放大器 NS[DATA]
LF356 BI-FET单运算放大器 NS[DATA]
LF357 BI-FET单运算放大器 NS[DATA]
LF398 采样保持放大器 NS[DATA]
LF411 BI-FET单运算放大器 NS[DATA]
LF412 BI-FET双运放大器 NS[DATA]
LM124 低功耗四运算放大器(军用档) NS[DATA]/TI[DATA] LM1458 双运算放大器 NS[DATA]
LM148 四运算放大器 NS[DATA]
LM224J 低功耗四运算放大器(工业档) NS[DATA]/TI[DATA] LM2902 四运算放大器 NS[DATA]/TI[DATA]
LM2904 双运放大器 NS[DATA]/TI[DATA]
LM301 运算放大器 NS[DATA]
LM308 运算放大器 NS[DATA]
LM308H 运算放大器(金属封装) NS[DATA]
LM318 高速运算放大器 NS[DATA]
LM324(NS[DATA]) 四运算放大器 HA17324,/LM324N(TI)
LM348 四运算放大器 NS[DATA]
LM358 NS[DATA] 通用型双运算放大器 HA17358/LM358P(TI) LM380 音频功率放大器 NS[DATA]
LM386-1 NS[DATA] 音频放大器 NJM386D,UTC386
LM386-3 音频放大器 NS[DATA]
LM386-4 音频放大器 NS[DATA]
LM3886 音频大功率放大器 NS[DATA]
LM3900 四运算放大器
LM725 高精度运算放大器 NS[DATA]
LM733 带宽运算放大器
LM741 NS[DATA] 通用型运算放大器 HA17741 MC34119 小功率音频放大器
NE5532 高速低噪声双运算放大器 TI[DATA] NE5534 高速低噪声单运算放大器 TI[DATA] NE592 视频放大器
OP07-CP 精密运算放大器 TI[DATA]
OP07-DP 精密运算放大器 TI[DATA]
TBA820M 小功率音频放大器 ST[DATA]
TL061 BI-FET单运算放大器 TI[DATA]
TL062 BI-FET双运算放大器 TI[DATA]
TL064 BI-FET四运算放大器 TI[DATA]
TL072 BI-FET双运算放大器 TI[DATA]
TL074 BI-FET四运算放大器 TI[DATA]
TL081 BI-FET单运算放大器 TI[DATA]
TL082 BI-FET双运算放大器 TI[DATA]
TL084 BI-FET四运算放大器 TI[DATA]。