滤波器基础知识

合集下载

滤波器基本知识

滤波器基本知识

有源滤波器Active Filter(信号分离电路) 测量系统从传感器拾取的信号往往包含噪声和许多与被测量无关的信号,并且原始的测量信号经传输、放大、变换、运算及各种其它处理过程,也会混入各种不同形式的噪声,从面影响测量精度。

这些噪声一般随机性很强,很难从时域中直接分离,但限于其产生的机理,其噪声功率是有限的,并按一定规律分布于频率域中某一特定频带中。

滤波器(信号分离电路):从频域中实现对噪声的抑制,提取所需要的信号,是各种测控系统中必不可少的组成部分。

对滤波器的要求:(1)滤波特性好;(2)级联特性好(输入,输出);(3)滤波频率便于改变滤波器举例:心电信号的滤波:主要受到50Hz的工频干扰,采用50Hz陷波(带阻)滤波器。

一.滤波器的基本知识⒈按处理信号的形式分类:模拟:连续的模拟信号(又分为:无源和有源)数字:离散的数字信号。

⒉理想滤波器对不同频率的作用:通带内,使信号受到很小的衰减而通过。

阻带内,使信号受到很大的衰减而抑制,无过渡带。

⒊按频谱结构分为5种类型:滤波器对信号不予衰减或以很小衰减让其通过的频段称为通带;对信号的衰减超过某一规定值的频段称为阻带;位于通带和阻带之间的频段称为过渡带。

根据通带和阻带所处范围的不同,滤波器功能可分为以下几种:低通(Low Pass Filter)高通(High Pass Filter)带通(Band Pass Filter)带阻(Band Elimination Filter)全通(All Pass Filter)(理想)各种频率信号都能通过,但不同的频率信号的相位有不同的变化,一种移相器。

图2-2 按频谱结构分类的各种滤波器的衰减(1-幅频)特性几个定义:(1)通带的边界频率:一般来讲指下降—3dB即对应的频率。

(2)阻带的边界频率:由设计时,指定。

(3)中心频率:对于带通或带阻而言,用f0或ω0表示。

(4)通带宽度:用Δf0或Δω0表示。

(5)品质因数:衡量带通或带阻滤波器的选频特性。

腔体滤波器基础知识

腔体滤波器基础知识
• 该指标另一个含义相同的名称是回波损耗,单位 为分贝(dB),二者可如下换算:
回波损耗=20Log VSWR 1 VSWR+1
16
带通滤波器技术指标
• 隔离度
• 为了区分在有两个或者两个以上通带情况下(例 如双工器,合路器)相互通带之间的带外抑制, 这时我们统一称带外抑制为隔离。
• 以双工器为例说明:收发隔离是指在网络分析仪 的两个通道分别接rx与tx端,而ATN端接50欧姆负 载时,整个频段(TX的高端点与RX的低端点之间 的带宽)或者两个通带内(RX频带内和TX频带内) s12或者s21的值。
19
带通滤波器技术指标
• 群时延
• 信号通过滤波器时的延迟时间,可用以下公式表示:
td
d d
• 其中φ为滤波器电压转移函数Ea/EL 的相位,对于N个谐振
器的带通滤波器,通带内的群时延可近似估计为:
td
n BW
20
反射时延
• 滤波器单节的反射时延可近似估计为:
td
2 BW
• 实际调试中可以调节抽头耦合线的高度及粗细等 来调节
26
• 主要由谐振腔、谐振导体、调谐钉组成
27
无加载电容
28
• 滤波器的结构
29
• 滤波器的结构
30
微波带通滤波器的设计
• 滤波器的特性与滤波器的设计关系很大,滤波器 的抑制特性一般采用三种设计函数:1、巴特沃斯 函数;2、切比雪夫函数;3、椭圆函数,其中切 比雪夫函数最为常用。滤波器的损耗近似计算公 式为: L≈4.34×f0×∑gk /(BW×Q) 。一般来说, 滤波器的特性存在以下规律:
腔体滤波器基础知识
1
微波及其特点
• 所谓微波是一种具有极高频率(通常为300 MHz~300GHz ),波长很短,通常为1m~1m m的电磁波。

滤波器基础知识

滤波器基础知识

滤波器基础知识一、滤波器概述滤波器是一种二端口网络(各类电子系统中用于检测、传输、处理信息或能量的微波电路为微波网络),它允许输入信号中特定的频率成分通过,同时抑制或极大的衰减其它频率成分,还可用来分开或组合不同的频率段。

目前由于在雷达、微波、无线通信,特别是移动通信,多频率工作越来越普遍,还需要在有限的频谱范围内划分出更多的频段给不同的运营商,以满足多种通信业务的需求,各频道间的间隔规定非常的小。

为避免信道间相互干扰,需要在所有系统内配置高性能的滤波器。

滤波器既可用来限定大功率发射机在规定频带内辐射,反过来又可用来防止接收机受到工作频带以外的干扰。

总之,从超长波经微波到光波以上的所有电磁波段都需要用到滤波器。

二、滤波器的主要分类:(按应用分)⑴低通滤波器通频带为0-fC2, fC2-∞为阻带。

⑵高通滤波器与低通滤波器相反,通频带为 fC1-∞,f0-fC1为阻带。

⑶带通滤波器通频带为fC1-fC2,其它频率为阻带。

⑷带阻滤波器与带通滤波器相反,阻带为fC1-fC2,其它频率为通带。

除腔体滤波器外,还有:微带电路滤波器、晶体滤波器、声表面滤波器、介质滤波器等等,按不同的作用或功能等有不同的分类。

现在公司生产的一般都是带通腔体滤波器和双工器,因此我们主要以腔体滤波器进行分析和讲解,腔体滤波器的谐振器全部都由机械结构组成,本身有相当高的Q 值(数千甚至上万),非常适合于低插入损耗(<1dB)、窄带(1%-5%)、大功率(可达300W或更高)传输等应用场合,工作性能较为稳定。

但该类滤波器具有较大体积且有寄生通带,加工成本相对较高,但特别适合应用于现代移动通信基站或直放站中使用。

三、公司滤波器的发展公司成立至今无源产品的发展情况:无线信息传输技术是正在蓬勃发展的重要领域。

滤波器是一个常用的、必备的、广泛使用的部件。

自公司发展以来,无源类产品在公司领导的重视下,不断进行改进和创新,从波导滤波器、结构腔等到现在的一体腔,从以前的仿制到现在自主知识产权的发明专利。

《rf滤波器基础知识》课件

《rf滤波器基础知识》课件

RF滤波器的原理
RF滤波器利用电路元件的特性,例如电感、电容和电阻,通过选择性地降低 或阻断特定频率的信号来实现滤波。
Байду номын сангаас
RF滤波器的类型
低通滤波器
只允许低于截止频率的信号通过,用于滤除高 频噪声。
带通滤波器
只允许位于两个截止频率之间的信号通过,用 于选择性地传递特定频率范围的信号。
高通滤波器
只允许高于截止频率的信号通过,用于滤除低 频噪声。
《RF滤波器基础知识》 PPT课件
RF滤波器是电子设备中用于滤除无线电频率干扰和选择性传递特定频率信号 的重要组件。本课件将介绍RF滤波器的基本概念、原理、类型、设计步骤以 及应用领域。
什么是RF滤波器
RF滤波器是一种电子器件,用于滤除无线电频率干扰和选择性传递特定频率 信号。它的作用是去除不需要的频率成分,从而提高系统的性能和可靠性。
带阻滤波器
只允许位于两个截止频率之外的信号通过,用 于滤除特定频率范围的信号。
设计RF滤波器的基本步骤
1. 确定所需的频率范围和带宽。 2. 选择合适的滤波器类型和电路拓扑。 3. 进行电路设计和参数计算。 4. 确定合适的元件和材料。
RF滤波器的应用领域
• 通信系统:用于滤波、解调和调制无线信号。 • 无线电设备:用于滤除不需要的频率干扰。 • 雷达:用于选择性地接收特定频率范围的回波信号。

滤波电路基础知识

滤波电路基础知识

滤波电路基础知识一. 无源滤波电路和有源滤波电路无源滤波电路: 由无源元件 ( R , C , L )组成有源滤波电路: 用工作在线性区的集成运放和RC网络组称,事实上是一种具有特定频率响应的放大器。

二. 滤波电路的分类和要紧参数1. 按所处置的信号可分为模拟的和数字的两种;2. 按所采纳的元器件可分为有源和无源;3. 按通过信号的频段可分为以下五种:a. 低通滤波器( LPF )Avp:通带电压放大倍数fp: 通带截至频率过渡带: 越窄说明选频性能越好,理想滤波器没有过渡带低通滤波器的要紧技术指标(1)通带增益Avp通带增益是指滤波器在通频带内的电压放大倍数,如下图。

性能良好的LPF通带内的幅频特性曲线是平坦的,阻带内的电压放大倍数大体为零。

(2)通带截止频率fp其概念与放大电路的上限截止频率相同。

通带与阻带之间称为过渡带,过渡带越窄,说明滤波器的选择性越好。

b. 高通滤波器( HPF )c. 带通滤波器( BPF )d. 带阻滤波器( BEF )e. 全通滤波器( APF )理想有源滤波器的频响:滤波器的用途滤波器要紧用来滤除信号中无用的频率成份,例如,有一个较低频率的信号,其中包括一些较高频率成份的干扰。

滤波进程如下图。

低通滤波电路 ( LPF )组成:简单RC滤波器同相放大器特点:│Avp│>0,带负载能力强缺点:阻带衰减太慢,选择性较差。

二. 性能分析有源滤波电路的分析方式:1.电路图→电路的传递函数Av(s)→频率特性Av(jω)2. 依照概念求出要紧参数3. 画出电路的幅频特性一阶LPF的幅频特性:8.6.2.2 简单二阶 LPF一. 电路组成组成: 二阶RC网络同相放大器通带增益:二. 要紧性能1. 传递函数:2.通带截止频率:3.幅频特性:特点:在 f>f0 后幅频特性以-40dB/dec的速度下降;缺点:f=f0 时,放大倍数的模只有通带放大倍数模的三分之一。

高通滤波电路 ( HPF )HPF与LPF的对偶关系1. 幅频特性对偶(相频特性不对偶)2. 传递函数对偶低通滤波器传递函数高通滤波器传递函数3. 电路结构对偶将起滤波作用的电阻换成电容将起滤波作用的电容换成电阻低通滤波电路高通滤波电路带通滤波器(BPF)BPF的一样组成方式:优势:通带较宽,通带截至频率容易调整缺点:电路元件较多一样带通滤波电路仿真结果带阻滤波器(BEF)BEF的一样形式缺点:电路元件较多且HPF与LPF相并比较困难。

滤波器基础知识篇

滤波器基础知识篇

滤波器基础知识篇2015-07-23FindRF滤波器的基础是谐振电路。

大家很熟悉的射频常用滤波器有四大家族:低通滤波器(LPF)、高通滤波器(HPF)、带通滤波器(BPF)和带阻滤波器(BEF),都是以通过或者阻断某个频段来加以区分的。

其实,从广义上来说,频率选择特性也就是滤波器最基本的特性,理想的低通滤波器是酱紫滴:图1. 理想低通滤波器幅频图但是实际上的低通滤波器幅频图是如下的:图2. 实际低通滤波器幅频图差别有点大?是不是跟美颜相机有异曲同工之处^-^?没办法,由于理想滤波器是非因果系统,我们能实现的都是因果系统。

而且元件数量、电容与电感量受工艺限制、电容电感q值限制、引线的电容电感更是决定了“理想很丰满,现实很骨感”,于是实际的低通滤波器几乎就是如图2的样子了。

同样,高通滤波器的通带上限是有限制的而不是理想的无限延伸,典型幅频图像如下:图3. 高通滤波器幅频图带通滤波器可以由低通和高通滤波器组合,也可以由1/4波长谐振腔构成。

带通滤波器的典型幅频图像如下:图4. 带通滤波器幅频图带阻滤波器也被称为陷波器,其阻带的上限和下限也都是有限制的,典型幅频图像如下:图5. 带阻滤波器幅频图在实际选型中,滤波器常用的技术指标如下:1. 通带频率范围这个表示需要滤波器通过的频段,不多说了。

2. 3dB带宽通带的最小插入损耗点(通带传输特性的最高点)向下移3dB时所能测的通带宽度。

这个指标越窄,表明滤波器的过渡带越陡峭,频率过滤性能越佳。

3. 通带插入损耗由于滤波器的组件的电阻性损耗(如电感、电容、导体和介质的不理想)和滤波器的输入输出端存在反射损耗,即使在通带内,滤波器本身也会带来插入损耗。

这个值越小,在通带内对系统影响越小。

4. 带内纹波表明上述通带插入损耗在通带内的波动范围,带内纹波越低越好,否则会增加过滤波器的不同频率信号的功率起伏。

5. 带外抑制带外抑制一般用通带外的带外滚降来描述,即规定滤波器通带外每频率下降的分贝数。

模拟电子技术基础知识滤波器的频率选择特性与设计

模拟电子技术基础知识滤波器的频率选择特性与设计滤波器在模拟电子技术中起着至关重要的作用,它可以对输入信号进行频率分离和处理,从而满足不同应用的需求。

频率选择特性是滤波器设计的核心,它决定了滤波器在不同频率下的响应。

一、频率选择特性的基本原理频率选择特性是指滤波器对不同频率信号的响应程度。

在电子技术中,常用的频率选择特性有低通、高通、带通和带阻四种类型。

1. 低通滤波器(Low-Pass Filter)低通滤波器能够通过低于某个截止频率的信号,而将高于该截止频率的信号削弱或消除。

它常用于信号处理中的平滑和去噪。

2. 高通滤波器(High-Pass Filter)高通滤波器则相反,它允许高于某个截止频率的信号通过,而将低于该截止频率的信号削弱或消除。

高通滤波器常用于信号处理中的边缘检测和某些特殊信号的突变检测。

3. 带通滤波器(Band-Pass Filter)带通滤波器可以允许某个频率范围内的信号通过,并减弱其他频率范围内的信号。

它常用于信号处理中的频带选择和音频处理。

4. 带阻滤波器(Band-Stop Filter)与带通滤波器相反,带阻滤波器能够削弱或消除某个频率范围内的信号,而允许其他频率范围内的信号通过。

带阻滤波器常用于干扰信号的去除和陷波。

二、滤波器的设计与实现滤波器的设计是模拟电子技术中的重要任务之一。

下面以低通滤波器为例,介绍滤波器的设计与实现。

1. 确定滤波器的截止频率根据应用需求,确定滤波器的截止频率。

截止频率是滤波器对信号进行削弱的频率点。

在设计低通滤波器时,需要确定将高于截止频率的信号进行削弱的程度。

2. 选择滤波器的响应类型与阶数根据具体需求,选择滤波器的响应类型和阶数。

常见的低通滤波器响应类型有巴特沃斯(Butterworth)、切比雪夫(Chebyshev)和椭圆(Elliptic)等。

3. 计算滤波器的设计参数根据截止频率、响应类型和阶数,计算滤波器的设计参数,如电阻值、电容值、电感值等。

模拟电子技术基础知识滤波器的原理与设计

模拟电子技术基础知识滤波器的原理与设计滤波器是模拟电子技术中常见的电路元件,用于分离或压制特定频率的信号。

在实际应用中,滤波器被广泛应用于通信系统、音频设备、功率电子、医疗设备等各个领域,起到了至关重要的作用。

本文将介绍滤波器的基本原理,并讨论常见的滤波器类型及其设计。

一、滤波器的原理滤波器的基本原理是根据信号频率的不同,对信号进行选择性的通过或抑制。

它通过电路中的电容、电感和电阻等元件,改变信号的幅度和相位。

滤波器可以分为两类:频率选择性滤波器和频率非选择性滤波器。

1. 频率选择性滤波器频率选择性滤波器是根据需要保留或通过的频率范围来设计的。

常见的频率选择性滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

- 低通滤波器:只允许低于截止频率的信号通过,高于截止频率的信号被抑制。

常用于音频系统中,以滤除高于人耳听觉范围的频率成分。

- 高通滤波器:只允许高于截止频率的信号通过,低于截止频率的信号被抑制。

常用于音频采样中,以滤除低于人耳听觉范围的频率成分。

- 带通滤波器:允许指定范围内的频率信号通过,其他频率信号被抑制。

常用于调频广播接收机等通信设备中,以选取特定的调频信号。

- 带阻滤波器:抑制指定范围内的频率信号,其他频率信号被通过。

常用于降低特定频率噪声的干扰。

2. 频率非选择性滤波器频率非选择性滤波器在整个频率范围内均能对信号进行放大或衰减,不因频率的变化而变化。

常见的频率非选择性滤波器有RC滤波器和RL滤波器。

- RC滤波器:由电阻和电容组成。

RC滤波器常用于去除信号中的直流成分,或在电源电压中滤去高频信号。

- RL滤波器:由电阻和电感组成。

RL滤波器常用于音频放大器的输出级,以滤除高频噪声。

二、滤波器的设计在设计滤波器时,通常需要确定一些关键参数,如截止频率、通带增益、衰减系数等。

下面以低通滤波器的设计为例,介绍滤波器设计的基本步骤。

1. 确定截止频率截止频率是决定滤波器性能的重要参数。

模拟电子技术基础知识滤波器的衰减特性与选择

模拟电子技术基础知识滤波器的衰减特性与选择在模拟电子技术中,滤波器是一种常用的电路组件,用于滤除无用信号或者改变信号的频率特性。

滤波器的性能可以通过其衰减特性来评估,而正确选择合适的滤波器类型和参数对于电路设计至关重要。

本文将介绍滤波器的衰减特性以及选择方法。

一、滤波器的衰减特性滤波器的衰减特性描述了不同频率下信号的衰减程度。

在滤波器的通频带(传输频率范围)内,衰减特性通常较小,而在截止频率附近和阻带范围内,衰减特性较大。

1.1 通频带通频带是指滤波器在此频率范围内的衰减较小或未被滤除的频率信号。

通频带的上下限分别为低截止频率和高截止频率。

在通频带内,滤波器应具备较小的插入损耗和相位失真。

1.2 截止频率截止频率是指滤波器开始对信号进行衰减的频率。

根据滤波器的设计目标和应用需求,可以选择不同的截止频率。

截止频率的选择应考虑信号的频率范围以及所需的信号处理效果。

1.3 阻带阻带是指滤波器在该频率范围内产生较大的衰减,通常用于滤除噪声或者无用信号。

阻带的边缘频率通常称为阻带截止频率,也是滤波器设计中的重要参数。

二、滤波器的选择选择合适的滤波器类型和参数对于电路设计至关重要。

以下是一些常见的滤波器类型及其适用场景:2.1 低通滤波器(Low Pass Filter,LPF)低通滤波器可以通过滤除高频信号来保留低频信号。

适用于需要保留低频成分的场景,如音频放大器和音频信号处理器。

2.2 高通滤波器(High Pass Filter,HPF)高通滤波器可以通过滤除低频信号来保留高频信号。

适用于需要滤除低频噪声或者保留高频信号的场景,如通信系统和无线电接收机。

2.3 带通滤波器(Band Pass Filter,BPF)带通滤波器可以通过滤除低于和高于指定频率范围的信号来保留中间频率范围内的信号。

适用于需要选择特定频率范围的场景,如无线电调谐器和语音识别系统。

2.4 带阻滤波器(Band Stop Filter,BSF)带阻滤波器可以通过滤除指定频率范围内的信号来保留其他频率信号。

电源滤波器基本知识

一、术语定义1. 额定电压EMI滤波器用在指定电源频率的工作电压(中国:250V, 50Hz,欧洲: 230V,50Hz;美国:115V, 60Hz)2.额定电流在额定电压和指定温度条件下(常为环境温度40℃),EMI滤波器所允许的最大连续工作电流(Imax)。

在其他环境温度下的最大允许工作电流是环境温度的函数,可用如下公式得出:3.试验电压在EMI滤波器的指定端子之间和规定时间内施加的电压。

试验电压分为两种,一种是加载在电源(或负载)端子之间,称为线-线试验电压;另一种是加载在电源(或负载)任一端与接地端(或滤波器金属外壳)之间,称为线-地试验电压。

4.泄漏电流EMI滤波器加载额定电压后,断开滤波器的接地端与电源安全地线的条件下,测得接地端到电源(或负载)任一端间的电流,该值直接与接地电容的容量有关,可由如下公式得出:其中F为工作频率,C为接地电容的容量,V为线-地电压5.插入损耗是衡量滤波器效果的指标。

指的是在一定条件下,EMI滤波器对干扰信号的衰减能力。

它用滤波器插入前信号源直接传送给负载的功率和插入后传送给负载的功率的对数来描述。

在50Ω系统内测试时,可用下式来表示:IL=20Lg(E0/E1)其中,IL-插入损耗(单位:dB)EO-负载直接接到信号源上的电压E1-插入滤波器后负载上的电压6.气候等级指EMI滤波器的工作环境等级,按IEC规定应按以下方式标注:XX/XXX/XX前2位数字代表滤波器的最低工作温度中间数字代表滤波器的最高工作温度后2位数字代表质量认定时在规定稳态湿热条件下的试验天数7. 绝缘电阻绝缘电阻是指滤波器相线,中线对地之间的阻值。

通常用专用绝缘电阻表测试。

8. 电磁干扰(EMI)电磁干扰经常与无线电频率干扰(RFI)交替使用。

从技术上来说,EMI指的是能量形式(电磁),然而RFI指的是噪声频率的范围。

滤波器用以消除EMI和RFI中的多余电磁能。

9. 频率范围电磁能量的频率带宽常用赫兹(Hz,每秒循环次数),千赫(KHz, 每秒循环千次数)表示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滤波器的基础知识
1.滤波器的功能
滤波器的功能就是允许某一部分频率的信号顺利的通过,而另外一部分频率的信号则受到较大的抑制,它实质上是一个选频电路。

滤波器中,把信号能够通过的频率范围,称为通频带或通带;反之,信号受到很大衰减或完全被抑制的频率范围称为阻带;通带和阻带之间的分界频率称为截止频率;理想滤波器在通带内的电压增益为常数,在阻带内的电压增益为零;实际滤波器的通带和阻带之间存在一定频率范围的过渡带。

2.滤波器的分类
( 1)按所处理的信号分为模拟滤波器和数字滤波器两种。

( 2)按所通过信号的频段分为低通、高通、带通和带阻滤波器四种。

低通滤波器:它允许信号中的低频或直流分量通过,抑制高频分量或干扰和噪声。

高通滤波器:它允许信号中的高频分量通过,抑制低频或直流分量。

带通滤波器:它允许一定频段的信号通过,抑制低于或高于该频段的信号、干扰和噪声。

带阻滤波器:它抑制一定频段内的信号,允许该频段以外的信号通过。

( 3)按所采用的元器件分为无源和有源滤波器两种。

无源滤波器:仅由无源元件(R、L 和C)组成的滤波器,它是利用电容和电感元件的电抗随频率的变化而变化的原理构成的。

这类滤波器的优点是:电路比较简单,不需要直流电
源供电,可靠性高;缺点是:通带内的信号有能量损耗,负载效应比较明显,使用电感元件时容易引起电磁感应,当电感L较大时滤波器的体积和重量都比较大,在低频域不适用。

有源滤波器:由无源元件(一般用R和C)和有源器件(如集成运算放大器)组成。

这类滤波器的优点是:通带内的信号不仅没有能量损耗,而且还可以放大,负载效应不明显,多级相联时相互影响很小,利用级联的简单方法很容易构成高阶滤波器,并且滤波器的体积小、重量轻、不需要磁屏蔽(由于不使用电感元件);缺点是:通带范围受有源器件(如集成运算放大器)的带宽限制,需要直流电源供电,可靠性不如无源滤波器高,在高压、高频、大功率的场合不适用。

3. 滤波器的主要参数
( 1)通带增益A0:滤波器通带内的电压放大倍数。

( 2)特征角频率和特征频率fn:它只与滤波用的电阻和电容元件的参数有关,通常
对于带通(带阻)滤波器,称为带通(带阻)滤波器的中心角频率或中心频率f0,是通带(阻带)内电压增益最大(最小)点的频率。

( 3)截止角频率和截止频率f0:它是电压增益下降到(即)时所对应的角频率。

必须注意不一定等于。

带通和带阻滤波器有两个,即和。

( 4)通带(阻带)宽度BW:它是带通(带阻)滤波器的两个之差值,即。

( 5)等效品质因数Q:对低通和高通滤波器而言,Q值等于时滤波器电路电压增
益的模与通带增益之比,即;对带通(带阻)滤波器而言,Q值等于中心角频率与通带(阻带)宽度BW之比,即。

4. 有源滤波器的阶数
有源滤波器传递函数分母中“S”的最高“方次”称为滤波器的“阶数”。

阶数越高,滤波器幅频特性的过渡带越陡,越接近理想特性。

一般情况下,一阶滤波器过渡带按每十倍频20dB 速率衰减;二阶滤波器每十倍频40dB速率衰减。

高阶滤波器可由低阶滤波器串接组成。

5. 低通和高通滤波器之间的对偶关系
( 1)幅频特性的对偶关系
当低通滤波器和高通滤波器的通带增益A0、截止频率或f0分别相等时,两者的幅频特性曲线相对于垂直线f=f0对称。

( 2)传递函数的对偶关系
将低通滤波器传递函数中的S换成1/S,则变成对应的高通滤波器的传递函数。

( 3)电路结构上的对偶关系
将低通滤波器中的起滤波作用的电容C换成电阻R,并将起滤波作用的电阻R换成电容C,则低通滤波器转化为对应的高通滤波器。

模拟滤波器的应用
模拟滤波器在测试系统或专用仪器仪表中是一种常用的变换装置.例如:带通滤波器用作频谱分析仪中的选频装置;低通滤波器用作数字信号分析系统中的抗频混滤波;高通滤波器被用于声发射检测仪中剔除低频干扰噪声;带阻滤波器用作电涡流测振仪中的陷波器,等等用于频谱分析装置中的带通滤波器,可根据中心频率与带宽之问的数值关系,分为两
种:
一种是带宽B不随中心频率人而变化,称为恒带宽带通滤波器,如右图(a)所示,其中心频率处在任何频段上时,带宽都相同;
另一种是带宽B与中心频率人的比值是不变的,称为恒带宽比带通滤波器,其中心频率
越高,带宽也越宽。

一般情况下,为使滤波器在任意频段都有良好的频率分辨力,可采用恒带宽带通滤波器(如收音机的选频).所选带宽越窄,则频率分辨力越高,但这时为覆盖所要检测的整个频率范调,所需要的滤波器数量就很大.因此,在很多时候,恒带宽带通滤波器不一定做成固定中心频率的,而是利用一个参考信号,使滤波器中心频率跟随参考信号的频率而变化.在做信号频谱分析的过程中,参考信号是由可作频率扫描的信号发生器供给的.这种可变中心频率的恒带宽带通滤波器被用于相关滤波和扫描跟踪滤波中.
恒带宽比带通滤波器被用于倍频程频谱分析仪中,这是一种具有不同中心频率的滤波器组,为使各个带通滤波器组合起来后能覆盖整个要分析的信号频率范围,其中心频率与带宽是按一定规律配置的。

假若任一个带通滤波器的下截止频率为fc1,上截止频率为fc2,令fc1与fc2之间的关系为
fc1=2nfc1
式中n值称为倍频程数,若n=1,称为倍频在滤波器;n=1/3,则称为1/3倍频程滤波器.滤波器的中心频率f0取为几何平均值,即:
根据上述两式,可以得
则滤波器带宽
如果用滤波器的品质因数Q值来表示,则有
故若倍频程滤波器,n=l,Q=1.41;n=1/3,Q=4.38;n=1/5,则Q=7.2.倍频数n 值越小,则Q值越大,表明滤波器分辨力越高.根据上述关系,就可确定出常用倍频程滤波器的中心频率f0和带宽B值。

为了使被分析信号的频率成分不致丢失,带通滤波器组的中心频率是倍频程关系,同时带宽又需是邻接式的,通常的做法是使前一个滤波器的一3dB上截止频率与后一个滤波器的一3dB下截止频率相一致,如图6-24所示.这样的一组滤波器将覆盖整个频率范围,称之为“邻接式”的。

邻接式倍频程滤波器,方框内数字表示各个带通滤波器的中心频率,被分析信号输入后,输入、输出波段开关顺序接通各滤波器,如果信号中有某带通滤波器通频带内的频率成分,那么就可以在显示、记录仪器上观测到这一频率成分。

相关文档
最新文档